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The lungs conceptually represent a sponge that is interposed in series in the bodies’ 
systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches 
the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The 
lung’s constant exposure to the exterior necessitates a competent immune system, as 
evidenced by the association of clinical immunodeficiencies with pulmonary infections. 
From the in utero to the postnatal and adult situation, there is an inherent vital need to 
manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or perme-
ability edema. Whereas a wealth of literature exists on the physiological basis of fluid 
and solute reabsorption by ion channels and water pores, only sparse knowledge is 
available so far on pathological situations, such as in microbial infection, acute lung injury 
or acute respiratory distress syndrome, and in the pulmonary reimplantation response 
in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a 
selection of lung injury models, thereby especially focusing on cytokines and mediators 
that modulate ion channels. Inflammation is characterized by complex and probably 
time-dependent co-signaling, interactions between the involved cell types, as well as 
by cell demise and barrier dysfunction, which may not uniquely determine a clinical 
picture. This review, therefore, aims to give integrative thoughts and wants to foster the 
unraveling of unmet needs in future research.

Keywords: epithelial sodium channel, Na+/K+-ATPase, tumor necrosis factor, TNF tip peptide, pneumonia, acute 
respiratory distress syndrome, lung transplantation, ischemia–reperfusion injury

iNTRODUCTiON

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are both clinical syndromes 
with a high morbidity and mortality rate. Although of a different degree of severity, both ARDS 
and ALI are characterized by critical gas exchange disturbances, an inflammatory reaction, and 
an associated alveolar fluid overload (edema). The etiology of ALI and ARDS can be differentiated 
between direct and indirect lung injury.
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The conceptual work presented here discusses the mechanisms 
regulating alveolar fluid clearance (AFC) during inflammation. 
As recently demonstrated by several groups, the interaction 
between cytokines and ion channels may play a critical role in this 
setting. The presented review does not cover all cytokines and ion 
channels, but rather focuses on a selection of mainly pre-clinical 
pathophysiological models and addresses clinical needs and dif-
ficulties to effectively translate pre-clinical data into the clinical 
field. Tables 1–3 give an overview on ion channels and mediator 
interaction. The ultimate aim of this translational research should 
be to improve patient care and to reduce morbidity and mortality. 
This can be achieved by reducing long-term residual sequelae and 
time on the ventilator, which can improve long-term lung func-
tion and health status or health-related quality of life.

The main task of the lungs is to account for the efficient exter-
nal gas exchange between air and the blood. Only a thin barrier of 
several micrometers separates the pulmonary capillaries from the 
immense alveolar surface, mainly made up by alveolar type I cells. 
An intimately fine, deformable, tensible, flexible, and continuous 
net of interstitial tissue integrates the interstitial net around ves-
sels and bronchi. The whole system has to be “breathable,” i.e., 
has to be efficiently moved by the thoracic cage to transport fresh 
air in the alveolar space that matches to the vascular bed for gas 
exchange. A number of structural and physiological features 
prevent alveolar flooding. These protective mechanisms include 
the very low vascular resistance in the pulmonary circulation, 
the high capillary colloid-osmotic pressure and, on the other 
hand, the diminished interstitial colloid-osmotic pressure in case 
of increased filtration. The minimal mechanic stress of alveolar 
septa due to surface tension reduction by surfactant as well as 
the optimal active fluid reabsorption out of the alveolar space 
are further measures that optimize fluid clearance. Structurally, 
a rather tight pulmonary microvascular endothelium allows for 
a minimal continuous filtration of water, micro-and macromol-
ecules, with an even tighter alveolar epithelium (1). All three fluid 
compartments, the capillaries, the interstitium, and the alveoli are 
in a complex dynamic equilibrium. The continuous pulmonary 
interstitial space is a drainable continuum that is ultimately emp-
tied by the lymphatic vessels. There is a basal transendothelial 
filtration of about 10  ml/h that increases up to tenfold during 
physical activity. When such filtered fluid enters the alveolar 
interstitial space, it moves proximally to the peri-bronchovascular 
space (2). Under normal conditions, most of this filtered fluid will 
be removed by the lymphatics from the interstitium and returns 
to the systemic circulation (2).

The interstitial compartment is a reversible store of excess 
fluid. In the adult lung, interstitial fluid—or interstitial edema—
can mount up to a volume of 500 ml. However, at that volume 
there is usually already some alveolar edema (3). It was formerly 
wrongfully postulated that the Starling filtration forces, which 
essentially represent the balance between oncotic and hydrostatic 
pressures in the capillaries and the interstitial space, are the only 
driving forces for liquid flow from the bloodstream into the 
extravascular space. In the last four decades, four important 
refinements have been made. The first one is that fluid reab-
sorption from the alveolar space is mainly performed by active 
vectorial Na+ transport (4). Moreover, also Cl− transport was 

suggested to be important, leading to consecutive counter-ion 
transport, as well as to an osmotic water shift. In the last few 
years, a second refinement has been made which mainly occurs 
in heart failure, namely that pumps which usually free the 
alveolus of ions can also provide inverse transport (5). This bio-
logical “emergency plan” in case of hydrostatic pulmonary edema 
widens the scope of mechanisms in cardiogenic lung edema, as 
one can argue that in heart failure these mechanisms could be 
rescue fluid shifts including into the alveolar space, and that a 
concerted fluid management in vascular, renal, and intestinal and 
pulmonary vascular beds might occur in severe cardiac failure 
or fluid overload, taking into account some degree of alveolar 
pulmonary edema. A third rather novel field is the research 
on emptying of the alveolar space from its protein load; but so 
far only few insights in this clinical topic exist (6). The fourth 
refinement is the close relationship of ion channel activation with 
barrier tightness. Interactions between the lectin-like domain of 
tumor necrosis factor (TNF), mimicked by its amino acid-identic 
TNF tip peptide (a.k.a. AP301 and Solnatide) and the epithelial 
sodium channel (ENaC) were shown to have a clear effect on 
epithelial (7) and endothelial barrier tightness (8, 9). As such, ion 
channel activity and barrier tightness may be key survival factors 
for tissue function, be it the lung or the kidney, the brain or other 
organs, and for tissue stability (9–11).

