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Type 2 diabetes is known to be associated with environmental, behavioral, and lifestyle factors. However, the actual impacts of
these factors on blood glucose (BG) variation throughout the day have remained relatively unexplored. Continuous blood glucose
monitors combined with human activity tracking technologies afford new opportunities for exploration in a naturalistic setting.
Data from a study of 40 patients with diabetes is utilized in this paper, including continuously monitored BG, food/medicine
intake, and patient activity/location tracked using global positioning systems over a 4-day period. Standard linear regression and
more disaggregated time-series analysis using autoregressive integrated moving average (ARIMA) are used to explore patient BG
variation throughout the day and over space. The ARIMA models revealed a wide variety of BG correlating factors related to
specific activity types, locations (especially those far from home), and travel modes, although the impacts were highly personal.
Traditional variables related to food intake and medications were less often significant. Overall, the time-series analysis revealed
considerable patient-by-patient variation in the effects of geographic and daily lifestyle factors. We would suggest that maps of BG
spatial variation or an interactive messaging system could provide new tools to engage patients and highlight potential risk factors.

1. Introduction

Type 2 diabetes is known to be associated with a variety of
environmental, behavioral, and lifestyle factors that have an
influence on blood glucose (BG) levels. The two most widely
studied factors are food consumption andphysical activity [1–
3]. Closely observing BG response to these factors over time
has been shown to be an effective way of exploring possible
BG management interventions.

New opportunities for exploring BG fluctuation are
afforded by continuous blood glucose monitoring systems
(CGMS) capable of estimating and logging second-by-second
BG values and improving glycemic control in patients with
diabetes [4–6]. At the same time, similarly capable technolo-
gies for passively tracking human activity and mobility pat-
terns are emerging and capitalizing on wearable sensors such
as accelerometers, heart-rate monitors, and global position-
ing system (GPS) tracking [7]. Combining CGMS with such

technologies could provide new opportunities for exploring
correlates of BG fluctuation over time and space under real-
world conditions, beyond just food and exercise. This could
include the effects of a wider variety of activities (e.g., shop-
ping, leisure), travel outside the home, and exposure to dif-
ferent locations/environments, most of which have scarcely
been explored to date.

This paper utilizes data from a unique study of 40 patients
with diabetes that provided such data, including continu-
ous monitoring of BG, food/medicine intake, location, and
patient activity (exercise, travel, etc.) over a 4-day period
[8]. Building on previous spatial analysis [9], this paper
utilizes traditional analysis using linear regression and more
disaggregate analysis using time-series models on a patient-
by-patient level to explore how BG varies throughout the day.
The time-series models are further distinct from previous
efforts given the fine temporal (5-minute epochs) and spatial
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scale utilized. The implications for diabetes management
and future patient management/decision support systems are
discussed in the conclusions.

2. Materials and Methods

2.1. Patient Monitoring System. The patient monitoring sys-
tem comprised a set of wearable sensors combined with a
smartphone to transmit data to a central server for process-
ing. The sensors include a GPS receiver, 3-axis accelerom-
eter, and a continuous glucose monitor system (Medtronic
CGMS© System Gold, Minneapolis, MN). Additionally,
patients completed a food/medicine diary and a prompted-
recall travel/activity diary for the duration of the study. Each
of these methodological components is described in full
detail in Doherty and Oh [8].

The CGMS provides automatic measurement of intersti-
tial fluid glucose (millimoles/liter, mmol/L) every 5 minutes
for 72 hours using a sensor inserted under the skin. Real-time
measurements were not viewable by patients. Calibration by
finger stick blood glucose is required four times per day, done
manually, and entered into the device by the patient. Data
were manually downloaded from the device at the end of the
study period.

The GPS provided a patient’s location (longitude and
latitude) and speed on a second-by-second basis, typically
to within 5–10 meters accuracy. The prompted recall activity
diary was an interactive web-based interface that first utilized
the GPS data to automatically determine the basic skeleton
of a person’s day (start/end time of stationary activities and
movements, travel modes, and locations) and then engaged
patients to fill in gaps and/or provide more details on activity
types (working, shopping, physical activity, etc.), location
names, and involved persons at the end of the day [10]. The
3-axis accelerometer was used to provide further detail on
the intensity of physical activity by measuring acceleration
in three directions 15 times per second. A combined “vector
magnitude” ofmotionwas calculated as the square root of the
sums of squared directional values. Lastly, the food/medicine
diary was a pocket-sized booklet completed by hand, includ-
ing the types, amounts, and timing of all food, beverages, and
medicines consumed.

