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Mitochondrial myopathy encephalopathy lactic acidosis and stroke-like episodes

(MELAS) is an important cause of stroke-mimicking diseases that predominantly

affect patients before 40 years of age. MELAS results from gene mutations in either

mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) responsible for the wide spectrum

of clinical symptoms and imaging findings. Neurological manifestations can present

with stroke-like episodes (the cardinal features of MELAS), epilepsy, cognitive and

mental disorders, or recurrent headaches. Magnetic resonance imaging (MRI) is an

important tool for detecting stroke-like lesions, accurate recognition of imaging findings is

important in guiding clinical decision making in MELAS patients. With the development of

neuroimaging technologies, MRI plays an increasingly important role in course monitoring

and efficacy assessment of the disease. In this article, we provide an overview of the

neuroimaging features and the application of novel MRI techniques in MELAS syndrome.

Keywords:mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), stroke-like
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INTRODUCTION

Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a
maternally inherited disorder caused by mitochondrial DNA (mtDNA) or nuclear DNA (nDNA)
mutations in a diffuse multisystemic fashion. MELAS varies widely in the disease onset, symptoms,
severity and prognosis. Its broad clinical presentation includes stroke-like episodes (SLEs), epilepsy,
lactic acidemia, myopathy, hearing impairment, diabetes, cardiomyopathy and short stature (1, 2).
The strong dependence of the central nervous system on oxidative metabolism predisposes
to mitochondrial damage (3), and SLEs are the predominant features of MELAS (4). Typical
neurological manifestations of SLEs are very similar to ischemic stroke in the acute phase. The
diagnosis ofMELAS is not difficult when the clinical and imaging findings are typical. However, due
to the variability of the disease, diagnosis remains challenging and MELAS is easily misdiagnosed
as cerebral infarction, viral encephalitis and other brain diseases, especially the first attack.
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At present, with the wide application of new magnetic
resonance imaging (MRI) techniques in the clinic, such as
hydrogen proton magnetic resonance spectroscopy (1H-MRS),
perfusion-weighted imaging (PWI) and arterial spin labeling
(ASL), MRI has also become one of the effective methods
for diagnosis of MELAS in addition to muscle biopsy and
pathogenic gene testing. Clinicians have also gradually gained
a deeper understanding of MELAS. In this paper, we review
the conventional findings and the latest application of MRI in
MELAS syndrome (Table 1).

CLINICAL AND PATHOPHYSIOLOGICAL
FEATURES

MELAS is commonly associated with the m.3243A>G tRNALeu
(UUR) mutation. Childhood and early adulthood are typically
the age of onset with 65–76% of cases occurring at or before
the age of 20, but disease onset can occur at any age (1, 4).
Yatsuga et al. (5) found the juvenile of MELAS was associated
with significantly higher mortality and a more rapid disease
progression than the adult. Generally the earlier the clinical
phenotypes appear, the severer the disease develops (6). SLEs,
as one of the cardinal symptoms, classically present as acute
hemianopia, hemiparesis, or cortical blindness. SLEs are usually
recurrent and can lead to serious long-term consequences, such
as neurodegeneration, cognitive impairment (7).

Energy deficiency can stimulate the proliferation of
mitochondria of smooth muscle and small vascular endothelial
cells at the same time. In MELAS, a variety of factors can lead to
the lack of nitric oxide that can maintain the relaxation function
of vascular smooth muscle. Both can cause microvascular
blood perfusion damage, lead to stroke like attack and other
complications (1). The basic neuropathological changes of
MELAS were comprised of spongiform degeneration, neuronal
cell loss, glial proliferation, and demyelination (8, 9).

TABLE 1 | The neuroimaging features of stroke-like lesions in MRI.

Acute stage No-acute stage

Sub-acute phase Chronic stage

T1WI Hypointensity Hyperintensity Hypointensity

T2WI Hyperintensity (bright thickened cortical band) Hypointensity (black toenail sign) Hyperintensity

T2FLAIR Hyperintensity Hypo/hyperintensity

T1WI C+ Patchy/linear enhancement No enhancement

DWI Hyperintensity Normal

ADC Hypo/iso/hyperintensity Normal

MRS An increased lactate peak An increased lactate peak

PWI/ASL Hyperperfusion Hypoperfusion

MRA Major vessels dilation/ normal/stenosis Normal

Characteristics Lesions mainly distribute in the cerebral cortex and subcortex white matter with a predilection to the posterior brain, not

limited to arterial territories and migratory

ADC, apparent diffusion coefficient; ASL, arterial spin labeling; DWI, diffusion-weighted imaging; MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; MRS,

magnetic resonance spectroscopy; PWI, perfusion-weighted imaging.

