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Purpose: To examine the feasibility and potential difficulties of automatically generating

radiologic reports (RRs) to articulate the clinically important features of brain magnetic

resonance (MR) images.

Materials and Methods: We focused on examining brain atrophy by using

magnetization-prepared rapid gradient-echo (MPRAGE) images. The technology was

based on multi-atlas whole-brain segmentation that identified 283 structures, from which

larger superstructures were created to represent the anatomic units most frequently used

in RRs. Through two layers of data-reduction filters, based on anatomic and clinical

knowledge, raw images (∼10MB) were converted to a few kilobytes of human-readable

sentences. The tool was applied to images from 92 patients with memory problems,

and the results were compared to RRs independently produced by three experienced

radiologists. The mechanisms of disagreement were investigated to understand where

machine–human interface succeeded or failed.

Results: The automatically generated sentences had low sensitivity (mean: 24.5%)

and precision (mean: 24.9%) values; these were significantly lower than the inter-rater

sensitivity (mean: 32.7%) and precision (mean: 32.2%) of the radiologists. The causes of

disagreement were divided into six error categories: mismatch of anatomic definitions

(7.2 ± 9.3%), data-reduction errors (11.4 ± 3.9%), translator errors (3.1 ± 3.1%),

difference in the spatial extent of used anatomic terms (8.3± 6.7%), segmentation quality

(9.8 ± 2.0%), and threshold for sentence-triggering (60.2 ± 16.3%).

Conclusion: These error mechanisms raise interesting questions about the potential

of automated report generation and the quality of image reading by humans. The
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most significant discrepancy between the human and automatically generated RRs was

caused by the sentence-triggering threshold (the degree of abnormality), which was fixed

to z-score >2.0 for the automated generation, while the thresholds by radiologists varied

among different anatomical structures.

Keywords: automated generation, radiologic description, dementia, brain atrophy, 3D T1 weighted image, brain

atlas

INTRODUCTION

Radiologic assessments of brain magnetic resonance (MR)
images are solely based on subjective judgment utilizing
radiologists’ knowledge and experience. The input of the process
is a set of MR images with different contrasts, and the output is
free-text. The content of the text (hereafter known as radiologic
report [RR]) is typically a description of remarkable anatomic
findings and often, but not always, includes a diagnosis. In
this process, we can consider the role of the radiologist as
translating the anatomic features captured in the MR images
to clinically meaningful language (i.e., semantic labels). During
this translation, features judged to be within the normal range
are filtered out, while abnormalities that are visually appreciable
and judged as clinically important are documented. One of the
most important aspects of this process is that it reduces three-
dimensional MR images of ∼10MB in size into a few kilobytes
of clinicallymeaningful and human-understandable information,
which can be shared with other physicians and patients.
To perform this conversion of high-dimensional imagery to
semantic labels, the ability of humans is generally understood
to be far superior to that of computer algorithms. However, the
conversion by humans is criticized for its accuracy, efficiency,
and consistency (1–4). In the era of modern medical informatics
and big data analytics, the thought process behind this huge data
contraction from 10MB to few KB is not documented and thus
not available in a readily usable format for retroactive large-scale
analyses.

In the past two decades, technologies for quantitative analyses
of brain MRI, especially voxel-based analysis and automated
segmentation, have advanced considerably. Given the known
shortcomings of the subjective image reading, we may wonder
why these advanced quantitative tools have been rarely adopted
for clinical image reading. There seem to be important gaps
between the numbers provided by the tools and the actual
requirements of radiologists. Suppose the RRs in a free-text
format are the final outcome of brain MRI reading (which could
be a simplification), one of the approaches to close the gap would
be to directly generate RRs by computer algorithms.

Although we do not yet know if human-readable outputs
would be the best solution for future computer-assisted diagnosis
of MR images, we expected such efforts would deepen our

Abbreviations: RR, radiologic report; MR, magnetic resonance; MPRAGE,

magnetization-prepared rapid gradient-echo; ADNI, Alzheimer’s Disease

Neuroimaging Initiative; SD, standard deviation; AS, automated sentence; TP,

true-positive; FN, false-negative; FP, false-positive; TN, true-negative; PACS,

picture archiving and communication systems; EMR, electronic medical records.

understanding about the mechanism of the image reading by
humans. In reality, radiological reading is a complicated process,
because radiologists read multiple images (e.g., T1-weighted, T2-
weighted, and fluid-attenuated images), evaluate both anatomy
(sizes and shapes) and image intensity profiles, and integrate
clinical information (e.g., the reason forMRI scans) to provide an
RR. In this study, we inevitably needed to simplify the paradigm.
The simplifications we adopted were as follows:

â We focused on patients who visited our memory clinics
(excluding stroke and tumor cases). It is known that MRI has
limited value for diagnosis or patient care of subjects with
memory problems. However, in routine clinical practice, most
of this patient population receives MRI scans, and radiologists
provide their radiological reports. This patient population has
both normal reports and cases with noticeable abnormalities,
most frequently accelerated brain atrophy and thus, often leads
to abnormality-positive radiological reports. This relatively
large effect size is preferable for the purpose of this study,
compared to populations dominated by negative findings.

â We focused on anatomical reading of T1-weighted images,
specifically magnetization-prepared rapid gradient-echo
(MPRAGE) scans. Radiological reading based on T1-weighted
images tends to be focused on anatomy (sizes and shapes)
of brain structures. This is technically more straightforward
than evaluating abnormalities in signal intensities in multiple
contrasts.