2.2. Sample. A study utilizing the above system was carried
out with 40 type 2 patients with diabetes from the Toronto
Rehabilitation Institute. Participantswere recruited via adver-
tisements and word-of-mouth and were given incentives
valued at $30 CAD.The study was approved by the Institute’s
Research Ethics Board. A 72-hour monitoring period was
chosen, covering a four-day period. On the first day, par-
ticipants came in for equipment setup, resulting in a partial
day of monitoring. The next two days were full days of
monitoring, followed by a fourth day when they returned to
the clinic for debriefing, again resulting in a partial day of
monitoring.

Of the 40 original participants, 34 ended up providing
complete 72 hours of data, including requisite manual cal-
ibration of the CGMS four times daily. Two participants
ceasedCGMSmonitoring after day 2 reporting irritationwith

the tape-on sensor, and four other patients’ GPS data sets
were deemed unusable owing to an early technical problem.
The 34 participants ranged in age from 32 to 75 (mean of
56), weighed between 45 and 147 kilograms (mean 88.4), and
included equal numbers of males and females. The duration
since diagnosis with type 2 diabetes ranged from 3 months
to 46 years (mean 9.5 years). As part of their rehab program,
participants were already engaged in exercise, diet, and edu-
cation programs, and most of them were actively engaged in
managing their daily BG levels through a controlled program
of medication including a variety of slow, medium, and
fast acting insulin medications. Note that levels of reported
exercise over the study period were very low (averaging one
hour for most, none at all for six participants), which should
be borne in mind when interpreting findings.

2.3. Analytical Methods. Two distinct types of analysis were
performed. The conventional approach is to aggregate vari-
ables such that there is one value per participant, adhering
to the statistical assumption of independent observations.
Under this approach, mean BG per participant over sev-
eral aggregated time periods (all 3 days, daily, or every 12
hours) was modeled using stepwise linear regression as a
function of the range of explanatory variables listed in Table 1.
Acknowledging the modest violation of independence, we
report the 12-hour aggregation results (170 observations from
34 subjects). Note also that the natural logarithm of BG was
used to mitigate heteroskedastic (unequal variance) impacts.

The collection of 5-minute data from the CGMS provided
the opportunity for a much finer grain of analysis, yielding
up to 864 observations per participant (28,994 in total). Over
these much shorter epochs, successive BG measurements are
certainly highly (auto-) correlated thus more severely violat-
ing the assumption of independent observations required of
statistical techniques such as regression. Alternatively, time-
series approaches such as autoregressive integrated moving
average (ARIMA) have become a popular choice for dealing
with such data, because of how they deal with autocorrelation
issues. They are used when data are measured repeatedly at
equal intervals of time and are normally applied on single
participant data. They have long been used in the study of
chronic diseases [11] and alongside GPS tracking to explore
people’s exposure to air borne pollutants [12]. Past diabetes
applications have typically used daily BG values as the basis
of the series [13, 14], capturing response to cyclic/harmonic
patterns, interventions, gradual effects, delayed effects, and
other factors.

ARIMA models predict a dependent variable’s present
value based on its past values plus values of other explanatory
variables. This technique weighs more heavily on observa-
tions that are nearer to the point in which an independent
variable is introduced, rather than based on aggregated values
across a whole day or longer. Crabtree et al. [11] emphasize
that “the results of analysis by time series can reveal associations
between variables in naturalistic settings where there are many
confounding variables, including the variety of interactions
between the individual and his/her environment which make
determining causality extremely difficult” (p. 242). Ridenour et
al. [14] further suggest that ARIMAmodeling holds “promise
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Table 1: Explanatory variables.

Variable name Description Value/units in given
time perioda

Calories consumed From food and beverages Total calories
Meds taken Of any type 0 = no, 1 = yes
Insulin taken Variety of slow, medium, and fast acting insulin medications 0 = no, 1 = yes

Movement intensity Vector magnitude, square root of the sum of the squared 3-axis acceleration
readings

Average vector
magnitudeb

Exercise time Aerobic, weights, walking, and so forth Total minutes
Trip time Time spent travelling by any mode Total minutes
Automobile time Time spent travelling by personal automobile Total minutes
Public transit time Time spent travelling by public transit (bus, streetcar, subway, and train) Total minutes
At-home time Time spent at home Total minutes
Work/school time Time spent at work or school Total minutes
Shopping time Time spent shopping (grocery, clothing, etc.) Total minutes
Restaurants time Time spent in a restaurant of any type Total minutes
Out-of-home time Time spent outside the home Total minutes
Time spent with others Time spent with other people involved Total minutes

Time of day Daytime (7:00AM to 7:00PM) or nighttime 0 = daytime, 1 =
nighttime

Distance home Straight-line distance between current location and home location Average distance in
kilometers

aTime periods included the past 12 hours for aggregate correlation/regression analysis and over past 5 minutes for time series ARIMA modeling.
bLow values are typically associated with stationary activities and higher values are indicative of more physically active periods.

for rigorous prevention research that uses within-person, small
sample, or case study methods” (p. 267), such as those here.