At present, the diagnosis of MELAS is a comprehensive
diagnostic criterion combining imaging findings, pathological
examination, genetic testing, or muscle biopsy results with
clinical manifestations. Among them, the discovery of pathogenic
mutations in mtDNA or nDNA genes and typical pathological
changes inmitochondrial myopathy bymuscle biopsy is the “gold
standard” for the diagnosis (10).

CONVENTIONAL IMAGING FEATURES

SLEs appear as stroke-like lesions (SLLs) on MRI. In acute
SLEs, MRI findings include cortex swelling presenting with
hyperintensity on T2WI and T2 FLAIR, named as “bright
thickened cortical band” (Figures 1A,B). Part of cortical lesions
show patchy or linear enhancement on T1-weighted postcontrast
images (Figure 1C), due to local exudation or circulation
disorders caused by the breakdown of the blood-brain barrier
and increased regional cerebral blood flow in the affected
areas (11). In the sub-acute phase, SLLs may develop gyriform
hyperintensity on T1WI and hypointensity on T2WI/T2FLAIR
(“black toenail sign”) because of cortical laminar necrosis.
Whitehead et al. (12) found that the black toenail sign was
a common imaging feature in MELAS, and the extent of
gyral necrosis correlated with disease duration. A recent study
observed that a cortical linear cystic lesion was a characteristic
MR finding in MELAS patients (13), and it was defined as
showing a linear or dotted cerebrospinal fluid signal in the deep
layer of the affected cortex, and an iso-intensity line covered its
surface. In the chronic stage, the affected areas gradually evolve
into cerebral encephalomalacia, gliosis, and atrophy over time
(Figure 1D).

Typical SLLs in MELAS mainly distribute in the cerebral
cortex and subcortex white matter with a predilection to the
posterior brain, although the deep gray matter such as the
thalamus may also be affected probably reflecting its high
metabolic demand (14). Lesions in the parietal and occipital lobe
were twice as many as those in the temporal lobe and 4 times
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FIGURE 1 | Neuroimaging for an 8-year-old girl with MELAS who presented with intermittent fever, vomiting, convulsions. (A,B) Axial T2WI and T2FLAIR imaging

reveal multiple hyperintensities in bilateral frontal and parietal cortex and subcortical white matter, especially in the left side; (C) Axial post-contrast T1WI imaging

reveals linear enhancement of the left lesions; (D) T2FLAIR image 3 years later demonstrates new migrating lesions of both cerebral hemispheres along with old

lesions, accompanied by evolving encephalomalacia, atrophy; (E) DWI imaging demonstrates hyperintensities in gyriform pattern in the lesion areas; (F) ADC

sequence shows iso/hyperintensities corresponding to DWI lesions; (G) MRS imaging shows decreased NAA/Cho ratio and a large lactate peak.

as many as those in the frontal lobe (15). Tschampa et al. (16)
reported that deep gray matter changes presented in the majority
of m.3243A>G mutation carriers lacking SLEs. Cortical lesions

are typically multiple and asymmetrical; however, more andmore
symmetric cases have been recognized (17, 18), Bhatia et al. (18)
thought highly specific cortical symmetry should also raise the
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possibility of MELAS. SLLs frequently spread to the cortex of
adjacent gyri in a migratory fashion over time, resulting in large
regions of cortical involvement that are not limited to vascular
territories (4, 15, 19). The migratory, increasing and decreasing
pattern of SLLs on imaging is the main feature of MELAS.

FUNTIONAL MRI FINDINGS

Diffusion-Weighted Imaging and Apparent
Diffusion Coefficient
Stroke-like lesions (SLLs) always present high signals on DWI
(Figure 1E). Earlier reports suggested that the ADC value of SLLs
was normal or increased (reflecting vasogenic edema) (20, 21),
but nowmost studies have found that the ADC signals alternately
change or mix in different periods (18, 22–24) (Figure 1F).
Stoquart-Elsankari et al. (24) speculated that the changes in
ADC might be related to the different levels of impairment
of mitochondrial energy transport, correlated with cellular
dysfunction. Moderate cellular dysfunction with vasogenic
edema results from mild energy failure, and irreversible cellular
failure responsible for cytotoxic edema is caused by severe energy
failure. Besides, Xu et al. (25) reported a pattern of acute SLLs that
DWI hyperintensity with decreased ADC along cortical area and
increased ADC in most affected subcortical white matter. After
the acute phase, the ADC value can return to normal.