Alveolar fluid reabsorption is a very physiological process 
that is even required directly after birth where the lung has to be 
cleared from liquid as it has been so far immersed in the amnionic 
fluid. In premature infant, insufficient clearance of lung liquid at 
birth may lead to respiratory distress syndrome (RDS). The key 
clinical relevance of the physiological role of αENaC in the lungs 
has been confirmed in the mouse in which the ENaC-α gene was 
deleted by a homologous recombination. These animals were not 
able to remove alveolar fluid from their lungs and died shortly 
after birth (12). Surprisingly, in humans this situation seems 
more complex, as a child with an inactive homozygous ENaC-α 
mutation did not suffer perinatal respiratory failure (13).

Likewise in adults with heart failure or RDS, while they 
show no active fluid clearance greater morbidity and mortality 
rate is probable (14). In clinical studies using quantification 
of protein in alveolar liquid, prognosis was dependent on the 
estimated AFC. In a recent study, 56% had impaired AFC, and 
only 13% a maximal AFC rate (Figure 1). Survival was higher 
and days on mechanical ventilation were less in those patients 
with maximal alveolar clearance rate compared to patients with 
impaired clearance rate. With hydrostatic edema, by contrast, 
75% of patients had submaximal to maximal AFC (15). Of note 
is that in hydrostatic edema alveolar fluid shift may even actively 
be reversed (5, 16) as discussed above.

PULMONARY eDeMA

Pulmonary alveolar edema is a life-threatening state that results 
from an imbalance between passive and active forces driving 
fluid into the airspaces and those mechanisms involved in its 
removal (1, 4). Based on the underlying cause, in the next two 
chapters we will discuss two main fundamentally different types 
of pulmonary edema occur in humans (2).
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TAbLe 1 | Role of different mediators on fluid transport through impacting on ion channels in the apical and basolateral membrane of epithelial cells.

Channel name Mediator impact on 
pulmonary 

barrier function

Mechanism of action

Apical membrane

Epithelial sodium 
channel (ENaC)

Transforming growth factor 
beta (TGF-β)

−/+ Decrease in expression during bacterial infection (132)
Decreases expression of the αENaC mRNA and protein (132)
Internalization of αβγENaC complex from the lung epithelial cell surface and, hence, block the 
sodium-transporting capacity of alveolar epithelial cells (AECs) (133)
Increases the function of ENaC (134)

Tumor necrosis factor (TNF) 
receptor binding site

− Decreases the expression of ENaC mRNA in AECs in vitro (135)

TNF lectin-like domain + Activates ENaC (37, 136)
Increases ENaC open probability (102)

Interleukin-1β (IL-1β) −/+ Decreases the expression of ENaC during bacterial infection (113)
Decreases expression of αENaC via a p38 MAPK-dependent signaling pathway (113)
Suppresses expression of βENaC (137)
Decreases ENaC function (138)
Augments in vitro alveolar epithelial repair (139)
Increases ENaC subunits expression in a specific fetal context (140)

Interleukin-4 (IL-4) − Decreases in ENaC expression during bacterial infection (141)
Decreases ENaC activity by decreasing the mRNA levels of γENaC and, to a lesser extent, 
that of the β subunit (142)

Keratinocyte growth factor 
(FGF-7)

− Decreases the expression of αENaC (143)

Protein kinase C (PKC) − Inhibits ENaC function (144–147)

Cycloheximide (CHX) − Downregulate αENaC mRNA abundance similarly via the ERK and p38 MAPK pathway (148); 
Chx effect involves post-transcriptional mechanisms (148)

Lipopolysaccharide (LPS) − Downregulates αENaC mRNA abundance similarly via the ERK and p38 MAPK pathways 
(148); inhibits αENaC promoter activity (148)

Pneumolysin (PLY) − Inhibits ENaC expression upon activation of ERK (102) and inhibits ENaC open probability, by 
reducing its association with myristoylated alanine-rich C kinase substrate (10, 149)

Glutathione disulfide (GSSG) − Inhibits ENaC activity in primary AECs (150, 151)

Reactive oxygen species 
(ROS)

−/+ Inhibit ENaC (150, 152)
Decrease channel activity (117)
Increases ENaC activity through:

 (i) Enhancing ENaC gating (153)
(ii) Increasing channel abundance (153)

Ethanol + Increases ENaC open-state probability (153)
Increases ENaC abundance (153)

Superoxide (O2a) + Elevating endogenous (O2
–) levels with a superoxide dismutase inhibitor, prevents  

NO inhibition of ENaC activity (111)

Nitric oxide (NO) − Inhibits highly selective sodium channels (52, 53)

Inter-α-inhibitor (IαI) − Inhibits ENaC activity in CF patients (154)

NEDD4-2 − Decreases the expression of the epithelial ENaC (155)

Hypoxia − Decreases apical expression of ENaC subunits (especially beta and gamma) (156)

Purinergic receptors (P2YR) − Inhibits ENaC expression (157, 158)