On the basis of these simplified radiological domains, we
developed a tool that automatically translates MR images into
RRs. In the past, there were various efforts to create structured
reports at the time of image reading or to develop tools to
systematically analyze existing free-text reports retrospectively
(5–9). However, to our best knowledge, this is one of the
first attempts to generate human-readable RRs directly from
raw MR images. In this study, we used a state-of-the-art
multi-atlas brain segmentation tool (10–19) and developed an
interpreter that connects the anatomical quantification results to
the RRs. To test the accuracy of the sentence generator, reports
from three radiologists were compared with automated reports
generated for 92 patients. Our primary goal was to measure
the accuracy of the computer-generated sentences. However,
during the research, we encountered many interesting results
and challenges. These findings are of fundamental importance in
understanding radiologists’ thought processes and for the future
development of smarter algorithms and large-scale evidence-
based studies. Herein, we aim to present our study results,
particularly with respect to the mechanisms of disagreement
between radiologists and the automated analyses.
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FIGURE 1 | Schematic diagram for the image–sentence conversion. MPRAGE images were first segmented into 283 structural units using a multi-atlas segmentation

tool, from which an additional 215 superstructures were defined. This process of reducing an image with >106 voxels to 498 structures was called the Anatomic

Knowledge Filter. In the second step, called the Abnormality Judgment Filter, volumes of structures were compared with values retrieved from databases of healthy

individuals, with z-scores (criteria for abnormality judgment) calculated. In the third step, z-score information for the 498 structures was reduced to information on 20

selected structures and their relationships, using a Clinical Knowledge Filter. The final step was the translation of this information to human-readable sentences using a

dictionary. MPRAGE, magnetization-prepared rapid gradient-echo.

MATERIALS AND METHODS

Data Sources: Normal Data
Approval was obtained from the Johns Hopkins Medicine
Institutional Review Board to access and use the MRI reports.
To develop a tool that can be applied to clinical practices, the
tool cannot rely on data that need to follow stringent criteria
(i.e., data need to be acquired by the same scanner with a fixed
protocol). To ensure that the normal data had the expected
range of variability, we included data from various sources with
a reasonable degree of difference in their imaging protocols (20).
However, all sources conformed to the definition of MPRAGE-
type scans with <1.5-mm resolution. The data sources included
the following:

1. Alzheimer’s Disease Neuroimaging Initiative (ADNI) sagittal
data (RRID:SCR_003007): These data were obtained from the
ADNI database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public–private partnership, led by Principal
Investigator Michael W. Weiner, MD. Its primary goal is to
assess whether serial MRI, positron emission tomography,
other biological markers, or clinical and neuropsychological
assessments can be combined to measure the progression
of mild cognitive impairment and early Alzheimer’s
disease.

We used data on cognitive normal controls (n = 72)
from the ADNI database obtained using six different types of
MRI hardware with both 1.5T and 3.0T MRI (GE Healthcare
[Waukesha, WI]; Siemens Healthcare [Erlangen, Germany];
and Philips Medical Systems [Best, The Netherlands]). The
mean (±SD) age of the individuals was 74.1 ± 6.4 years (age
range: 56–96 years).

2. Johns Hopkins University internal 3T sagittal data: These data
(n = 31) were acquired using a 3.0T Philips Achieva MRI

scanner. The mean (±SD) age of the individuals was 34.5 ±

9.4 years (age range: 22–61 years).
3. Johns Hopkins University internal 3T axial data: These data

(n= 50) were also acquired using a 3.0T Philips Achieva MRI
scanner. The mean (±SD) age of the individuals was 61.1 ±

12.4 years (age range: 30–83 years).
4. International Consortium for Brain Mapping 1.5T axial data

(RRID:SCR_001948): These data (n= 26) were acquired using
a 1.5T Siemens Sonata MRI scanner. The mean (±SD) age of
the individuals was 42.1± 12.1 years (age range: 20–68 years).

A detailed analysis of the effects of protocol variability on our
segmentation pipeline has been published elsewhere (20).

Data Sources: Patient Data
We used a database of clinically acquired MRIs from 92 patients
with memory problems who had visited the Bayview Medical
Center, Memory and Alzheimer’s Treatment Center (Baltimore,
MD). Data were accessed and analyzed with a waiver of informed
consent by the Johns Hopkins Institutional Review Board.
MRI scans followed the ADNI protocol, with three-dimensional
MPRAGE, scanned by a 3T scanner (Siemens Verio).

Anatomical Knowledge Filter by
Multi-Atlas Segmentation
The steps used to generate sentences are shown in Figure 1.
In the last two decades, technologies for quantitative image
analyses have significantly advanced (10, 21–25). One of the most
commonly used quantitative analyses is voxel-based analysis
(26, 27) that identifies statistically abnormal voxels in a fully
automated manner. The voxel-by-voxel results are based on
standardized anatomic coordinates with more than 7 million
voxels. The voxel-based results, however, do not directly carry
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semantic labels and the sheer number of the voxels makes
the anatomical and clinical interpretation highly challenging.
In this study, we applied automated whole-brain segmentation
as the first step. We can consider this step as a knowledge-
driven data-reduction (thus called Anatomical Knowledge Filter)
from a >106 voxel domain to a much smaller number of a
structure domain, because the manner of voxel aggregation to
the structures is dictated by anatomical knowledge defined in
reference atlases.

We used a modern multi-atlas approach for the segmentation
involving more than 50 atlases (28) and covering an age range
of 20–95 years. These atlases were warped to individual patient
images, followed by an arbitration process to reach the final
segmentation results. For the multi-atlas segmentation, we used
the MRICloud (www.mricloud.org) pipeline, which is based
on a previously described method (29–33). The current Johns
Hopkins University multi-atlas library (version 9.b) identifies 283
anatomic structures.

