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Altering cell death pathways as an approach to cure
HIV infection

AD Badley*,1,2, A Sainski2,3, F Wightman4,5 and SR Lewin4,5

Recent cases of successful control of human immunodeficiency virus (HIV) by bone marrow transplant in combination with
suppressive antiretroviral therapy (ART) and very early initiation of ART have provided proof of concept that HIV infection might
now be cured. Current efforts focusing on gene therapy, boosting HIV-specific immunity, reducing inflammation and activation of
latency have all been the subject of recent excellent reviews. We now propose an additional avenue of research towards a cure
for HIV: targeting HIV apoptosis regulatory pathways. The central enigma of HIV disease is that HIV infection kills most of the
CD4 T cells that it infects, but those cells that are spared subsequently become a latent reservoir for HIV against which current
medications are ineffective. We propose that if strategies could be devised which would favor the death of all cells which HIV
infects, or if all latently infected cells that release HIV would succumb to viral-induced cytotoxicity, then these approaches
combined with effective ART to prevent spreading infection, would together result in a cure for HIV. This premise is supported by
observations in other viral systems where the relationship between productive infection, apoptosis resistance, and the
development of latency or persistence has been established. Therefore we propose that research focused at understanding
the mechanisms by which HIV induces apoptosis of infected cells, and ways that some cells escape the pro-apoptotic effects of
productive HIV infection are critical to devising novel and rational approaches to cure HIV infection.
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Facts

� Human immunodeficiency virus (HIV) has been cured in
one and possibly more patients.

� Efforts are underway to recapitulate a cure for HIV in a
generalizable way.

� Cells containing latent HIV that are induced to reactivate
virus do not die due to viral replication.

� Chronically HIV-infected cells are resistant to apoptosis.
� Understanding the regulation of apoptosis during HIV

infection and latency may be the key to develop a cure for
HIV.

Open Questions

� Why do all cells that are HIV infected not die as a
consequence of productive HIV replication?

� Why do latently HIV-infected cells that are induced to
reactivate virus not die as a result of productive HIV
replication?

� Can therapeutic strategies be designed that will both
reactivate HIV from latency and induce the death of cells
that replicate HIV?

Timothy Ray Brown, ‘the Berlin Patient,’ is now 46 years post

bone marrow transplant (BMT) from a donor with the D32

mutation in CCR5, and he has no detectable HIV in his blood

or tissues while off combination antiretroviral therapy

(cART).1–3 His story has fostered hopes that HIV might be

cured, within the foreseeable future. In this article, we will

review the recent advances in our understanding of HIV

latency, review the approaches that are being tested as a

means to cure HIV and discuss the challenges associated

with targeting latently HIV-infected CD4 T cells for death, with

a focus on ways to alter apoptosis regulation.
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Relationship Between Viral Infection, Apoptosis and
Viral Persistence

Broadly speaking, viruses that cause human disease cause
either acute self-limited infections or chronic persistent
infections, each with differing effects on host cell apoptosis
and viral persistence.

Acute self-limited viral infections include influenza, Ebola,
Hantavirus and dengue, among others. In the best studied of
these, influenza virus, hemaglutinin expressed on the surface
of an infectious virion binds sialic acid sugars on the surfaces
of epithelial cells, typically in the nose, throat, and lungs of the
susceptible host.4,5 Following viral replication, progeny virions
bud are released from the infected cell and the cell undergoes
apoptosis.6 Apoptosis is associated with an interferon
response and decreasing the magnitude of this response
increases cell survival following challenge with influenza.7

The influenza nonstructural (NS) protein-1, also induces
caspase-dependent apoptosis,8 but to variable degrees
according to sequence differences in influenza subtypes,9

likely involving interactions with microtubules.10 As influenza
is an acute self-limited infection there are no mechanisms that
allow for influenza persistence, and there are no influenza-
associated pathways that inhibit apoptosis.

Chronic persistent or chronic latent infections occur with the
herpes virus family (Epstein Barr Virus (EBV), cytomegalo-
virus (CMV) and herpes simplex virus (HSV)), HIV, Hepatitis B
and C, and human papilloma virus (HPV), among others.
What distinguishes these infections is their ability to persist
long after the initial symptoms of infection have resolved and
that each virus has evolved strategies to evade apoptosis.
The various strategies used by these viruses to evade cell
death have been extensively reviewed elsewhere.11

A causal relationship between evasion of apoptosis and the
establishment of latency has been demonstrated in the case
of EBV. EBV encodes two viral homologs of the cellular
anti-apoptosis protein Bcl2, called BALF1 and BHRF1. EBV
mutant viruses missing both BALF1 and BHRF1 resulted in
robust viral replication but chronic persistent infection as
measured by lymphoblastic transformation did not occur.12

Thus in the case of EBV, chronicity and transformation
depends upon the presence of apoptosis inhibitors, and so
opens the possibility that apoptosis inhibition is required for
latency in other viral systems.