Muscarinic cholinergic + Increases ENaC activity. RhoA activity is essential for this process (159)

Estriadol + Increases activity of the non-selective ENaC channels, and these effects are mediated 
through the G protein-coupled estrogen receptor (160)

Glucocorticoids + Increased in expression of ENaC during bacterial infection (161–164)

Thyroid hormone + Thyroid hormone in concert with glucocorticoids increased the expression of  
ENaC (165, 166)

Corticosteroids + Increase expression of the γ-ENaC subunit which leads to increase ENaC activity (167)

(Continued)
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(Continued)

Channel name Mediator impact on 
pulmonary 

barrier function

Mechanism of action

Prostasin [channel activating 
protease 1 (168)]

+ Activates ENaC (169)

Urokinase-like plasminogen 
activator

+ Increases the ENaC activity (154, 170–173)

Cyclic adenosine 
monophosphate (cAMP)

+ Increases channel activity either by increasing its open probability or by increasing the 
number of channels at the apical membrane (174)

Cystic fibrosis transmembrane 
conductance regulator (CFTR)

+ Activated CFTR can inhibit ENaC (175)

Dopamine + Increases ENaC activity by a cAMP-mediated alternative signaling pathway involving EPAC 
and Rap1, signaling molecules usually associated with growth-factor-activated receptors 
(176)

β2-agonists + Activates ENaC (159)
Enhancing the insertion of ENaC subunits into the membrane of AECs (156)

Human AGEs (receptor for 
advanced glycation end 
product ligand)

+ Increases ENaC activity through oxidant-mediated signaling (177)

CFTR 
(Cl‒ channel)

Interferon-gamma (IFN-γ) − Decreases the expression of CFTR mRNA (142, 178)

TGF-β − Decrease CFTR expression and function (179)

Interleukin-4 (IL-4) + Increases the expression and function of CFTR (142)

Interleukin-13 (IL-13) + Increases the CFTR expression (180)

Interleukin-1β (IL-1β) + Increases CFTR expression trough increasing mRNA levels (138, 181)

β2-agonists + β2AR mediates enhancement of AFC via increasing Cl‒ flux through CFTR (182, 183)
It activates CFTR by raising cAMP intracellular levels and mediating protein kinase A (PKA) 
activation (184)

Na+/K+ ATPase (Na+/
K+-ATPase)

− Inhibition of the Na+/K+-ATPase lead to a reduced transcription of CFTR (185)
CFTR dysfunction occurs through Na+/K+-ATPase inhibition by ouabain (186)

Cyclic nucleotide-
gated cation 
channels (CNG) 
(Na+ channel)

Glucocorticoids + Increases mRNA for alphaCNG1 (187)

mineralocorticoids + Increases mRNA for alphaCNG1 (187)

TMEM 16a 
(CaCC) (Ca+ 
activated Cl‒  
channel)

CFTR − Can inhibit TMEM 16a through attenuation of ionophore-induced rise in Ca2+ (188)

IL-4 + Increases the expression of CaCC (189)

IL-9 + Increases the expression of CaCC (189)

IL-13 + Increases the expression of CaCC (189)

ClC-2 (Cl‒  
channel)

TNF − Inhibits Aquaporin 5 (AQ-5) Expression (190)

AQ-5 (H2O 
channel)

Transient receptor potential 
vanilloid 4 (TRPV4)

− Reduction of AQP5 abundance (191)

IFN-γ + Increases ClC-2 transcripts via mRNA stabilization (192)

cAMP + Increasing synthesis of AQP5 mRNA (193)
Triggering translocation of AQP5 to the plasma membrane (193)

Progesterone + Increases abundance of AQP5 (194)

Estradiol + Increases in the AQP5 protein level (194)

basolateral membrane

Na+/K+ ATPase 
(Na+, K+ pump)

IFN-γ − Inhibits Na+/K+-ATPase activity (195)

Interleukin-1β (IL-1β) + Increases Na+/K+-ATPase subunit expression (140)

TNF lectin-like domain + Increased Na+/K+-ATPase activity (196)
Activation of Na+/K+-ATPase by TIP probably occurs indirectly upon prior activation of ENaC

TAbLe 1 | Continued
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Cardiogenic or Hydrostatic edema
Cardiogenic pulmonary edema (also called hydrostatic or 
hemodynamic edema) (2) is caused by an increased capillary 
hydrostatic pressure, secondary to an elevated pulmonary 
venous pressure (18) (Figure 2, left panel). This type of edema 
can occur following left ventricular heart failure, renal failure, 
or fluid overload, or arteriovenous shunts or fistulas. Left heart 
failure is most commonly caused by myocardial ischemia with 
or without myocardial infarction, exacerbation of chronic 
systolic or diastolic heart failure, or dysfunction of the mitral or 
aortic valve. Acute cardiogenic pulmonary edema is a frequent 
medical emergency that accounts for up to 1 million hospital 
admissions per year in the United States and for about 6.5 
million hospital days each year, and is typically present dur-
ing acute cardiac failure in 75–80% of patients (19). Coronary 
heart disease may account for about half to two-thirds of heart 
failures. There has been an increase in cardiac failure patients 
as well as in hospitalization rate during the last decade (20). 
As a matter of fact, heart failure is the most rapidly growing 
cardiovascular condition globally. The reported Western world 
life time risk is typically about 33% for men and 29% for women 
for our population, and depends, besides sex, on comorbidities 
and cardiovascular risk factors, such as arterial hypertension, 
diabetes, obesity, sleep related disorders, smoking, sedentary 
lifestyle, and ethnic background (20). In patients aged 65 years 
and older, more than 10% suffer from congestive heart failure 
(21). Interstitial pulmonary edema and alveolar flooding impair 
lung mechanics and gas exchange, thus causing dyspnea and 
tachypnea, which ultimately results in an age-dependent in-
hospital mortality rate of about 15% (22).