Although conversion of the >106 voxel dimension to the
283 structures would lead to substantial spatial data-reduction,
existing RRs show that it is common to use coarser anatomic
notions such as “tissue,” “parenchyma,” “global,” “hemisphere,”
“lobes,” and “ventricles.” To generate the larger anatomic
representations that are widely used in RRs, we adopted the
flexible granularity control tool described in our previous
publication (34). Briefly, multiple levels of superstructures were
created based on multiple levels of ontology-based hierarchic
relationships and applied to the 283 structures. In all, 498
structures were defined with all levels combined.

Judgment of Abnormality
The second step was to define normal ranges for all 498
structures. For each structure, normal values were defined based
on the 179 control scans. Age-corrected mean and SD values
were calculated from which z-scores (= [measured volume–
age-matched mean volume]/standard deviation) were estimated.
The age-correction was performed for each segmented structure
using linear regression. We have previously examined both raw
volume values and volume ratios normalized by total brain
volume (i.e., addition of all tissue segments, ventricles, and sulci),
while the definition of the sulci includes only the deep part. We
employed volume ratios because the variability of the normal
values was significantly smaller than that of raw volume values,
although the best way to calculate z-scores may remain a subject
for debate.

Clinical Knowledge Filter, Dictionary, and
Sentence Triggering
Once the 498 structures were defined, it was possible to report
the volumes and z-scores of all structures to the radiologists.
However, this would certainly not be useful for routine clinical
support. From the clinical point of view, not all structures are
equal. One of the roles of the Clinical Knowledge Filter was
to select structures with likely clinical importance from the
498 defined labels. Supplementary Table 1 lists the 20 selected
structures used in this study.

Direct Triggering
For each of the 20 structures, the translator could generate a
sentence based on the z-score. For example, if the z-score of the
left hippocampus was smaller than a threshold:

â If z-score(hippocampus_L)<-2.0, then trigger, “The left
hippocampus has atrophy.”

While we could have used only direct triggering for the 20
structures, we tested two more advanced translator classes to
enhance anatomic interpretation. This is because radiologists
may observe brain structures based on comparisons and
combinations to extract clinically meaningful observations,
rather than independent entities.

Relational Analysis
Three types of relationships among structures were examined,
which triggered specific sentences:

1. Left vs. right: The terms “bilateral,” “left,” and “right” were
used based on the relationship between the right and
left counterparts. For example, at the ontology Level 1
definition, there were two anatomic labels: “hemisphere_L”
and “hemisphere_R.” Using these labels, the following
sentences could be triggered based on the z-scores:

â If “hemisphere_L”<-2.0 AND “hemisphere_R” <-2.0, then
“There is bilateral hemispheric atrophy”

â If “hemisphere_L”<-2.0 AND “hemisphere_R”>-2.0, then
“There is left hemispheric atrophy”

2. Hemispheric vs. lobar: When hemispheric atrophy was
observed, the atrophy of the five constituent lobes was
examined. If the hemispheric atrophy was localized in a small
number of lobes, a nested sentence that included “prominent”
was generated using nested Boolean operations:

â If “hemisphere_L”<-2.0 AND “hemisphere_R”>-2.0, then
“There is left hemispheric atrophy”

◦ If “frontal_L”<-2.0 AND “temporal_L”>-2.0 AND
“parietal_L”>-0.2 AND “occipital_L”>-2.0 AND
“limbic_L”>-2.0, then “The atrophy is prominent in
the frontal lobe”

3. Relationships among lobes: If there was no hemispheric
atrophy, but atrophy was found in a small number of lobes,
a sentence that included “specific” was generated:

â If “hemisphere_L”>-2.0 AND “hemisphere_R”>-
2.0 AND “frontal_L”<-2.0 AND “parietal_L”>-2.0
AND “temporal_L”>-2.0 AND “occipital_L”>-2.0
AND “limbic_L”>-2.0 AND “frontal_R”>-2.0 AND
“parietal_R”>-2.0 AND “temporal_R”>-2.0 AND
“occipital_R”>-2.0 AND “limbic_R”>-2.0, then “There
is left frontal lobe specific atrophy”

Combinations of Structures
Atrophy in certain lobar combinations was selected to trigger
sentences if such combinations were known to have clinical
significance. For example, frontotemporal dementia frequently
involves atrophy in the left frontal and temporal lobes. Assessing
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this would require an examination of the relationship among the
frontal, parietal, occipital, temporal, and limbic lobes, such as:

â If “hemisphere L”>-2.0 AND “hemisphere R”>-2.0
AND “frontal_L”<-2.0 AND “temporal_L”<-2.0 AND
“parietal_L”>-0.2 AND “occipital_L”>-2.0 AND “limbic_L”>-
2.0 AND “frontal_R”>-2.0 AND “temporal_R”>-2.0
AND “parietal_R”>-0.2 AND “occipital_R”>-2.0 AND
“limbic_R”>-2.0, then “There is left front-temporal lobe specific
atrophy”

Note that this sentence was not triggered when there
was hemispheric-level atrophy due to the inclusion of “If
‘hemisphere_L’>-2.0 AND ‘hemisphere_R’>-2.0.” For example, if
the right hemisphere had significant atrophy, the sentence with
“left front-temporal lobe specific” would not be triggered because
the atrophy would no longer be specific to the left frontal and
temporal lobes.

With the five major lobes defined in this study, there
were 30 different combinations of lobar atrophy patterns in
addition to four patterns of hemispheric atrophy. The relational
and combination triggering classes were used to avoid a
large number of direct triggerings and efficiently draw the
radiologists’ attention to clinically important features. Our
initial attempt to create the Boolean operations is described in
Supplementary Table 2. The Clinical Knowledge Filter is a work
in progress; hence, evaluation of its efficacy was an important
purpose of this paper.