HIV is a virus that establishes latency, and has developed
multiple strategies to inhibit apoptosis of infected cells under a

variety of circumstances. We have previously reviewed ways

that HIV infection and individual HIV proteins inhibit apoptosis.13

Although no HIV proteins are in themselves apoptosis

inhibitors, the expression of select HIV proteins, such as Vpr,

Nef and Tat, alter the transcriptional profile of some cell types

to produce more endogenous apoptosis inhibitory proteins.

For example, in vitro, Tat induces cellular FLICE inhibitory

protein (cFLIP) expression in T cells14 including primary

T cells and thereby confers resistance to apoptosis.15 Vpr

increases Bcl2 and decreases Bax in the Jurkat T cell line,16

and there is increased X-linked inhibitor of apoptosis (XIAP)

expression in latently infected cell line models.17 Both

Tat-treated monocytes18 and primary CD4 T cells from

HIV-infected patients19 develop tumor necrosis factor

(TNF)-related apoptosis inhibitory protein (TRAIL) resistance,
potentially through the production of a novel TRAIL splice
variant (TRAILshort), which preferentially binds TRAIL recep-
tor (R)2 and prevents pro-apoptotic TRAIL from signaling.20

TRAILshort can be found in the plasma and cells of
HIV-infected patients.20 Another possible mechanism is
Tat-mediated upregulation of a variety of nuclear factor
kappa-B (NFkB)-dependent apoptosis inhibitors, including
Bcl2, cFLIP, XIAP and CIAP.21

HIV Latency in CD4þ T-cells

One of the major barriers to HIV cure is the establishment of
latency in resting CD4þ T cells. This may arise from cells that
are productively infected with HIV and revert to a resting
memory T-cell phenotype with integrated pro-virus (post-
activation latency) or via direct infection of resting CD4þ
T cells (pre-activation latency). The relative contribution of
each pathway in vivo is unknown. Once latency is established,
latently infected resting memory T cells have a prolonged half-
life estimated to be 44 months (reviewed in Finzi et al.22 and
Pierson et al.23). Latently infected cells are detected at
increased frequency in tissue, such as lymphoid tissue and
the gastrointestinal (GI) tract.24 Virus can also persist in other
long-lived cells such as infected macrophages,25 naı̈ve
T cells,26 follicular dendritic cells27 and the cells in the central
nervous system (CNS) including astrocytes28 and microglia.29

The relative contribution of these non-memory T-cell reservoirs
is less clear.

The molecular basis of latency—defined as HIV DNA
integrated in the host genome but remaining transcriptionally
inactive—is complex and may involve multiple mechanisms
contributing to transcriptional repression simultaneously.
This topic has been extensively reviewed elsewhere30 and
include the following mechanisms: (i) insufficient levels of
host transcription factor expression, and/or expression of
transcription factor complexes with negative regulatory
activity;31 (ii) epigenetic silencing and chromatin remodeling
that prevent access of transcription factors to transcription
initiation sites within the HIV long terminal repeat (LTR);32

(iii) differences in the efficiency of HIV transcription between
different insertion sites and different insertion orientations;33

and (iv) the absence of the transactivator of transcription
encoded by HIV, Tat.

Models of Latency

There are multiple models of HIV latency, which have been
used to understand both the establishment and maintenance
of latency and to identify molecules that can activate virus
production from latently infected cells.34 Currently available
models include latently infected cell lines, latently infected
primary CD4þ T cells and resting CD4þ T cells from patients
on suppressive cART (generally defined as plasma HIV RNA
o50 copies/ml).

Latently infected cell lines. The most commonly used
latently infected cell lines include ACH2,35 U1,36 J-lat
clones37 and J89.38 Latently infected cell lines have several
limitations. First, they represent clonal populations in which a
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single integration site is present,36,37 whereas latently
infected CD4þ T cells from patients have integration sites
randomly distributed throughout the host genome. Second,
cell lines are rapidly dividing cells, while latently infected
CD4þ T cells found in vivo are resting.39 This impacts
reactivation strategies such as histone deacetylase inhibitor
(HDACi), which are 10-fold more active in transformed
cells compared with non-transformed cells.40 Finally, in
latently infected cell lines, integration usually occurs at sites
of heterochromatin37 while latently infected primary cells
CD4þ T HIV integrates into sites of active gene
expression.41