The development of pulmonary edema is characterized 
by increased transcapillary hydrostatic pressure gradients. 
Moreover, a reversed and active electrolyte flow and its resulting 
active fluid transport can be involved (5, 23). This is possible by 
the bidirectional permeation permitting anion channels cystic 
fibrosis transmembrane conductance regulator (CFTR) and 
NKCC1 (16), which seems to account for up to 70% of the total 
alveolar fluid influx at elevated hydrostatic pressure. It is sup-
porting the concept that alveolar fluid secretion is a secondary 
consequence of impaired alveolar Na+ uptake (16). Both CFTR 

and NKCC1 are inhibited by furosemide. This might explain 
why in the clinical heart failure setting furosemide immediately 
relieves patients, i.e., by inhibition ion and, thus, fluid transport 
into the alveolus during alveolar lung edema generation when 
furosemide is administered, and not only after a huger delay of 
about half an hour or more when the renal effect of relevant diu-
resis has occurred. However, also a venous vasodilation, direcly 
reducing preload, occurs immediately after systemic furosemide 
administration (24).

A rapid increase in hydrostatic pressure in the pulmonary 
capillaries, leading to increased transvascular fluid filtration, 
and even active fluid transport as mentioned above, is the sign 
of acute cardiogenic or volume-overload edema (Figure  2, 
left panel). Such an increase could be usually due to elevated 
pulmonary venous pressure from increased left ventricular 
end-diastolic pressure and left atrial pressure (2). Mild elevations 
of left atrial pressure (18–25 mmHg) cause edema in the peri-
microvascular and peri-bronchovascular interstitial spaces (1). 
Excess interstitial fluid is transported by lung lymphatics into the 
vascular system. A negative interstitial pressure gradient, even 
under conditions of edema, is the major force for the removal 
of pulmonary interstitial edema fluid into the lymphatics (25). If 
left atrial pressure rises further (>25 mmHg), edema fluid passes 
through the lung epithelium, in part by active transport, flooding 
the alveolar space with protein-poor fluid (Figure 2, left panel) 
(1, 2, 5). By contrast, non-cardiogenic pulmonary edema is based 
on increased pulmonary vascular permeability, resulting in an 
increased flux of fluid and macromolecules into the pulmonary 
interstitium and airspaces (Figure 2, right panel) (2).

There is a considerable link between inflammation and heart 
failure. The Val-HeFT study demonstrated a direct correlation 
between elevated levels of C-reactive protein and heart failure 
severity, and C-reactive protein predicts the risk of death and 
early readmission in acutely decompensated heart failure (26). 
As reviewed by Azzam et al. in this topic issue, one hypothesis 
is that heart failure is accompanied by systemic and mesenteric 
venous congestion, which may in turn cause bowel edema and a 
consecutive increased permeability, leading to bacterial translo-
cation, endotoxin release, and resultant systemic inflammation. A 
second hypothesis postulates that the failing, but not the healthy, 

Channel name Mediator impact on 
pulmonary 

barrier function

Mechanism of action

TGF-β −/+ Decrease in Na+/K+-ATPase β1 subunit expression, resulting in decreased Na+/K+-ATPase 
activity(197, 198)
Increases the expression of Na+/K+-ATPase α 1- and β 1-subunits (134)

TNF-related apoptosis-
inducing ligand (TRAIL)

− Influenza A virus (IAV)-induced reduction of Na+/K+-ATPase is mediated by a host signaling 
pathway that involves epithelial type I IFN and an IFN-dependent elevation of macrophage 
TRAIL (199)

Leukotriene D4 + Activates Na+/K+-ATPase (200)

Acetylcholine + Activates Na+/K+-ATPase (201)

NO − Inhibits Na+/K+-ATPase (53, 202)

aThere is growing evidence that ROS are important regulators of ENaC activity and, hence, of epithelial Na+ absorption (153). But there is an important question here. Why does ROS 
increase ENaC activity under some circumstances (e.g., ethanol) but inhibit ENaC under others (e.g., influenza) (153)?

TAbLe 1 | Continued
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TAbLe 2 | Impact of different factors on the alveolar–capillary barrier.

Mediator impact on 
pulmonary  

barrier function 

Mechanism of action

Alveolar epithelium

TGFβ1 − Decreases lung epithelial barrier function (203–205)
Increases the permeability of pulmonary endothelial monolayers (206)
Increases the permeability of alveolar epithelial monolayers (206)

Tumor necrosis factor (TNF) − Causes alveolar epithelial dysfunction (207)

Lectin-like domain of TNF + Increases occludin expression, and improved gas–blood barrier function (7)

TNF-related apoptosis-inducing 
ligand (TRAIL)

− Disruption of alveolar epithelial barrier (199, 208, 209)

Interleukin-1β (IL-1β) + Augments in vitro alveolar epithelial repair (139)

Protein kinase D3 − Dysfunction of airway epithelial barrier through downregulation of a key tight junctional protein claudin-1 (210)

Claudin-3 − Decreases alveolar epithelial barrier function (211)

Claudin-4 + Improves the barrier function of pulmonary epithelial barrier by promoting pulmonary fluid–clearance function 
(211, 212)

Transient receptor potential 
vanilloid 4 (TRPV4)