While readers are referred to texts [15, 16] and relevant
journal articles [12, 17] for technical details, we take an applied
approach to present the ARIMA model results, rather than
focus on the mathematical structure or predictive power of
the models. For the purposes of the analysis, time-series
expert modeler in SPSS version 20 was used. Multivariate
models (employing a transfer function) were developed for
each participant to test the effects of the various variables
or “interventions” as listed in Table 1. Separate models for
waking hours only (6:00 a.m. to midnight) versus all hours of
the day were also explored. Similarities and differences across
participants were then explored.

3. Results

3.1. Aggregate Modeling: Correlations and Linear Regression.
As a preliminary step, Table 2 presents bivariate correlations
between mean BG and all explanatory variables. While the
correlations are relatively weak, there are indications that
BG levels tend to be higher during the day and increase with
measures indicative of being away from home (distance from
home, time in a car, and out of home time) versus being
at home. Perhaps surprisingly, there were no significant
correlations with food and medicine. Insights are also
impacted by outliers; for instance, the suggestion that time
spent with other people is significant is largely driven by one
participant as was the case to a lesser extent with distance
from home (see Table 2 note).

Linear regression allows a better assessment of the com-
bined impacts of all explanatory variables on BG. Stepwise
linear regression was used to arrive at a best-fit model as
assessed through overall model 𝑅2 values. In the original
model, only distance from home emerged as significant, but
as noted above, this is largely down to one outlier. Removing
this person gives a model with time of day, time spent with
people, and exercise time as significant (Table 3(a)) with the
negative coefficients indicating that increased exercise time
and night time periods tend to be associated with lowermean
BG, while more time spent with people increases BG. On
close examination, the significance of the time spent with
other people was discovered to be the result of one single
(outlying) participant. Once removed, this variable was no
longer significant in the overallmodel, as shown inTable 3(b).

Caution should be exercised in interpreting the results as
indicating food and medicines are nonsignificant in affecting
BG levels. It must be stressed that these are patients primarily
managing BG levels through a controlled program of med-
ication, so we would expect over an average period of 12
hours for the effects to be largely cancelled out. Similarly, the
fact that other variables do not emerge as significant is not
indicative of them being not important, because there was
relatively little variability between participants in most of the
measures considered. A more general point is that it appears
risky to try to analyze patients together in this way, because
there is clearly great variability in explanatory factors that is
not being captured through an aggregate analysis as shown
by the poor 𝑅2 values. With bearing this in mind, we turn
our focus to a patient-by-patient level of analysis.
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Table 2: Correlation with mean blood glucose calculated over 12-
hour periods (𝑛 = 170, 34 participants × 5 twelve hour periods).

Explanatory variable
(in last 12-hour period) Correlation with mean BG

Movement intensity −0.072
Calories consumed 0.071
Medicines taken −0.015
Insulin taken 0.050
Exercise time −0.127
At-home time −0.240∗∗

Work/school time 0.124
Shopping time 0.003
Restaurant time 0.099
Automobile time 0.169∗

Public transit time 0.076
Time spent with othersa 0.200∗∗

Day/night −0.204∗∗

Out-of-home time 0.226∗∗

Travel time 0.181∗

Average distance from homeb 0.363∗∗
∗Correlation is significant at the 0.05 level (2-tailed).
∗∗Correlation is significant at the 0.01 level (2-tailed).
aPrimarily due to one participant reporting substantially more time spent
with another person. If this person is removed, correlation drops to 0.055
and 0.016.
bHeavily influenced by one participant with an average distance of home
some three times higher than the next highest. Removing this person reduced
correlations to 0.228∗∗ and 0.157∗.

Table 3: Linear regression results formean blood glucose calculated
over 12-hour periods.

(a) 33 participants (𝑛 = 165, 𝑅2 = 0.176)

Variables
Standardized
coefficients 𝑡 Sig.