Latently infected primary CD4þ T cells. Several primary
CD4þ T-cell models of latency exist where activated
cells are infected and subsequently allowed to return to a
quiescent latently infected state.42 One model has used
naı̈ve CD4þ T cells that are polarized and then infected with
a single round virus (which is envelope deficient). Another
uses naı̈ve CD4þ T cells co-cultured with antigen-present-
ing cells and infected with a wild-type HIV (capable of
multiple rounds of infection)42 or stimulated with anti-CD3/
CD28 before infection. These models are technically
demanding as they require a long time in culture ranging
from 21 days43 to 460 days.42 Other models have used
direct infection of resting CD4þ T cells either via spinocula-
tion44 or in ex vivo tonsil tissue blocks or following incubation
with chemokines such as CCL19 or CCL21 (ligands for
CCR7), which allows for efficient viral nuclear localization
and integration without activation of the cell.45,46 Finally,
CD4þ T cells can also be transduced with Bcl2 to allow for
long-term culture, infected with HIV and permitted to return to
a resting state.47 The frequency of latently infected cells in
these models ranges from 0.1 to 1.0%42,46,47 to as high as
20–30%.

Resting CD4þ T cells from HIV-infected patients on
cART. The gold standard model of latently infected cells is
resting CD4þ T cells from HIV-infected patients on
suppressive cART.48 The frequency of latently infected cells
can be quantified by activation with a mitogen or anti-CD3/
CD28 and then co-culturing with uninfected cells to amplify
viral production (also called limiting dilution micro-coculture
or infectious units per million (IUPM) cells). While this
represents the most accurate assessment of latently infected
cells ex vivo, this technique is time consuming; requires the
collection of large volumes of blood usually via leukapheresis
from patients; and is only semi-quantitative.48 Recent
evidence also suggests that IUPM may underestimate the
true number of latently infected cells that carry infectious
virus and may only represent 10–30% of ‘activatable’ virus.49

Viral Latency and the Role of Apoptosis Pathways

If HIV killed all of the cells that it infects, then logically, HIV
persistence would not occur. If persistence is the goal, why
then does HIV kill any cells that it infects? Simply, the
machinery that is activated during apoptosis (caspase
activation) also acts through the BCL10/MALT1/CARMA
pathway to activate NFkB, which is the most potent activator

of HIV transcription, via the HIV LTR.35 Evidence supporting
this includes: (i) HIV replication is increased in T leukemia
cells and peripheral blood mononuclear cells treated with
the pan-caspase inhibitor z-VAD-fmk;50 (ii) HIV replication in
immortalized T-cell lines induced to express the pro-apoptotic
proteins FasL, Fas-associated death domain (FADD) protein
and p53; (iii) HIV replication is decreased in cells over-
expressing the anti-apoptotic proteins Bcl2, FLIP51 or with
knockdown of the pro-apoptotic proteins Bax or FADD;52 and
(iv) expression of Casp8p41 (a unique cleavage fragment of
procaspase 8 generated by HIV protease) in infected cells
directly activates NFkB-dependent HIV LTR transcription.53

Given this, one would predict that in settings where the goal of
HIV infection is to establish a latent reservoir, it would not be in
the interest of HIV to induce cell death.

Apoptosis Susceptibility in Memory T cells in Vivo

Resting memory T cells are metabolically inactive; function
to archive historical immune responses; and therefore, need
to be long lived and resist stimuli which under normal
circumstances favor T-cell death. To understand apoptosis
resistance of latently HIV-infected T cells, it is important to first
understand the mechanisms of apoptosis resistance in
memory CD4 T cells.

T-cell activation and reversion to memory has been the
subject of a recent excellent review.54 CD4 T cells undergo
activation and proliferation after exposure to a neoantigen that
is recognized by the T-cell receptor (TCR) and presented in
the context of appropriate major histocompatibility complex
(MHC) Class II and co-stimulatory help. Resting CD4 T cells
that express CCR7 and CD62L are relatively metabolically
inactive and apoptosis resistant before they encounter
antigen. However, after antigen exposure with appropriate
co-stimulation, T cells proliferate, produce interleukin-2,
upregulate Fas and other pro-apoptotic molecules, and
change from an apoptosis-resistant state to a post-activation
apoptosis-prone state. Forty eight hours after antigen
exposure, the CD4 T cell is maximally activated and most
sensitive to apoptosis. Thus, in settings such as prolonged
TCR engagement, absence of co-stimulatory molecules, or
withdrawal of cytokines required for survival, these cells
undergo activation-induced cell death (AICD).