− Disruption of alveolar type I epithelial cells leading to lung vascular leak and alveolar edema (213)

Ethanol − Disruption of alveolar epithelial barrier function by activation of macrophage-derived TGFβ1 (214)

Acetoin (butter), diacetyl, 
pentanedione, maltol (malt), 
ortho-vanillin (vanilla), coumarin, 
and cinnamaldehyde

− Impairment of epithelial barrier function in human bronchial epithelial cells (215) 

Asbestos − Increases lung epithelial permeability through increasing epithelial fibrinolytic activity (216)

Pneumolysin (PLY) − Impairs epithelial barrier (217)

Fas-ligand system − Causes alveolar epithelial injury in humans with ALI or ARDS (218)
Impairs alveolar epithelial function in mouse lungs by mechanisms involving caspase-dependent apoptosis (219)
Inducing apoptosis of cells of the distal pulmonary epithelium during ALI (57)

CO − Enhances pulmonary epithelial permeability (220, 221)

Tight junctions (TJ)

Purinergic receptor + Preserving integrity of endothelial cell (EC)-cell junctions (222)

Na+/K+ ATPase + Formation of TJs through RhoA GTPase and stress fibers (223)
Gene transfer of β1-Na+, K+-ATPase upregulates TJs formation by enhancing expression of TJ protein zona 
occludins-1 and occludin and reducing pre-existing increase of lung permeability (224)

+

Nitric oxide (NO) − Decreases expression and mistargeting of TJ proteins in lung (225)

Influenza A virus (IAV) − Disruption epithelial cell TJs (226)

Caveolin-1 + Regulates the expression of TJ proteins during hyperoxia-induced pulmonary epithelial barrier breakdown (227)

IL-4 − Causes TJ disassembly and epithelial barrier permeability alteration via an EGFR-dependent MAPK/ERK1/2-
pathway (228)
Reduce protein density at the TJ without causing major changes in cldn1, cldn2, cldn3, and occludin protein 
levels (229)

IL-13 − Reduction of protein density at the TJ without causing major changes in cldn1, cldn2, cldn3, and occludin 
protein levels (229)

TNF − Causes TJ permeability (230)

Interferon-gamma (IFN-γ) −/+ Disorganization of the TJ and an increase in paracellular permeability (231)
Promotes epithelial restitution by enhancing barrier function and wound healing (232)
It can also reverse IL-4- and IL-13-induced barrier disruption (232)

Trypsin − Destroys the TJs which lead to airway leakage

Cigaret smoke − Causes disassembly of TJs, modulated through the EGFR–ERK1/2 signaling pathway (233)

Cadmium − Causes disruption of TJ integrity in human ALI airway cultures both through occludin hyperphosphorylation  
via kinase activation and by direct disruption of the junction-interacting complex (234)

(Continued)
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Mediator impact on 
pulmonary  

barrier function 

Mechanism of action

Capillary endothelium

TGFβ 1 − Induces endothelial barrier dysfunction via Smad2-dependent p38 activation (235)

TNF − Disruption of the lung vascular barrier (236, 237)
Augmenting endothelial permeability (67, 238)
Apoptosis of lung microvascular ECs (39, 239, 240)

Lectin-like domain of TNF + Strengthens barrier function or increasing endothelial barrier tightness (9)
Protective effect in PLY-Induced endothelial barrier dysfunction (9)
Can reduce PLY-induced RhoA/Rac-1 balance impairment and MLC phosphorylation (10)
Protects from listeriolysin-induced hyperpermeability in human pulmonary microvascular ECs (241)
Reducing vascular permeability (196)
Increases in membrane conductance in primary lung microvascular ECs (242)

IFN-γ − Increases vascular permeability (243)

Interleukin-1β (IL-1β) − Given intratracheally, IL-1β increased endothelial permeability and lung leak (244–247)
Increases vascular permeability (243)

Interleukin-2 (IL-2) − Increases vascular permeability (248)

Interleukin-6 (IL-6) − Increases endothelial permeability (249)

Interleukin-8 (IL-8) − Increases endothelial permeability (250)

Interleukin -12 (IL-12) − Upregulate the release of the vascular permeability factor which is a lymphokine derived from LN peripheral 
blood mononuclear cells (251)

Neutrophils − Inducing endothelial barrier disruption through secretion of leukotrienes or heparin-binding protein, direct 
signaling into the EC via adhesion-dependent mechanisms and production of ROS (252)

ENaC + ENaC-α can strengthen capillary barrier function (9)

TRPV4 − Increases in vascular permeability thus promoting protein and fluid leak (253)
Applying TRPV4 inhibitors exhibits vasculoprotective effects, inhibiting vascular leakage, and improving blood 
oxygenation (254)

Thrombin − Increase in endothelial permeability (255)

Platelet-activating factor − Increase in endothelial permeability (256)

Hydrogen peroxide − Increase vascular permeability through enhancing vascular endothelial growth factor expression (257)

Integrin αvβ5 − Increases pulmonary vascular permeability (258)

T-cadherin − Causes enhancement of endothelial permeability (259)

Myosin light chain kinase − Vascular hyperpermeability (260)

Lipopolysaccharide (LPS) − Induces lung endothelial barrier dysfunction (261)

PLY − Impairs endothelial barrier (10, 262)

P2Y receptors + Regulators of lung endothelial barrier integrity (263)

CO − Enhances pulmonary epithelial permeability (221)

Soluble receptor for advanced 
glycation end products

− Increase in alveolar–capillary barrier permeability (264)

eC adhesion

Podocalyxin + Decreases vascular permeability of ECs by altering EC adhesion (265)

NLRP3 + Protects alveolar barrier integrity by an inflammasome-independent increase of epithelial cell adherence (266)
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TAbLe 2 | Continued

heart has the ability to produce pro-inflammatory TNF during 
dilated myopathy. Third, decreased cardiac output could cause 
systemic tissue hypoxia with subsequent systemic inflamma-
tion, which might be the primary stimulus for increased TNF  
production (21).