Evaluation by Subjective Assessment
This was a retrospective study based on existing data. The 92
images from the patients with memory problems were assessed
by three neuroradiologists with more than 6 years of experience
and without prior knowledge of the automated analyses. They
were informed of the patients’ age and the fact that dementia was
suspected by attending physicians. They are instructed to read the
images and generate radiological reports in ways the routinely
do in their daily clinical practices without standard templates.
The outcome was a free-text RR. For each sentence, agreement
between the automated sentence (AS) and the RR, as well as
between the RRs, were tested by KA and categorized as true-
positive (TP), false-negative (FN), false-positive (FP), or true-
negative (TN) case. In the case of disagreement (FN + FP), its
reasons were carefully examined. We first examined if there were
differences in agreement depending on the structure type: brain
tissues and non-brain tissue (ventricles and sulci) structures.
Then, for brain tissue structures, we systematically studied the
reasons for discrepancy and categorized the errors into six classes
using the decision-making tree described in Figure 2. The raw
data supporting the conclusions of this manuscript will be made
available by the authors, without undue reservation, to any
qualified researcher.

Error Category 1: Anatomic Definitions by the

Anatomical Knowledge Filter
On the basis of the 283 defined structures, further 215 additional
superstructures were defined (total 498 structures). While this
provided an extensive list of anatomic names, it is still possible

that radiologists use anatomic names that were not defined in
our atlas. In theory, this could happen in one of three ways:
(1) anatomic entities that were smaller than the smallest units
defined in the atlas were used; (2) the anatomic borders of
the structural notions used by the radiologists did not follow
the anatomic definitions used in our atlas; and (3) none of
the superstructures represented the anatomic terms used by the
radiologists. In these instances, it was not possible to evaluate
agreement. We assigned these cases to error category 1.

Error Category 2: Errors in the Information Reduction

by the Clinical Knowledge Filter
Of the 498 structures defined, only 20 were chosen for this
study through the Clinical Knowledge Filter. This knowledge
filter was developed because radiologists implicitly give heavier
weightage to certain structures than others. For example, the
target population of this study was patients with memory
problems, and radiologists therefore paid special attention to the
hippocampus. This weighting resulted in certain structures being
frequently described, while others were rarelymentioned. It is not
clear that the choice of 20 structures was appropriate, and the
following patterns of errors might have occurred.

Error category 2-1: inclusion of structures that were not
routinely examined: It is possible that the ASs would
include sentences about structures that were rarely seen in
the RRs. This would involve the triggering of sentences
that a radiologist might judge unnecessary. This can be
considered an FP result. With the 498 defined structures
(and their relationships), we could generate large numbers
of “scientifically correct” sentences about anatomic states.
However, such an approach would be unacceptable in practice.
In this sense, knowledge-driven reduction of the list was
necessary but at the cost of generating this error category.
Error category 2-2: omission of important structures from the
knowledge-based dictionary: As opposed to error category
2-1, the knowledge-based reduction may remove clinically
important labels, which lead to FN cases and are categorized
in this class.

Error Category 3: Errors in the Boolean Expressions

in the Translator
The relationships defined in the Clinical Knowledge Filter
often became complicated, and we experienced unexpected
triggering or omission of important observations. These cases
were documented and categorized in this class.

Error Category 4: Ontology-Level Errors
A significant number of discrepancies were caused by the
extent of areas of abnormalities referred to by the AS and
the radiologists. For example, if the AS described “The left
hemisphere has atrophy” and a radiologist described “The left
front-temporal lobe has atrophy,” then such a case was included
in this error category. Obviously, there is ambiguity in the
definition of this error; in the above example, the radiologist
may not mean “atrophy is restricted ONLY in the left frontal
and temporal lobe.” However, the computer-generated sentences
require rigorous definition of anatomical specificity for triggering
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FIGURE 2 | Decision-making tree of the reasons for discrepancies between the radiologic reports and automated sentences. AKF, Anatomic Knowledge Filter; CKF,

Clinical Knowledge Filter.

of each sentence, and atrophy in the “left hemisphere” and “left
front-temporal lobe” have different triggering criteria. Although
this may not be considered as clear errors of the AS, we
categorized them in this error class.

Error Category 5: Poor Segmentation Quality
If a discrepancy was not categorized in error categories 1–
4, we carefully examined the segmentation results to examine
whether the error was caused by segmentation errors. If one
of the radiologists judged that the discrepancy was caused by a
segmentation error, the case was classified as error category 5.

Error Category 6: Inadequate Threshold for Triggering

(Judgment Filter)
If a discrepancy could not be classified into error categories 1–5,
the radiologists were asked if they felt that the threshold to trigger
the AS with a z-score smaller or larger than 2.0 was too stringent
or too relaxed with resulting errors placed in this category.

RESULTS

Overall Agreement Based on Structure
Types
Table 1 summarizes the agreement between the ASs and RRs for
brain tissue and non-brain tissue (ventricles and sulci) structures.
For the 92 patients analyzed, we categorized the findings into

TP, FP, FN, or TNs simply based on whether any comments
were made in the RRs about the brain tissue or non-brain tissue
structures, regardless of location. For example, the ASs and
radiologist did not mention any brain tissue abnormalities for 20
patients, while they both described abnormalities in 45 patients.
The number of the FP and FN cases was similar, indicating
that the sentence-trigger threshold used in this study (z-score<-
2.0) was reasonable. The accuracy of the AS (mean 0.70),
sensitivity (mean 0.80), precision (mean 0.71), and specificity
(mean 0.60) were mediocre. These numbers do not have much
clinical meaning, however, because they do not represent exact
agreement with respect to the locations of abnormal brain tissue
structures.