The principal molecular mediators of AICD are Fas and Fas
ligand, but the susceptibility of the cell to undergo Fas-
mediated death is governed by the cumulative expression of
apoptosis regulatory proteins, including Bcl2 family members,
Inhibitor of Apoptosis proteins (IAPs) and cFLIP. Because
productive HIV infection pervasively alters the expression of
apoptosis regulatory molecules, the fraction of cells that
undergo AICD in an HIV-infected patient is greater than that of
an HIV-negative patient and this contributes to the depletion of
uninfected CD4 T cells.55

CD4 T-cell memory occurs when antigen concentrations
become low but co-stimulation with CD28 and/or interleukin-2
persists. In such settings, anti-apoptotic molecules such as
Bcl2 or cIAPs are upregulated to prevent AICD. This process
is coincident with the downregulation of CD45RA and low-
level expression of CD45RO. There are two types of CD4
memory T cells: central memory T cells (TCM), which express
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lymph node-homing molecules CCR7 and CD62L;56 and
effector memory T cells (TEM), which express receptors such
as CCR5.57 HIV preferentially infects HIV-specific activated
memory CD4þ T cells, as opposed to memory cells of other
specificities.58 Alternately HIV may infect activated cells,
which then adopt a central memory phenotype. We have
recently shown that stromal-derived factor (SDF-1a) treat-
ment of activated CD4þ T cells resulted in degradation of
Bim, resulting in apoptosis resistance and cells adopting a
memory phenotype.59 Thus, HIV-infected CD4þ T cells
with a memory phenotype, including latently infected cells, are
apoptosis resistant, making these cells particularly difficult to
eradicate.

Approaches to Cure HIV

Recent advances in our understanding of the biology of HIV
have now allowed for proposals to recapitulate either a
sterilizing cure (complete elimination of all HIV-infected cells
from an individual) or functional cure (long-term control of
HIV replication with HIV RNA o50 copies/ml in the absence
of cART).

Very early initiation of cART has been associated with a
reduced number of latently infected cells and recently there
have been reports of successful control of virus replication in
individuals who have initiated treatment early and stopped
cART.60 The frequency of ‘post-treatment control’ is
extremely rare—estimated at o2% of all patients who initiate
ART during acute infection.61 Very early initiation of cART
following delivery of a baby to an HIV-infected mother not on
ART in Mississippi was also recently reported to result in a
functional cure.62

Three classes of approaches have been proposed as curative
strategies for HIV: reactivation approaches, gene therapy-
based approaches, and immune-based therapies (Table 1).

HIV Reactivation. The underlying premise of this approach
is that HIV reactivation from a latently infected CD4 T cell will
lead to cytotoxicity which, it is hoped, will cause all infected
cells to die. A wide variety of approaches have been
proposed to reactivate HIV (Table 2). Great interest has

focused on epigenetic silencing mechanisms such as histone
acetylation, and ways to reverse these processes.

A small proof of concept study of a single dose of the
HDACi, vorinostat in HIV-infected patients on suppressive
cART resulted in an increase in both histone acetylation and
cell-associated HIV RNA in resting memory CD4þ T cells.63

We recently completed a multidose study of 14 days of daily
vorinostat in HIV-infected patients (n¼ 20) and demonstrated
an increase in cell-associated HIV RNA in 90% of participants,
although disappointingly we observed no decline in
HIV DNA.64 A similar study is being performed in Denmark
with the potent HDACi panobinostat [clinicaltrials.gov] and a
single dose study of the HDACi rhomedepsin is underway.
Disulfiram, which acts via a totally different mechanism, most
likely via depletion of the phosphatase and tensin homolog
(PTEN) and activation of AKT phosphorylation has also
recently been shown to have some activity in increasing
detection of HIV RNA in plasma shortly after dosing in a
subset of patients.65

The main mode of action of HDACi in the treatment of
cancer is the induction of apoptosis and cell-cycle arrest in
rapidly dividing cells. Using the J-Lat cell line, a Jurkat cell

Table 1 Approaches to HIV cure

Approaches to HIV cure

Gene therapy Knockdown of proteins required for HIV replication.
For example, CCR5
Overexpression of restriction factors. For example,
Human: Rhesus chimeric TRIM5a
Engineered T-cell receptors. For example,
Third-generation chimeric antigen receptors

Immune based Therapeutic vaccination
Cytokine therapy. For example, 1h7, IL15
Anti-inflammatory agents
Growth hormone

HIV reactivation HDAC inhibitors—For example, SAHA
TLR agonists
PKC activation

Cytotoxic
approaches

Autologous stem-cell transplant

Allogeneic stem-cell transplant

Table 2 Compounds that activate latent infection

Mechanism of action Name Clinical
trialsa

Reference

Histone deacetylase
inhibition (HDACi)