Soluble TNF receptor-1 and interleukin-8 (IL-8) are 
independently associated with cardiovascular mortality, as is 

endothelin-1. In transgenic mice overexpressing TNF the left 
ventricular ejection fraction was depressed depending on TNF 
gene dosage (21). TNF has been associated with worsened prog-
nosis. However, two studies aiming to neutralize the cytokine in 
heart failure, using the soluble human TNF receptor 2 construct 
etanercept, were stopped because of lack of clinical benefit and 
patients receiving the highest dose even had increased adverse 
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TAbLe 3 | Comparison of the properties of highly selective and non-selective 
channels.

Highly Selective Non-selective

Na/K selectivity (267, 268) >40 1.1

Unit conductance, pS (267–269) 6 21

Amiloride Ki, nM (268, 270) 38 2,300

Increased cellular cyclic adenosine 
monophosphate or β-adrenergic 
stimulation (271, 272)

Channel surface 
density increases

Po increases

Increased cGMP or NO (273) Po decreases Po decreases

Protein kinase C activation (274, 275) Po decreases, 
surface density 
decreases

Channel surface 
density increases

Increased intracellular Ca2+ (271) No effect Po increases

Purinergic stimulation (276–279) Po decreases Po increases

Dopaminergic stimulation (176, 280) Po increases No effect

Superoxide production (111) Po increases Channel surface 
density increases

Hypoxia (268) Channel surface 
density decreases

Channel surface 
density increases

Po, channel open probability; Ki, inhibitory constant, i.e., the dose that reduces open 
probability by 50%.

FigURe 1 | Hospital mortality is increased in patients with acute lung injury 
or the acute respiratory distress syndrome with impaired fluid clearance (17).
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It is involved through p38 and possibly p42/44 MAP kinases 
with myocardial hypertrophy, inflammation, and neurotrans-
mitter and catecholamine synthesis and release in the brain. 
Angiotensin-II regulates the NF-κB-dependent gene expression 
in response to IL-1β stimulation by controlling the duration of 
ERK and NF-κB activation (21). Many immune cell functions 
are moreover coupled to intracellular pH. As such, a higher 
pH represents an important signal for cytokine and chemokine 
release, and a low pH can induce an efficient antigen presenta-
tion. The pH regulating Na+/H+ exchanger isoforms may play a 
role in these events (30).

The kidney is a major target organ and a modulator in the 
pathogenesis of heart failure at least partially by means of the 
renin–angiotensin system. In initial heart failure, it aims at 
blood pressure maintenance by direct systemic vasoconstriction, 
via augmentation of the sympathetic nervous system activity 
and by promoting renal Na+ retention. The latter mechanism is 
deleterious in the progress of cardiac failure and is characterized 
by enhanced Na+ reabsorption in the proximal tubule and col-
lecting duct induced by effects of angiotensin-II and aldosterone 
on NHE3 and ENaC, respectively (21). Two-thirds of filtered Na+ 
is reabsorbed in the proximal tubule via transporters for amino 
acids, glucose, phosphate and via NHE3. At the distal tubule, 
Na+ is reabsorbed by Na+, K+ co-transporter, which is sensitive 
to thiazide. In the collecting ducts, a minimal amount of sodium 
is reabsorbed by ENaC and this is increased by aldosterone. 
The counterbalance by the natriuretic and vasodilatory atrial 
natriuretic peptide is dominated at that point by angiotensin-II 
and aldosterone effects, attenuates endothelial-dependent renal 
vasodilation and leads to endothelial dysfunction characteristic of 
cardiac heart failure (21). Heart failure also causes a vasopressin-
dependent water reabsorption which maintains blood pressure 
in the failing heart and further increases fluid retention. The 
renin–angiotensin system, especially angiotensin-II, activates 
the immune system and vice versa. TNF and IL-6 stimulate the 
generation of angiotensinogen, exaggerate sodium retention 
and enhance renal fibrosis. Angiotensin-II enhances TNF and 
IL-6 in cardiomyocytes and in renal cortical and tubular cells, 
impairs mitochondrial function, and is pro-oxidative (21). CRP 
also directly activates endothelin and by this may potentiate a 
pulmonary vasoconstriction. The review by Azzam et al. in this 
issue further discusses the causative role of cytokines in the 
development of cardiogenic edema.