Comments about ventricles and sulci were separated from

those about brain tissue structures for several reasons. First, all
comments about ventricles were about enlargement (no cases of

abnormally small ventricles were reported), while all comments

about brain tissues were about size reductions. Second, RRs
from all three radiologists reported ventricular abnormalities
when they were severe. In mild-to-moderate cases, RRs tried
to describe the brain tissue structures that accounted for the
ventricle enlargement. The mean z-score of the RR-positive cases
was 5.45 ± 1.5, considerably higher than the threshold used in
the AS. As a result, agreement among the reports about ventricles
had a sensitivity of 1.0 (i.e., when the RR described abnormal
ventricles or sulci, the AS always accurately detected these as
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TABLE 1 | The number of the positive and/or negative findings in the brain tissue

and the ventricle among AS and 3 RRs.

Region AS RR

RR1 (n) RR2 (n) RR3 (n)

Brain tissue Positive Positive 45 32 45

Positive Negative 12 25 12

Negative Positive 15 4 15

Negative Negative 20 31 20

Accuracy 70.7% 68.5% 70.7%

Sensitivity 75.0% 88.9% 75.0%

Precision 78.9% 56.1% 78.9%

Specificity 62.5% 55.4% 62.5%

Ventricle Positive Positive 5 5 3

Positive Negative 30 30 32

Negative Positive 0 0 0

Negative Negative 57 57 57

Accuracy 67.4% 67.4% 65.2%

Sensitivity 100.0% 100.0% 100.0%

Precision 14.3% 14.3% 8.6%

Specificity 65.5% 65.5% 64.0%

AS, Automated sentence; RR, Radiologic report.

abnormal), but precision (RR positive/AS positive cases), and
specificity (AS negative/RR negative) was low (mean of 0.12 and
0.65, respectively). The remaining Results focus on reports of
brain tissue structures.

Detailed Analyses of Agreements and
Disagreements for Brain Tissue Structures
Structure-by-structure agreements and disagreements are
presented in Table 2. The current AS generator includes 16
specific brain tissue names (see Supplementary Table 1). Seven
additional anatomic structures were mentioned by radiologists.
With 92 cases with memory problems, there were a total of
2,116 potential entries (92 cases × 23 structures) for which
structure-to-structure agreement was to be examined (TP, FP,
FN, and TN cases). The results show high agreement (90.9–
92.1%) between the ASs and the three radiologists (radiologists 1,
2, and 3), while the mean inter-rater agreement was 92.3%. The
accuracy increased to 93.1% between the ASs and the majority
voting (judgment based on agreement by more than 2 raters),
while the mean level of agreement between the radiologists and
the majority voting was 96.1%. Although these numbers seem
promising, they were driven by the large number of TN cases,
artificially increased by adding reports about many structures
that were not affected in this patient population. As seen from
the low mean sensitivity (24.5%), precision (24.9%), and kappa
(0.20) values, the performance of the AS should be considered
poor. Because sensitivity, precision, and kappa values are less
affected by the number of TN cases, we focus on these three
measures in the following sections.

The inter-rater sensitivity and precision rates were 30.3–35.6%
and 29.8–34.7%, respectively. The kappa values were 0.26–0.31. T
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These values are higher than AS–RR agreement, but still low. The
agreement rates depend heavily on the strictness of the agreement
criteria, especially about the location. In this study, we employed
rather strict criteria (e.g., left hemispheric atrophy and left
frontal-temporal atrophy were not in agreement). The reported
levels of agreement can be compared among different approaches
within this study but caremust be taken in comparisonwith those
from different studies. An improvement withmajority voting was
obvious, with sensitivity and precision increasing to 73.0 and
50.5%, respectively. Considering that the AS vs. majority voting
agreement was only 33.3% (sensitivity) and 23.9% (precision),
overall, the performance of the ASs was inferior to that of the
RRs.

Error Categorization
Table 3 shows the reasons for disagreements using the six error
categories.

Category 1 Errors
Two anatomic terms were categorized in this error type: “medial
temporal lobe” and “global.” The term “medial temporal lobe”
was used 19 times by radiologist 1 (9.9% of the total errors) and
four times by radiologist 2 (2.3%). This term is widely used in
radiology and neurology, and is usually meant to include the
hippocampus, entorhinal cortex, parahippocampal gyrus, and
sometimes associated regions (perirhinal and fusiform gyrus), as
well as the amygdala. The term, “medial temporal” also implies
that these structures are part of the temporal lobe. On the other
hand, in ontological definitions, many of these structures are
integrated into the limbic system as a superstructure together
with the cingulate gyri. Our anatomic definitions followed the
latter definition, and “medial temporal lobe” was not defined.

The term “global” includes the hemispheres, cerebellum, and
brainstem, encompassing a larger anatomic entity than the largest
superstructure we used (i.e., the hemispheres). This term was
used 15 times by radiologist 1 (7.8% of the total errors) and three
times by radiologist 2 (1.7%).

Category 2 Errors
Errors in category 2-1 were minor, responsible for only 5.2–
6.0% of errors. Among them, four structures selected in the
Clinical Knowledge Filter—the limbic system, parietal lobe,
occipital lobe, and caudate nucleus—were not evaluated by any
of the radiologists. As these terms were not mentioned by the
radiologists, all positive cases generated by the ASs were classified
as FPs.

Errors in category 2-2 included two anatomic names—
“cerebellum” and “amygdala”—mentioned in the RRs, but
eliminated in the Clinical Knowledge Filter and thus not included
in the ASs. These cases were classified as FN. Error category 2-2,
however, constituted only 3.4% of the majority voting, suggesting
inconsistencies among radiologists in the use of these anatomic
names in reports.