Valproic acid 43,48,66,116,117

Trichostatin A 43,116,117

Vorinostat 2 43,48,63,116–119

Sodium butyrate 116,117

Oxamflatin 66,116

MCT-1 and 3 66

MRK1, 10, 11, 12, 13, 14 120

MC compounds 118

Givinostat 121

Givinostat analogs 121

Scriptaid 116,117

NCF-51 122

Belinostat 121,123

Panabinostat 1 123,124

Entinostat 117,118,124

Apicidin 116,117

CG05, CG06 119

Droxinostat 116

M344 Romedepsin In devpt 125

Methylation inhibitors 5-aza-2’deoxycytidine
(Aza-CdR)

126

BIX-01294 127

Chaetocin 127,128

129

NFkB activators Prostratin 117,125,127,130

TNFa 130

Protein kinase C
modulators

Bryostatin 131

Akt/HEXIM-1
modulators

Hexamethylbisacetamide
(HMBA)

132,133

Disulfiram 1 134

BET bromodomain
inhibitors

JQ1 135

Immune modulation IL-7 6 130,136

IL-15 137

Anti-PD1
Anti-PDL1

In devpt
In devpt

138

Combinations AV6þValproic acid 139

BryostatinþValproic acid 131

HDACiþProstratin 117,125,130

Prostratinþ IL-7

All compounds have demonstrated activity in vitro in either latently infected
cells lines, latently infected primary T cells, and/or resting CD4þ T cells from
HIV-infected patients on cART.
aCompleted or currently active trials in HIV-infected patients on cART
(source clinicaltrials.gov).
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line stably infected with HIV-1 that contains a deletion of the
Env and Nef genes and encodes for expressed green
fluorescent protein (EGFP), under the control of the HIV
LTR37 we observed that following treatment with the
potent HDACi, MCT1, MCT3 and oxamflatin, EGFPþ cells
(i.e., cells induced to express virus) were also enriched for
cells expressing activated caspase 3, annexin V and
propidium iodide.66 However, in primary cell models HIV
reactivation by vorinostat did not appear to induce death.67

In a recent report of elegant studies using latently infected
primary T cells that overexpress BCL2, and infected with
HIV-1 that contains a deletion of the Nef and pol genes and
encodes for EGFP (NL4.3DNefDPol-EGFP), following reacti-
vation of HIV with vorinostat, cell did not die during 18 days of
observation. Moreover, vorinostat-reactivated cells only died
when co-incubated with autologous CD8 T cells from an elite
controller, indicating that immune clearance is possible but
requires an effective HIV-specific cytotoxic T-lymphocyte
(CTL) response which is often absent in HIV-infected patients
treated during chronic infection.67 Consistent with these
findings, another study using an in vitro model of latently
infected central memory CD4 T cells (TCM) cells, reactivation
of latent virus with interleukin-2 and interleukin-7 did not
cause cell death, whereas reactivation with CD3–CD28
co-stimulation did kill cells.68

Together, these studies indicate that viral reactivation alone
may not be sufficient to induce cell death, and that other
interventions may be required for TCM cells to die following
viral reactivation. Other pathways that may be important for
viral activation include the protein kinase C (PKC) pathway
(activated by prostratin and bryostatin), the STAT5 pathway
(activated by IL-7), the AKT pathway (via depletion of PTEN
with disulfiram) and methylation inhibition (5-azacytadine).
The effects of activation of each of these pathways and cell
death need to be further explored.

Gene Therapy Approaches. There are three general
approaches that use gene therapy to attempt to cure HIV.
The first is a gene knockdown to reduce the expression
of a host protein that HIV requires to complete its life cycle.
An example of such an approach is to use zinc finger
nucleases (ZFN) to degrade the message for either CCR569

or CXCR470 and render these cells resistant to either R5 or
X4 HIV, respectively. Several early phase trials of autologous
CD4 T cells that have been modified ex vivo with ZFN that
knockdown CCR5 have now been reported and have
demonstrated that this approach was feasible in humans,
was safe and well tolerated, reduced HIV RNA rebound
levels during cART interruption and induced an increase
in total CD4 T-cell numbers.71

A second approach to gene therapy for HIV involves
overexpressing proteins, which limit HIV replication and/or
pathogenesis, and include chimeric TRIM5a molecules
representing human/rhesus fusions that inhibit HIV replication
in vitro.72 Another approach involves overexpressing broadly
neutralizing anti-HIV antibodies. The antibody b12 has been
overexpressed in humanized bone marrow/liver/thymus
(hu-BLT) mice resulting in durable production of human b12,
and significant improvements in CD4 T-cell numbers following
HIV challenge.73,74