Non-Cardiogenic or Permeability 
Pulmonary edema
Non-cardiogenic pulmonary edema, also known as perme-
ability pulmonary edema, accompanies ALI, pneumonia, pul-
monary reimplantation response after lung transplantation, 
or ARDS (2, 31) (Figure  2, right panel). During the course 
of these diseases, the interstitium and the alevolus are sites 
of intense inflammation by an innate immune cell-mediated 
damage of the alveolar endothelial and alveolar epithelial bar-
rier, with consecutive exudation of protein-rich pulmonary 
edema fluid (31–33), as recently reviewed by Thompson 
et al. (31).

outcomes (27). Similar results were observed with the neutral-
izing antibody infliximab (28). Whether the negative results 
are explained by inappropriate blocking of a “physiological” 
inflammation linked with tissue-reparative processes such 
as cardiac remodeling, or whether other mechanisms like too 
advanced heart failure, infections, toxicity of treatment, or 
genetic polymorphisms are involved, remains open, and should 
be further studied (21). Recently, it was suggested that benefi-
cial or detrimental effects of TNF neutralizing agents depend 
on whether they spared or rather blunted discrete amounts of 
TNF that preconditioned cardiomyocytes to make them more 
resistant to high concentrations of the cytokine (29). The results, 
however, put forward that cytokines are effectors and not solely 
biomarkers in heart failure. Furthermore, reparative processes 
in the myocardium are accompanied by reactive or replacement 
fibrosis, mediated by TGF-β1, endothelin-1, and angiotensin-
II (21). Angiotensin-II decreases AFC via cyclic adenosine 
monophosphate (cAMP) effect on the Na+/K+-ATPase pathway. 
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FigURe 2 | Physiology of microvascular fluid exchange in the lung.
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FigURe 4 | Severe lung injury. Severe lung injury may usually lead to 
decreased edema clearance. Severe injury usually includes alveolar epithelial 
injury and, thus, increases epithelial permeability and electrolytes and is 
associated with reduced epithelial Na+ transport. Inflammatory mediators are 
involved in this response, such as proteases, tumor necrosis factor (TNF), 
TGF-β, nitric oxide (NO), and oxidants. Possibly the intensity of the 
inflammatory response may transform a mild to a severe lung injury form by 
inducing changes in function and integrity of the alveolar epithelium and 
endothelium (4).
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This type of pulmonary edema occurs due to modifications in 
barrier function of the pulmonary capillary or alveolar epithelial 
compartments as a consequence of either a direct or an indirect 
pathological process (31). There is some evidence that direct 
injury, such as pneumonia, aspiration, or pulmonary contusion, 
mainly affects epithelial barriers, whereas indirect blood-borne 
insults such as severe sepsis, non-thoracic trauma, pancreatitis, 
or burns may predominantly target the capillary endothelium 
(34). Permeability edema accompanies a spectrum of illnesses, 
ranging from the less severe form of ALI to ARDS (18). Variations 
in histology and in fluid management strategies suggest different 
ARDS subphenotypes (31). Apart from ARDS, ALI and severe 
pneumonia, also lung transplantation can be accompanied 
by acute pulmonary edema by the pulmonary reimplantation 
response (35). Ischemic vascular injury of the allograft results in 
increased permeability of the lung after reperfusion and in turn 
leads to interstitial and alveolar edema (33).

The extent of alveolar edema depends on the competing effects 
of increased permeability and the active edema fluid clearance 
from the alveolar space in regions where the epithelium is undam-
aged (31, 36). Inflammation plays a key role in the pathogenesis 
of permeability edema (37, 38) and can lead to the orchestration 
of a great variety of inflammatory and non-inflammatory cells, 
the former of which can locally release pro-inflammatory media-
tors such as TNF, LTD4 (32). There may also be endothelial and 
alveolar epithelial cell (AECs) death, which can further contribute 
to organ dysfunction and leak (39, 40). Moreover, a cascade of 
inflammation and a downregulation of repair mechanisms may 
occur (Figures 3, 4).

Cells of the innate immune system, such as activated alveolar 
macrophages and recruited polymorphonuclear granulocytes 
(PMN) and also cells from the adaptive immune system, such 
as TH17 cells can interact in ALI and ARDS and release huge 
amounts of mediators (31). Thrombo-coagulative processes 
ensue, e.g., TNF-mediated by tissue factor, with a proaggregatory 
role for platelets. Preventive aspirin was recently shown to protect 
from ARDS (41). Regional tissue overdistension especially during 
ventilation and repetitive opening and closing of inflamed alveo-
lar spaces amplify the regional inflammation, further denaturing 
surfactant, underlining the vital importance of protective ventila-
tion strategies and positions.

Although pulmonary edema is one of the most frequent medi-
cal emergencies, clinically it is sometimes difficult to differentiate 
between its two main subtypes: cardiogenic and non-cardiogenic 
edema (2). Moreover, to date, no proven drug therapy is available 
for permeability edema associated with ALI and ARDS (2, 31, 38). 
Morbidity and mortality inversely correlate with AFC capacity 
in this setting (42, 43). The severity of shock in sepsis-induced 
ARDS is associated with lower AFC (44).

As mentioned above, 56% of patients with permeability 
pulmonary had an impaired AFC, and only 13% a maximal 
AFC rate (Figure 1). Survival of patients with maximal alveolar 
clearance rate was higher, as compared to patients with abnormal 
clearance rate, and the days on mechanical ventilation was less 
in this group. Clinically impressive is also a series of post-lung 
transplant patients showing a relation between total ischemic 
time and the degree of post-transplantation protein-rich and 

FigURe 3 | Mild-to-moderate lung injury. Mild-to-moderate lung injury 
may lead to enhanced edema clearance. This response is due to an 
activation of epithelial Na+ transport probably based on the increased 
endogenous catecholamine production associated with the insult. 
However, in certain types of injury, other pathways may be involved. Other 
inflammatory mediators such as tumor necrosis factor (TNF) potentially 
participate (4).
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highly neutrophil-rich (71–99% of cells) permeability edema. 
Those patients with the best AFC had the best clinical out-
comes, including the least and the fastest resolving pulmonary 
reimplantation response (45). Thus, the ability to reabsorb fluid 
from the alveolar space was a marker of less severe reperfusion 
injury. These findings indicate that intact alveolar epithelial fluid 
transport is critically important for a timely recovery from post-
transplantation reperfusion pulmonary edema.