Category 3 Errors
Category 3 errors were also minor, comprising 0–6.3% of the
total disagreement with radiologists 1–3 and only 1.4% of the
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FIGURE 3 | Two examples of hippocampal segmentation. Both cases had a similar degree of atrophy based on the quantification results, with z-scores higher than

−2.0; both were judged as normal and automated sentences were not triggered. The radiologists agreed that Case (A) was normal (true-negative), but Case (B) was

judged to be atrophic (false-negative). In this case, the opening of the uncal sulci (arrows) was a factor in the radiologists’ judgment. Blue lines show the boundary of

the hippocampus.

majority voting. The causes of these errors were unique to the
nature of the relationship analyses. In this category, all structures
that the radiologists reported as abnormal were consistent with
the quantitative results (z-score<-2.0), but the system did not
generate ASs that agreed with the regional specificity described
by radiologists. For example, in one of the cases, RRs described
atrophy in the left frontal lobe. This observation was correctly
supported by the quantitative results (left frontal lobe<-2.24).
However, this observation was not triggered by the AS generator
because the Boolean operation would not generate a report
specific to left frontal lobe atrophy unless atrophy was confined
to the left frontal lobe. The analysis of the relationships among
and combinations of two hemispheres and five lobes can be
complicated and, although minor, unexpected difficulties in the
Boolean operation errors were encountered.

Category 4 Errors
The errors in this category constituted 1.8–15.1% of the errors
for the three radiologists and 6.9% for majority voting. The most
frequent discrepancy was caused by ASs reporting hemispheric
atrophy with RRs reporting atrophy in the global brain or frontal
and temporal lobes. Other frequent discrepancies included
“hemispheric atrophy” vs. “global brain atrophy” and “temporal
lobe atrophy” vs. “medial temporal atrophy” for ASs vs. RRs.

Category 5 Errors
The hippocampus was the only structure in which segmentation
errors were judged to be the cause of the AS–RR discrepancy,
with errors regarding 24 hippocampi in 15 patients. These cases
were all labeled as FN (ASs were negative but RRs noted atrophy).
Among them, there was one case with an apparent leak to the
choroid plexus, which caused the FN (the leak to the choroid
plexus caused a z-score>-2). In other cases, the radiologists
reported leakages, but the extent of the leaks was small and

did not affect sentence-triggering. There were no cases wherein
radiologists thought the hippocampus was erroneously defined
as smaller than its actual size. The remaining 23 hippocampi
had consistent anatomic features that caused the FN results.
Figure 3 shows two examples of hippocampus segmentation,
along with the quantification results. Case A is an example of a
TN case, while Case B is an example of an FN case. What was
common to all 23 FN cases was the partial opening of the uncal
sulcus. With the segmentation algorithm used in this study, this
sulcus was included as a part of the hippocampus unless it was
completely open with respect to the imaging resolution (>1mm).
The radiologists, however, used appreciable opening of the uncal
sulcus as an indicator of hippocampal atrophy.

Category 6 Errors
By far, this was the largest error category, wherein errors were
caused by the choice of threshold for AS triggering (z-score>2.0
or<-2.0). These errors constituted 41.7–72.0% of the total errors.
The overall FP/FN ratios owing to the threshold were 56/24,
62/56, and 72/49 for RR 1–3, respectively, and 67/29 for majority
voting. Overall, this implies that the choice of an absolute z-score
of 2.0 was too low (too close to zero and sentences were triggered
too often). However, closer inspection revealed a more complex
view of this issue (Figure 4). First, it appears that the appropriate
thresholdmight vary depending on the structure being examined,
with the radiologists tending to apply less stringent thresholds
to larger structures. Second, the threshold used was seen to vary
among the radiologists.

DISCUSSION

Using RRs as the Gold Standard
In this paper, we report the results of our first attempt to
automatically convert raw T1-weighted MRI images into a
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FIGURE 4 | Subtraction of false-negative cases from false-positive cases for

three different structures. For the hemisphere, there were more false-positive

than false-negative cases, suggesting that the threshold (z-score <-2.0) was

too low (too close to zero and sentences were triggered too often). On the

other hand, the same threshold was too relaxed for the hippocampus,

assuming the radiologists’ judgment to be the gold standard. RR, radiologic

report.

human-readable summary of clinically important features. We
treated the RRs as the gold standard to judge the performance
of AS. This is because of the fact that the subjective RRs are
what accepted in the routine clinical practices and thus, if there
was discrepancy between a radiologist and an automated report,
we declared that it was an error by the automated report. The
validity of this approach (using RRs as the gold standard) is
controversial. Therefore, we made this study as descriptive as
possible without trying to prove the superiority of one to the
other. The alternative approach would be data-driven, in which
the performance is judged from data; in this study, the diagnostic
accuracy could be one of the criteria. However, as for many
clinical observations with various medical conditions, MRI of
patients with memory problems is only a piece of medical
information that could estimate the pathology and prognosis at
a given time point, and could change over the course of disease
progression. Therefore, it would be difficult to interpret if AS is
superior to RRs or vice versa. Although the knowledge-driven
design also has weaknesses, this could be a step toward our deeper
understanding of how computers can assist clinical practices.

Accuracy of Segmentation
Assuming that we can use RRs as the gold standard, probably
one of the most interesting questions is “How accurate are
the computer-generated sentences?”; the accuracy of the brain
segmentation is without doubt the most crucial factor. However,
for several reasons, segmentation accuracy is not the center of
interest in this study. First, with the rapid development of brain

segmentation technology in the past decade, particularly with
respect to multi-atlas approaches, the segmentation accuracy
of recent tools is adequately high to analyze clinical data with
confidence. In this study, all three radiologists felt the overall
segmentation accuracy of the ASs was high, except for those listed
under error category 5. Second, the segmentation tool can be
readily replaced when better tools become available.

Category 5 errors were dominated by the hippocampus. This
is probably because the hippocampus is the smallest structure
among those evaluated in this paper, and even a small amount
of leakage to adjacent structures may be significant. Except for
the hippocampus and the caudate, all other structures included
in the Clinical Knowledge Filter were superstructures of much
larger sizes, and there were no cases that the radiologists labeled
as segmentation errors.