1H-MRS
MELAS is characterized by an increased lactate peak in the lesion
area, accompanied by a decreased N-acetylaspartate peak on
1H-MRS (Figure 1G). However, the characters are not specific
and could also be found in other diseases, such as infarction.
A lactate peak on MRS reflects anaerobic metabolism. Some
reports have shown that a lactate peak even occurs in the normal-
appearing region (brain parenchyma or cerebrospinal fluid area)
on MRS (26, 27), which is of greater clinical significance for the
disease. However, lactate signal could only be detected in normal
cerebrospinal fluid in about one-third of patients (28).

Abe et al. (29) found that a patient 48 h after SLEs, a
lactate peak on MRS could be seen much before the changes
in DWI sequence, suggesting that MRS may have the predictive
ability in displaying early lesions. Previous studies indicated that
MRS might be more sensitive for detecting MELAS-associated
preclinical abnormalities compared to conventional MRI (30,
31). Moreover, the lactate level varies at different stages of
the disease. The lactate peak was bigger during onset than in
intermission (30). Lactate in the lateral ventricles increased over
time, and high lactate was associated with increased mortality
(32). Weiduschat et al. (33) reported that lactate and total
choline levels were reliable biomarkers for predicting the risk of
individual A3243G mutation carriers to develop the MELAS. In
addition, a recent study demonstrated the lactate peaks and ratios
of N-acetylaspartate to choline were significantly improved that
corresponded with clinical improvement after L-arginine therapy
(34). To sum up, MRS may be a useful imaging biomarker
for early diagnosis, course monitoring, and efficacy evaluation
of MELAS.

PWI and ASL
Both PWI and ASL can reflect microscopic hemodynamic
information of the brain and evaluate cerebral perfusion. And
as a non-invasive technique, ASL provides new dimensions
in the evaluation of cerebral perfusion. The general trend is
hyperperfusion in the acute stage and hypoperfusion in the
chronic phase of SLEs (35–38). Hyperperfusion might be caused
by dilation of cerebral arteries and increased microvascular
permeability in the lesion areas (39), and hypoperfusion could
be associated with cerebral cytotoxic edema, cortical atrophy,
and gliosis (40). Li et al. (41) identified focal hyperperfusion
as an imaging hallmark in acute encephalopathy of MELAS.
In addition, regional hyperperfusion was observed on ASL in
the preclinical phase 3–5 months before the clinical onset of
SLEs (40), similar results were also reported in two other teams
(41, 42). These reports indicate that ASL has the potential for
detecting latent SLLs and predicting the emergence of SLEs.
Meanwhile, Rodan et al. (43) found that MELAS disease severity
and mutation load were negatively correlated with interictal
cerebrovascular reactivity and directly correlated with frontal
cerebral blood flow on ASL, suggesting that these metrics could
be used as non-invasive prognostic markers to stratify risk
for SLEs.

Magnetic Resonance Angiography
MRA has not been routinely performed in MELAS in the
past, because major cerebral vessels were considered to be the
target of mitochondrial metabolism defects in these patients.
However, more and more studies have found major cerebral
vessels dilation (39, 44, 45) or stenosis (46, 47) on MRA
in MELAS in the acute and chronic stages of the disease.
Gramegna et al. (48) found that the proportion of cerebral
major vessels dilation and stenosis was 40 and 19%, respectively,
on MRA, and the middle cerebral artery was the most
commonly involved. Among them, 88% of dilation was related
to the acute SLEs, whereas only a few cases of stenosis were
symptomatic for SLEs. Most alterations related to SLEs in the
major cerebral vessels could be normalized completely after
resolution of symptoms. These studies demonstrated that MRA
could detect alterations in major cerebral vessels in MELAS
patients. Furthermore, vasodilation by MRA had occasionally
been detected in patients up to 3–5 months before the onset
of SLEs (40, 44), indicating that MRA might be used as a
possible tool for future onset of SLEs in selected patients. In
a word, the macrovascular changes on MRA and underlying
pathophysiology mechanism of MELAS need to be further
investigated in large cohort studies.