Beta
(Constant) 56.5 0.000
Night −0.35 −4.09 0.000
Time spent with
people in last 12 hours 0.22 2.74 0.007

Exercise time in last
12 hours −0.23 −2.62 0.010

(b) Two outliers removed (𝑛 = 160, 𝑅2 = 0.171)

Variables
Standardized
coefficients 𝑡 Sig.

Beta
(Constant) 61.8 0.000
Night −0.39 −4.43 0.000
Exercise time in last
12 hours −0.31 −3.51 0.001

3.2. Disaggregate Modeling: ARIMA. A total of 68 ARIMA
models were developed, given the 34 participants and two

Table 4: ARIMA blood glucose modeling results, single participant
(𝑛 = 864, 𝑅2 = 0.612).

Variables Laga Estimate 𝑡 Sig.

Previous BG readings

Lag 1 −0.61 −18.3 0.000
Lag 2 −0.28 −7.28 0.000
Lag 3 −0.22 −5.71 0.000
Lag 4 −0.27 −7.93 0.000

Exercise time in last
5min

Lag 0 0.00 −3.75 0.000
Lag 1 8.47𝐸 − 05 2.54 0.011

Trip-automobile time
in last 5min

Lag 0 5.58𝐸 − 05 4.07 0.000
Lag 4 −3.49𝐸 − 05 −2.49 0.013

aOutputs are displayed similar to other multivariate models (overall 𝑅2,
variables entering model) but with the addition of one distinct feature:
the time “lag” with which BG was significantly autocorrelated with the
variable. A lag of 1 indicates autocorrelation of BGwith the explanatory value
in the preceding 5-minute interval, whilst higher lags indicate associated
autocorrelation further back in time. A single explanatory variable can
have multiple lagged effects, listed in sequence in the output with separate
estimates.

main types of models (all day versus only waking hours).
An example of ARIMA model for one participant is shown
in Table 4. By way of interpretation, current BG levels are
primarily influenced by BG levels for the previous four
epochs/lags, which in this case are 20 minutes, and to a
lesser extent by exercise time and time in an automobile.
Food consumption and medicine-related variables had no
significant effect on BG for this participant. Across all
participant models, the number of significant explanatory
variables ranged from 0 to 6, averaging 2.4 (which included
previous BG readings).This average increased to 4 if variables
entering at more than one lag value were added.Themean 𝑅2
values were 0.52 for all day models and 0.58 for waking hours
only models (a slightly improved fit), ranging from 0.18 to
0.80 and from 0.17 to 0.87, respectively. Taken together, this
suggests that participants differ markedly in the pattern of
BG and extent to which current BG levels are influenced by
previous readings and explanatory variables.

A summary table of the frequency with which each
explanatory variable ended up being significant in the
ARIMA models of all participants is shown in Table 5. Note
that these factors are only marginally significant, as the
majority of variability in BG readings is explained by the
lag effects of previous BG readings (as intuitively expected).
Additionally, the frequency of variable significance is not
necessarily indicative of a variable’s importance per se,
because some (particularly exercise) were observed in low
quantities for this sample as highlighted earlier. Nevertheless,
it is interesting that indicators of travel, being away from
home and conversely being at home, are all associated with
significant changes in BG levels, whereas traditional variables
related to food andmedications were not as frequently signif-
icant. This could reflect the earlier point that participants are
successfully managing the impacts of food via medications
(leaving little change in BG to be detected as significant in
the model), but not the other factors that remain.
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Table 5: Frequency of variable significance in 5-minute ARIMA
models.

Variables All day models Waking hours
only models

At-home time 11 (33%) 6 (18%)
Automobile time 9 (27%) 10 (30%)
Public transit time 6 (18%) 5 (15%)
Shopping time 5 (15%) 4 (12%)
Calories consumed 4 (12%) 7 (21%)
Distance home 4 (12%) 6 (18%)
Exercise time 2 (6%) 2 (6%)
Meds taken (yes/no) 2 (6%) 1 (3%)
Time spent with others 2 (6%) 3 (9%)
Restaurants time 1 (3%) 2 (6%)
Insulin taken (yes/no) 0 (0%) 1 (3%)
Movement intensity 0 (0%) 0 (0%)
Trip time 0 (0%) 0 (0%)
Work/school time 0 (0%) 0 (0%)
Out-of-home time 0 (0%) 0 (0%)