The concept of accuracy requires a gold standard, which, in
the field of neuroanatomy, is defined by human perception. This
poses a fundamental difficulty for accuracy and validation
studies of neuroanatomy. In reality, a certain level of
disagreement between automated segmentation and human
validation is expected. However, we found a very important
discrepancy with respect to the interpretation of the uncal sulcus
opening (Figure 3). Although it is difficult to declare that our
segmentation results for Case B represented an obvious error, the
fact that this sulcus became visible is an important indicator for
radiologists in judging the degree of atrophy.

Difficulties in Data Reduction Based on
Anatomic Knowledge
During the conversion of raw image matrices to semantic
representations with clinical importance, data-reduction is
necessary. In the first reduction of an image with >106 voxels
to the total 498 structures, we encountered two structures that
were undefined: “medial temporal lobe” and “global” that were
used by two radiologists. This led to category 1 errors, which
might be solved by defining a superstructure that represents these
two structures. This suggests that the list of anatomic structures
defined in our atlas was comprehensive enough to cover most
clinical terminology referring to specific anatomic regions. On
the other hand, reports about 498 anatomic structures would be
impractical for daily clinical practice and may mask clinically
important findings. Further steps of information reduction are
therefore required.

Weighting by Clinical Knowledge
Instead of providing descriptions about 498 defined structures,
we could select those known to be clinically important. This
weighting could be disease-dependent. In this study, a Clinical
Knowledge Filter was designed for patients with memory
problems by using three such filters.

Simple Selection Filter
Out of 498 defined structures, we selected 20 that we believed
to be important in this population. Inclusion of structures
not mentioned by radiologists and exclusion of structures that
were mentioned were categorized as type 2-1 or 2-2 errors,
respectively.
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This initial clinical knowledge filter was developed by
reviewing past radiological reports and through discussions
among four participating radiologists about “which types of
anatomical structures are routinely evaluated for elderly patients
with memory problems.” Because this is about the human
knowledge, it is difficult to establish the complete prior
knowledge. One of the purposes of this study is to evaluate
the soundness of this initial knowledge filter. Our study indeed
showed that certain failures were due to the incompleteness
of this initial knowledge (type 2 errors). We expect this
knowledge filter could be improved through the learning process
based on the type 2 errors. On the other hand, this type of
knowledge-based approach could have limitations when we try to
incorporate more elaborated knowledge for, for example, certain
disease subtypes (e.g., knowledge filter specifically designed for
fronto-temporal dementia group). For this end, data-driven
analysis of existing clinical reports using natural language
processing and machine learning may be needed in the future.

Filter Through Relational and Combination Analyses
With 20 selected structures, it would be simple to generate up to
20 sentences or a single sentence that lists all affected structures.
This approach, however, might lead to an awkward sentence
if, for example, all five left lobes and the left hemisphere had
atrophy as well as other atrophic structures in the right side.
In this example, our translator would streamline the sentence
to “There is left hemispheric atrophy” or “There is bilateral
hemispheric atrophy.” These evaluations were, however, found to
be complicated; evaluation of spatial specificity and relationships
among structures is essential for image reading, but even with
the 20 selected structures, it was not a straightforward task.
Difficulties in identifying regional specificity for specific brain
functions or pathology have been described in the past (35,
36). Namely, if a region reaches a significant level based on a
structure-by-structure analysis, how can we test if such a result
is region-specific? For example, in our patient population, there
were 29 cases with atrophy in the left temporal lobe with z-score
<-2.0. Among them, 14 had the entire left hemisphere atrophy
with z-score <-2.0 and 8 of them had atrophy in other lobes.
In these cases, it is not straightforward to establish a statistical
method to test the regional specificity so that we can declare “the
patient has temporal lobe atrophy.”

In our study, descriptions of certain regional atrophy could be
suppressed when there is atrophy in a larger structure within the
same structural hierarchy. This led to more stringent criteria to
trigger a sentence for regional atrophy. This approach, however,
does not contain any weighting based on clinical significance.
For example, the fronto-temporal atrophy pattern is known to
be an important clue to infer the type of dementia. One can argue
that atrophy of this pattern should be reported even if the entire
hemisphere has a similar degree of atrophy. Further development
of sophisticated engines for anatomical pattern analyses is needed
for future studies.

Abnormality Thresholds
In this study, the largest cause of errors was the threshold
used to trigger sentences. We used a z-score of 2.0 as the AS

threshold. In many cases, the radiologists felt that the threshold
was too stringent, especially for the hemispheric and lobar-
level structures, while being too relaxed for the hippocampus.
Although we identified this structure-dependent tendency for
threshold variability, there was also variability among the
radiologists. Therefore, this issue cannot be resolved simply
by changing the universal threshold level. It is also unclear
whether different threshold values should be applied to particular
structures. One interesting explanation for this variability is that,
while quantitative analysis relies on the absolute volume of each
structure, radiologists’ judgments might include the anatomy of
the surrounding structures. When the frontal lobe is examined,
for example, the opening of the sulci and the enlargement
of the lateral ventricles might provide important additional
information. Figure 5 shows two cases with similar atrophy of
the frontal lobes, indicating insignificant atrophy; however, in
one of these cases, two radiologists reported bilateral frontal lobe
atrophy. From the images in Figure 5, it is clear that these cases
have very different atrophy patterns: one is accompanied by the
opening of the frontal lobe sulci (z-score: right = 2.83, left =
1.82), while the other shows relatively tight sulci. The clinical
significance of these two types of anatomic features is unclear, but
routine clinical examination usually does not attempt to stratify
these cases, while the state of the sulci might affect the subjective
evaluation of the brain tissue atrophy.