A third gene therapy approach involves expression of
chimeric antigen receptors (CARs). These were first proposed
more than two decades ago and the first iteration was fusion
proteins consisting of the variable immunoglobulin light chain
and variable heavy chain region specific for an antigen of
interest, fused to the CD3z and transmembrane domains
(reviewed in Sadelain et al.75). When this chimeric receptor
was expressed in T cells, upon exposure to cognate antigen
and ligand binding to the variable heavy and light immunoglo-
bulin domains, CD3z signaling occurred, causing T-cell
activation. Second- and third-generation CARs also include
the intercellular signaling domains of CD28, 41BB, or OX40,
to provide appropriate co-stimulatory signals. Recently, T cells
modified with a third-generation CAR have been reported
to successfully treat patients with adult acute lymphoblastic
leukemia.75,76 Trials of first-generation CAR-modified T cells
in HIV have now been reported with 411 years follow-up and
demonstrated persistence of the CAR-modified T cells and
chimeric T-cell function, albeit with minimal anti-HIV effect.77

Ongoing attempts to maximize antiviral activity include
different receptor targets, advanced generation CARs, and
application of CAR technology for use in natural killer (NK)
cells.

Perhaps instructed by early experience with ART, combina-
tion-based gene therapy approaches have also been
suggested. Indeed, one such approach evaluated T cells
transduced with a combination of a CCR5 ribosome, silencing
(si)RNA to Tat/Rev and an HIV decoy RNA, transfused post-
chemotherapy conditioning to HIV-infected patients with
lymphoma.78 In this proof of concept trial, persistence of the
transgene declined precipitously within the first few weeks.
Other delivery backbones and other conditioning regimens
are therefore being considered.79 These include a variety of
combination approaches (Clinical Trials # NCT 01734850,
NCT 01769911).

Immune-Based Therapies. There are two broad classes of
immune-based approaches that have been proposed for
therapy of HIV infection—including boosting an effective
immune response or reducing immune activation. The
underlying premise of boosting an effective immune
response is to recapitulate HIV-infected patients who can
spontaneously control viral replication (elite controllers).
Spurred by multi-disciplinary collaborative groups, a variety
of genes and immune functions have been associated with
elite control. These associations include the D32 allele of
CCR5,80–82 HLA-B5701, and HLA-B27 alleles,83 the NK
inhibitory receptors KIR3DS1 and KIR3DL1;83,84 increased
expression of proteins necessary for granule exocytosis-
mediated cytotoxicity,85 such as granzyme A, granzyme B,
and perforin; and higher numbers of both plasmacytoid
dendritic cells and polyfunctional T cells in elite controllers
compared with non-controllers or cART-suppressed patients.
While it remains unknown which of these associations are
required for control of HIV, the existence of these associa-
tions has spurred attempts to recapitulate the immune
phenotype, to achieve immune control of HIV.

Increased immune activation is associated with morbidity
and mortality from both AIDS defining and non-AIDS defining
causes.86 Putative causes include translocation of bacterial
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products across the GI tract, persistent HIV and co-infection
with other pathogens, such as CMV and HCV.86 There is a
significant correlation between markers of T-cell activation
(including expression of HLA-DR, CD38, and PD-1) and
markers of viral persistence (including cell-associated HIV
DNA and RNA) in T cells in blood and the GI tract.87 However,
there is no association between low level plasma viremia and
markers of either T-cell or innate immune activation.88

It is possible that targeting inflammation may reduce virus
persistence or alternatively targeting virus persistence may
reduce inflammation. Although multiple studies of intensifica-
tion of antiretrovirals have shown no change in HIV DNA or
low level plasma viremia, two studies with intensification of
raltegravir have shown a reduction in immune activation.89,90

In addition, both these studies demonstrated that residual
virus replication persists in B30% of patients on cART.
Several approaches that reduce inflammation are currently
being evaluated, including anti-inflammatory agents,
statins, chloroquine derivatives, leflunomide, pre- and
pro-biotics, growth hormone, immunotoxins, and combination
approaches.