4. Discussion and Conclusions

The analysis in this paper demonstrates that, overall, the use
of smartphone-based sensors, coupled with CGMS, has the
ability to reveal new geographic/lifestyle-related correlates
of BG at a very fine scale, but that the impacts of these
on BG fluctuation are highly personal. The more traditional
aggregate analysis of mean BG over 12-hour periods revealed
correlationswith specific activities and travelmodes, distance
from home, and time of day, whilst correlations with food,
medicine, and exercise were not as significant. In further
exploration, if certain participants were removed, the signif-
icance of the results changed dramatically, obviously a func-
tion of the small sample size, but more pertinently providing
further justification as to why disaggregate individual level
analysis is warranted.Applying correlations and linear regres-
sion in an aggregated fashion can also mask associations, as
data is averaged over a long period of time and thus does
not adequately account for the time-lagged impacts of factors
such as medications, food, and exercise that can persist for
long periods of time after their occurrence (and in the case of
insulin medications will vary substantially given the variety
of slow to fast acting types taken by subjects in this sample).
Aggregation also yields small datasets that are especially
sensitive to outlying values, as shown in the analysis.

Themore disaggregate time-series analysis using ARIMA
modeling on a patient-by-patient basis utilized the data
more fully and by design was more amendable to capturing
common time-lagged affects. The ARIMA models predicted
each participant’s 5-minute BG value based on past values
plus values of other explanatory variables, weighing more
heavily on nearer observations rather than aggregated values
across a whole day. The expectation that ARIMA modeling
would reveal a wider variety of associations in naturalistic
settings [11] evenwith a small sample [14], wasmet, as a much

more specific and interesting mix of correlating factors was
discovered on a patient-by-patient basis. On average, this
included 2-3 explanatory variables per participant,most often
related to the conduct of specific activity types or certain
locations (especially at home or shopping), travel by different
modes such as automobile and transit, or being out of home
(especially far from home). Traditional variables related to
food intake and medications were again less often significant
in explaining BG fluctuation. This suggests that participants
were successfully managing the impacts that food has on BG
using their medication regime but were not actively control-
ling for the impacts of these other geographic/lifestyle-related
factors.

Taken together, whilst the aggregated correlation and
regression analysis revealedmany of the same correlating fac-
tors as theARIMAmodeling, conducting the aggregated anal-
ysis in isolationmay lead to the temptation to over-generalize
to a population, whereas the time-series analysis revealed
considerable patient-by-patient variation in terms of the
effects of geographic and daily lifestyle factors. At the same
time, we acknowledge the limitations of the study. Clearly,
this was a small sample of a very specific segment of the pop-
ulation, and the intent was never to generalize the findings.
Rather, the purpose was to demonstrate the potential value
of both personalized monitoring and disaggregate analysis
for the management of health care and hopefully encourage
others to pursue similar lines of enquiry in the future. We
also acknowledge that our decision to treat each patient as (in
effect) a separate time-series model, while providing unique
intra-patient insights, limited the analysis of interpatient
effects at the disaggregate level. An alternative approach is
to pool the time-series data, creating one series for analysis.
Such an approach has been used in cohort studies similar
to this one [18], although it does bring with it a separate set
of challenges and should only be applied subject to various
statistical constraints [19].

Given this, the practical implications of these findings are
worth considering. What seems clear is that generalized sug-
gestions on the management of geographic/lifestyle factors
that impact BG are likely not feasible or, in the least, should
be augmented by highly personalized advice. What this will
require is an effective patient management/decision support
system that goes beyond tracking the data and instead pro-
vides for personalized analysis of the data to assist caregivers
in both diagnosing and monitoring patient progress. In
particular, as a complement to traditional temporal graphical
analysis, we would suggest that maps of BG spatial variation
such as those shown in Doherty [9] could provide a new tool
for caregivers to engage patients in discussion of potential risk
factors such as locations or activity types associated with
high/low BG and engender more concerted efforts to man-
ually monitor BG during such periods. At a more advanced
level, more sophisticated time-series analysis of data could
assist in identifying risk factors personalized to the patient.
This approach would correspond to telemedicine’s “missing
element” [20], and with Balakrishnan et al.’s [21], call for
more personalized BG prediction models sensitive to lifestyle
interventions deemed necessary for devising optimal patient
specific advice and prescriptions.
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A more pragmatic enhancement to such systems would
be to incorporate live interactive messaging to reach out
to patients outside of face-to-face meetings with caregivers,
warning of possible risk factors identified just for them, such
as a lengthy drive, risky location, or long time/distance away
from home. Associated with this could be a suggestion to
manually check their BG and/ormodify behavior.This would
serve as a complement to traditional BG monitoring advice
associatedwith themanagement of food- and exercise-related
risks. Given the wide-scale proliferation of smartphones,
including the developing world, this could potentially reach
a wide audience.
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