Other Functional MRI
There are also a few reports on the application of other new
MRI techniques in MELAS. Virtanen et al. (49) observed in
patients that mild microstructural damage of white matter
tracts with loss of directional organization and reduced brain
volumes with diffusion tensor imaging. Mineral (calcium or iron)
deposition in basal ganglia of MELAS could be demonstrated
by susceptibility-weighted imaging (50). Furthermore, studies on
monitoring the disease status and evaluating drug efficacy by
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blood oxygenation level dependent function magnetic resonance
imaging (bold-fMRI) have also been reported. Wang et al. (51)
reported that MELAS patients, particularly those at the acute
stage, exhibited topological reorganization of the whole-brain
functional network based on resting-state fMRI. They also found
that MELAS patients spent more time in a state with weaker
connectivity and less time in states with stronger connectivity,
and patients at the acute stage exhibited that global efficiency
was markedly increased while local efficiency was decreased,
compared to the controls and the patients at the chronic period
(52). Additionally, Rodan et al. (53) demonstrated that MELAS
patients’ fMRI activation in response to visual cortex stimulus
was significantly increased in primary visual striate cortex V1
and extrastriate regions V2 to V5 after L-arginine treatment with
task fMRI.

DIFFERENTIAL DIAGNOSIS

The diversity and complexity of clinical and radiological
manifestations in patients with MELAS pose a challenge
to the diagnosis. In imaging, the unilateral isolated cortical
lesion is easily misdiagnosed as acute cerebral infarction, viral
encephalitis, and low-grade glioma, etc., especially infarction. In
acute SLLs, MRI differentiation of MELAS from other diseases
mainly includes the following points: (1) lesions first involve
the cortex and less deep white matter; (2) lesions commonly
affect occipital and parietal lobes; (3) lesions are not limited
to arterial territories and migrate over time; (4) a lactate peak
appears in lesions, even in the normal-appearing region (brain
parenchyma or cerebrospinal fluid area) on MRS, which is one of
the indicators of diagnostic specificity; (5) lesions always present
as hyperperfusion on PWI/ASL.

For acute ischemic stroke, patients are often accompanied by
risk factors such as hypertension, diabetes, and hyperlipemia.
The lesions of infarction are confined to the boundary of the
vascular territories, and present hypoperfusion on PWI/ASL,
effectively distinguishing it from MELAS. Chong et al. (54)
discovered a new scoring criterion based on the vessel flow
void sign and hyperintense vessel sign in T2FLAIR images was
helpful to differentiate infarction from MELAS on conventional
MRI, with sensitivity and specificity of 92.3 and 85.0%,
respectively. Furthermore, cortical linear cystic lesions might
help to distinguish the two diseases (13).

For viral encephalitis, patients may have a high fever,
meningeal irritation with lymphocytic pleocytosis, and an
elevated protein level on cerebrospinal fluid. On imaging, viral
encephalitis usually involves the limbic system, such as the frontal

orbital gyrus, hippocampus and temporal lobe, rather than the

parietal, and temporal lobe. The diffusion restriction uninvolved
the entire lesions might be an important differential diagnostic
sign between them (55). Functional MRI techniques are also
valuable for accurate diagnosis.

For low-grade glioma, patients often present with chronic
onset. On imaging, the conventional MRI findings of low-grade
glioma are sometimes similar to the single SLL, and MRS can
help distinguish them. OnMRS, low-grade glioma often presents
with elevated choline peak and decreased N-acetylaspartate peak,
but usually without an increased lactic acid peak, which is a
characteristic of SLL.

CONCLUSIONS

In conclusion, MELAS is a rare progressive neurodegenerative
disorder involving multi-organs. MELAS has obvious clinical
heterogeneity as the clinical manifestations of different patients
or the same patients vary in different phases, which makes the
diagnosis a little arduous sometimes. However, neuroimaging
of MRI demonstrates characteristic patterns of MELAS
patients, including cortex swelling with a predilection for
the posterior brain regions, not limited to arterial territories,
hyperperfusion, and elevated lactate peak in both affected and
non-affected regions, which may be found concurrently with
encephalomalacia and atrophy. The recognition of these imaging
features signs facilitates screening and early diagnosis of MELAS.
Meanwhile, the novel MRI approaches have provided new
dimensions in the evaluation of the disease. Multimodal MRI has
shown great potential in risk stratification, course monitoring,
progression, and efficacy evaluation of MELAS, and also provides
a reference for understanding its neuropathological mechanism.
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