Another proposed avenue for potential immune-based
therapy involves the administration of recombinant cytokines,
most commonly members of the IL-2 receptor a subunit
family: IL-2, -7, -15, and -21. In the large multi-national
SILCAAT and ESPRIT studies, IL-2 therapy increased CD4
T-cell number, but neither improve CD4 T-cell function
nor improve health. Of relevance to the HIV cure agenda,
IL-2 therapy has also been assessed as a means of
decreasing HIV burden; while detectable replication
competent HIV was decreased in some patients receiving
cART plus IL-2 compared with cART alone,91 all patients had
a rapid rebound in virus following treatment cessation
indicating that HIV burden was not meaningfully altered by
therapy.91

IL-7 therapy has been tested in smaller studies, and shown
to increase CD4 T-cell number and function, including
increasing anti-HIV-specific CD4 T-cell function.92,93 IL-7
administration caused modest increases in total intracellular
HIV DNA, in proportion to the increases in CD4 T-cell number,
suggesting that reservoir size was increased by homeostatic
proliferation,94 consistent with the effects of IL-7 in in vitro
models of HIV latency.68 Of interest, the increases in reservoir
size were associated with increased expression of the anti-
apoptotic protein Bcl2,94 consistent with a model of apoptosis
resistance favoring HIV persistence.

Both IL-15 and IL-21 enhance innate and adaptive anti-HIV
responses. IL-15 augmented both NK cell and HIV- and
SIV-specific CD8 T-cell function in vitro, suggesting a potential
role for IL-15 as an immunotherapeutic to increase anti-HIV/SIV
responses.95 IL-15, but neither IL-7- nor IL-2-treated NK cells
increased expression of TRAIL, and killing of autologous CD4
T cells, and reduced the frequency of HIV containing CD4 T
cells, ex vivo.96 In vivo, SIV-infected macaques treated with
IL-15 had increased numbers of SIV-specific CD8 T cells and
increased NK cell numbers with reduced numbers of
SIV-infected cells in lymph nodes consistent with an antiviral
effect; however, plasma viremia was increased by 2–3 logs.97

Therefore, any therapeutic role of IL-15 may be limited by
potentially inducing viral replication.

IL-21 has been shown to enhance antiviral NK cell and CD8
T-cell immunity in animal models of non-HIV viral infections,
and has been used successfully in safety trials of patients with
advanced malignancy, thereby making it an attractive
candidate for anti-HIV therapy.98 In SIV-infected macaques,
IL-21 administration increased perforin and granzyme B
expression in CD8, effector CD4, and NK cell subsets;
however, it remains unknown whether these favorable
quantitative changes will translate into improved antiviral
function and elimination of latently infected cells.

Induction of Apoptosis of Latently Infected Cells as an
Approach to Cure HIV Infection

The case of the Berlin patient is instructive and it teaches
many lessons that may be applicable to cure HIV infection in a
more generalizable way. First, systemic myeloablative che-
motherapy and radiotherapy was used, followed by stem-cell
transplant, demonstrating that induction of apoptosis
by interventions such as non-selective systemic chemotherapy
and radiotherapy with graft versus host disease (GVHD)
may be a key to eradicate latently infected cells, when
administered with maximally suppressive cART to prevent
repopulating the reservoir.1–3,99 Second, some degree of
toxicity to uninfected cells might be necessary so that once
HIV has been eradicated, cells and tissues killed unintention-
ally (bystander killing) can be repopulated, including lymphoid
cells such as uninfected CD4 T cells. Third, multiple
treatments may be required. A central principal of cancer
chemotherapy is that treatments kill a high fraction of
the cancerous cells, and therefore multiple courses of cancer
chemotherapy are required so that the number of cancerous
cells asymptotically approaches zero. This was the case in
the treatment regimen for Timothy Ray Brown, and may likely
be the case with future therapies that require induction of
cell death.

Chemosensitization. It may also be instructive to consider
other similarities with cancer chemotherapy to cure HIV.
Cancers that are difficult to treat are often managed with
chemosensitization followed by cytotoxic chemotherapy. In
the case of HIV, there is ample evidence that productive HIV
replication can be cytotoxic (for example, in the case of acute
T-cell infection), but also there is emerging evidence that HIV
production does not always kill those cells that produce
virus100,101 (i.e., in the case of viral reactivation from latency).
Specific reasons why remain unknown, but it is likely that
some of the counter apoptotic mechanisms that occur during
the development of T-cell memory or the process of chronic
HIV infection are at least partially responsible. Thus, we
propose to prime cells toward an apoptosis-prone pheno-
type, reactivate HIV pharmacologically, to induce the death
of the reactivating cell—or Prime, Shock, and Kill. Possible
approaches to sensitize cells to the cytotoxic effects of HIV
productive replication are outlined in Figure 1. There are a
multitude of chemosensitization agents used in cancer
therapy, many of which are appealing to use in HIV.
Some possible agents would include agents that act upon
the mitochondrial permeability transition core complex
(e.g., adenine nucleotide translocator (ANT) ligands, or
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voltage-dependent anion channel (VDAC) ligands), Bcl2
inhibitors,102 IAP inhibitors,103 proteasome inhibitors,104

survivin inhibitors,105 PI3K/AKT inhibitors,106 and TRAIL
along with TRAIL sensitizers107 (Figure 2). Also, agents
known to enhance the susceptibility of immune cells to
apoptosis induction such as Toll-like receptor (TLR) agonists,
co-stimulatory agents (e.g., anti-CD28), and agents that
induce p53 warrant consideration.