Likewise, when examining the hippocampus, the uncal
sulci and the inferior horn of the lateral ventricles provide
important information (Figure 3). Another potentially
significant contributor to this issue is age calibration. The
same volumes of the hippocampus could indicate severe atrophy
in a 60-year-old patient but be normal for an 80-year-old patient.
In the quantitative analysis, age-dependency was corrected using
the control database. The way in which radiologists subjectively
corrected for age effects could introduce another source of
variability.

A fundamental question that remains is the existence of
threshold itself. Regardless of the adopted threshold, it is
likely that radiologists cannot distinguish the degree of atrophy
right above and below the threshold. This could be even
more complicated when multiple structures are compared for
spatial specificity such as left and right-dominant atrophy. This,
however, also applies to radiological reports, in which radiologists
apply implicit thresholds to trigger their descriptions. In this
regard, this study provided interesting insight into radiologists’
thought process by retrospectively investigating what were the
threshold levels when radiologists declared atrophy. Although
this is still a very descriptive phase of the research, we hope this
would provide useful information to understand how human-
machine interface should be created for medical judgement in the
future, including a possibility to remove this type of threshold-
based decision-making all together.

Future Directions
In the future, it is possible that quantitative evaluation of
morphological changes will be adopted in clinical practices.
However, currently, it is not clear if radiologists would adopt
such quantitative reporting by simply presenting quantitative
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FIGURE 5 | Two sample cases with similar z-scores for the frontal lobe volumes, but with different interpretations by radiologists. Two radiologists reported bilateral

frontal lobe atrophy in Case (A), where the image showed noticeable expansions of the bilateral frontal sulci and unilateral Sylvian fissure, as well as a highly dilated

anterior lateral ventricle. All radiologists considered the frontal lobe to be normal in Case (B), where the image showed relatively smaller frontal sulci and Sylvian

fissures, and moderately dilated anterior lateral ventricles. AS, automated sentence; L, left; LV, lateral ventricle; R, right; RR, radiologic report.

volumes and statistical numbers, even if they are accurate. In this
study, we shifted the human-machine interface one step closer to
human by generating the sentences based on such quantitative
measures.

To develop a tool that can automatically generate semantic
reports, it is necessary to understand the thought processes of
radiologists. This study revealed several interesting challenges
to such efforts. A significant proportion was related to the
Clinical Knowledge Filter, which converted volume data from
498 structures into sentences. Whether it is worth generating
such reports depends on the benefit they provide. For example,
if the generated sentences are provided when the images are
read, radiologists could choose to agree with that information.
However, whether this actually enhances the efficiency of clinical
practice would need to be confirmed. Another important
question is whether the generated sentences would improve
the quality of reports. This depends on the experience of the
radiologist and thus does not have a straightforward response. In
this study, human-generated sentences were the gold standard,
meaning that the performance of the AS generator could not
be better than that of the radiologists. However, this study
indicated inconsistency among radiologists. Quantitative tools
have the potential to introduce a higher level of consistency
across radiologists and institutions. This, however, is true only
if the quantitative tools are robust against age effects, degree
of pathology, and variability in imaging protocols, including
hardware (20).

The above discussions bring to light another interesting

question about the possibility of using image representation

from the quantitative analyses, rather than sentence generation.
In other words, if radiologists are presented with an image-
based presentation of color-coded z-score data, then sentence

generation might not be necessary. In this case, the role of
automated analysis would be to present visual cues, to enhance
the efficiency and consistency of image readings. This approach
is far simpler than sentence-generation, and would negate the
need for the Clinical Knowledge Filter. However, the burden
of interpreting the quantitative images would remain with the
radiologists. In past discussions with radiologists, we have often
heard that the clinical interpretation of anatomic features is
more demanding and important than the simple detection of
atrophy. Therefore, sentence generation through the application
of the Clinical Knowledge Filter ought to remain an important
goal.

Data-Driven Analysis Through Big Data
Analytics
We have discussed the potential value of AS generation in
improving radiologic workflow. Another interesting challenge
would be to use these tools to perform large-scale analysis
of medical records. This is highly relevant to the long-term
goal of this study. In radiology, both raw images and RRs are
stored electronically in picture archiving and communication
systems (PACS) and electronic medical records (EMR) and
thus, gathering a large number of images is theoretically
feasible. However, raw MRIs, with their large volume of voxel
information (>106) and inconsistent positions and orientations,
are unsuitable for direct large-scale analyses. Analyzing available
RRs in free-text formats would be even more problematic,
because the six error categories described above for AS
generation apply to human-generated sentences. For example,
the names given to specific anatomic locations are not well
defined or consistent among radiologists. Depending on the
educational background of a radiologist, s/he might use different
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anatomic names to indicate similar locations. Furthermore,
some structures (e.g., ventricles, amygdala) might be frequently
evaluated and recorded by one radiologist, but not by others. In
addition, threshold values and degree of age compensation used
when judging abnormality are inconsistent among radiologists. A
term such as “moderate atrophy” might mean either normal for
that patient’s age or modest abnormality. Ingesting raw data from
PACS and EMR would cause considerable difficulties. Obviously,
some form of metadata sitting between raw images and free-
text RRs are needed to ingest a large amount of radiologic
data.

CONCLUSIONS

This paper describes our initial attempts to automatically
generate RRs based on quantitative brain segmentation tools.
The translation from raw images with >106 voxels to a few
clinically meaningful sentences involved a series of information-
reduction and -conversion processes, which raised several
important questions about the future potential of such tools
as well as ambiguity in the thought processes of radiologists.
The most significant discrepancy between the human and
automatically generated RRs was caused by the sentence-
triggering threshold (the degree of abnormality), which was
fixed to z-score >2.0 for the automated generation, while the
thresholds by radiologists varied among different anatomical
structures. This type of computer-aided approach might play
an important role in more evidence-based image reading in the
future.
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