Caspase 8. One goal for the HIV cure initiative is therefore
to design strategies that cause viral reactivation that then

results in death of the cells which reactivate virus. We have
been studying the involvement of Caspase 8 in the induction
of cell death during productive HIV infection, and have
observed that during acute infection of CD4 T cells, HIV
protease cleaves Caspase 8108 to create a unique protein
fragment, Casp8p41. Casp8p41 translocates to mitochondria
and independently induces mitochondrial permeability
leading to apoptosis, as well as to NFkB activation.53

If latently infected CD4 T cells that reactivate HIV do not die,
then it is possible that the Casp8p41 pathway of death is not
operational in such cells. Insight into why this pathway is not

Figure 1 Prime, Shock, and Kill hypothesis to eradicate HIV from latently infected cells

Figure 2 Schematic representation of the interaction of HIV proteins with different elements of the apoptosis regulatory network, and possible strategies to promote cell
death following HIV reactivation
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activated following viral reactivation may lie in observations
that short-term activation of CD4 T cells with antigen results in
upregulation of procaspase 8 whereas long-term activated
cells that acquire a memory phenotype downregulate procas-
pase 8, and become apoptosis resistant.109 Thus, the low
levels of procaspase 8 and intrinsic apoptosis resistance of
memory CD4 T cells might explain why such cells do not die
following HIV reactivation. Developing strategies to increase
Caspase 8 expression in cells that harbor latent HIV and then
inducing viral reactivation with agents such as HDACi should
lead to testable ‘sensitizing’ strategies designed to enhance
death of latently infected cells that are induced to reactivate
virus.

TLR stimulation. The rationale for this approach is that
TLR-ligand stimulation of T cells will lead to NFkB activation
and cytokine production,110 which may upregulate pro-apoptotic
regulatory proteins and downregulate anti-apoptosis
regulatory proteins, and render TCM cells sensitive to the
cytotoxic effects of productive HIV replication. This model is
particularly appealing, given recent data that mRNA for
TLR1, TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9 has been
identified in primary CD4 T cells, and stimulation of resting
CD4 T cells with agonists of TLR2, TLR4, and TLR5
triggers interferon-g production.111 Also, TLR5 stimulation
of TCM cells isolated from HIV-infected individuals leads to
HIV reactivation, although the viability of these cells after
stimulation with the TLR5 ligand flagellin was not specifically
examined.112 Likewise, as long ago as 1987, double-
stranded RNA (a TLR3 ligand) was shown to have significant
anti-HIV activity and caused 490% of productively infected
cells to die because of HIV-related cytopathic effects while
having no effect on the viability of uninfected cells.113

Auranofin. Another intriguing possibility concerns aurano-
fin, a gold-based compound successfully used for years to
treat rheumatoid arthritis. Although the mechanism of action
of auranofin is incompletely understood, some reports link it
to altered regulation of p53 pathways.114 Therefore, one
might predict that auranofin could alter the cellular millieu to
favoring apoptosis. Auranofin, in addition to ART (tenofovir,
emtricitabine, and raltegravir), in an SIVmac251-infected
macaque model induced activation and death of resting
memory cells and reduced the amount of cell-associated
SIVmac251 DNA in auranofin-treated monkeys compared
with those who received ART alone.115 Despite these
promising findings, the mechanism by which these latently
infected cells were dying was not investigated.

Conclusion

HIV is a disease characterized by altered cell death, wherein
the majority of CD4 T cells and other cell types die at an
accelerated rate, leading to a significant immune dysregula-
tion. On the other hand, HIV infection fails to cause the death
of all of the cells that it infects. This allows for the development
of long-lived latently infected HIV reservoirs and the long-term
persistence of HIV in the presence of ART. Enhanced
understanding of the molecular mechanisms that allow HIV
to survive in latently infected cells will allow for interventions

that are designed to reverse virus persistence. These
interventions could effectively reactivate latent HIV and
simultaneously induce cell death—ultimately leading
to reduction in the number of latently infected cells and
potentially a cure for HIV infection.
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