PULMONARY FLUiD bALANCe THROUgH 
bARRieRS

Airways normally have a critically regulated fluid layer essential 
for normal gas exchange and removal of foreign particulates 
from the airway. Maintaining this fluid layer in the alveoli also 
depends critically on sodium reabsorption. The pulmonary 
epithelium serves as a barrier to prevent access of the inspired 
luminal contents to the subepithelium (11) and modulates the 
initial responses of the airways and lung to both infectious and 
non-infectious stimuli (11). One mechanism by which the epi-
thelium achieves this is by coordinating transport of diffusible 
molecules across the epithelial barrier, both through and between 
cells (11). Specific elements of pulmonary alveoli play different 
roles as a barrier maintaining the pulmonary fluid balance (38). 
These barriers will be discussed in more detail below.

epithelial barrier
Lung epithelium is a mucosal surface composed of ciliated cells, 
mucus-producing cells, and undifferentiated basal and progeni-
tor cells. This dynamic barrier forms the interface between the 
lumen and the parenchyma from the upper airways to the 
alveoli. The lung epithelium constantly responds to luminal 
stimuli and coordinates its response to maintain homeostasis 
in the lung (11). A breakdown in this coordinated response 
can cause different lung diseases (11). The alveolar epithelium 
(0.1–0.2  µm) covers 99% of the airspace surface area in the 
lung (46) and contains a number of important cell types. Type 
I cells (AT1) cover at least 95% of the alveolar surface and are 
the apposition between the alveolar epithelium and the vascular 
endothelium. This provides a tight barrier that facilitates effi-
cient gas exchange and which is involved in fluid and protein 
movement from the interstitial and vascular sites (38, 47) and its 
reabsorption vice versa (4, 5). The role of aquaporin 5 (AQ-5) in 
AFC is not clear, in view of the normal AFC capacity in physi-
ological situations in AQ-5 knock out mice (48). The osmotic 
clearance of water secondary to the ion transport gradient 
across the alveolar epithelium probably occurs by paracellular 
pathways and not by the assumed transcellular using aquaporin 
5 (25); however, their role in injury is not fully excluded (4). 
Type II cells (AT2) cover about 5% of the alveolar surface and 
are known especially for their key function in surfactant secre-
tion and in vectorial transport of Na+ (49), a major driving force 
for fluid removal from the alveolar space. Amiloride-sensitive 
sodium channels on the apical, “air-faced,” surface, mainly the 
ENaC, are key channels in alveolar fluid transport (50, 51), 
with the driving force stemming from the Na+/K−-ATPase on 

the basolateral, “blood-faced,” surface (46). Dysfunction of 
these Na+ transporters during inflammation can contribute to 
pulmonary edema (52–54). Tight junctions (TJ) that connect 
adjacent epithelial cells near their apical surfaces and maintain 
apical and basolateral cell polarity are fundamental to create 
a permeability barrier required to preserve distinct compart-
ments in the lung (55).

Alveolar and distal airway epithelia are surprisingly resistant 
to injury, particularly if compared to the adjacent lung endothe-
lium. When lung endothelium gets injured, the alveolar epithelial 
barrier may retain its normal impermeability and its normal 
fluid transport capacity, as seen in animal models with LPS given 
intravenously or intratracheally (4). This might explain why in 
mild-to-moderate lung injury AFC may not only be preserved, 
but even upregulated by stress hormones—an effect that may be 
inhibited by amiloride or propranolol.

However, in severe ALI, ARDS, and pneumonia, epithelial cell 
death may occur, as has been shown in a seminal morphological 
study published 4 decades ago by Bachofen and Weibel (56). A 
central role for soluble Fas ligand (FasL) has been proposed in 
AT1 and AT2 cell death, and an association between its levels in 
bronchoalveolar lavage level on day 1 of ARDS and patient death 
has been proposed (57, 58). However, there may be extensive 
crosstalk between injurious, inflammatory, and death cascades 
and repair in the lungs, as well as in other organs in patients with 
ARDS. Direct alveolar cell death may probably also occur due to 
bacterial exotoxins or stresses like overdistension. Such epithelial 
cell death may make the lungs prone to increased permeability 
and thus disturb AFC, as well as to the danger of disordered 
repair, such as in fibroproliferative ARDS.

Recent work on different predictors of ARDS suggests that 
the degree of AT1 cell injury is a central determinant of out-
come in ALI and ARDS. Receptor for advanced glycation end 
products (RAGE) is an immunoglobulin superfamily member, 
involved in propagating inflammation. RAGE is abundant in 
the lungs and can be primarily found in AT1 cells. Higher 
baseline plasma levels of RAGE were found to be associated 
with worse outcome, including less ventilator-free days and 
increased mortality, and it excellently discriminated in sepsis 
patients for the diagnosis of ARDS. Higher levels in bronchoal-
veolar lavage also predicted post-lung-transplant primary graft 
failure and correlated with its grade of severity (59). Apart from 
RAGE, also surfactant protein D level, an AT2 cell product, 
was, together with the neutrophil chemokine IL-8 (CXCL8), 
the best performing biomarker for poorer outcome in terms of 
mortality (60).

endothelial barrier
The capillary endothelial barrier also functions as a key com-
ponent to maintain the integrity of the vascular boundaries in 
the lung. The gas exchange surface area of the alveolar–capil-
lary membrane is extremely huge and optimized to facilitate 
perfusion–ventilation matching (61). Pulmonary endothelium 
separates also the intravascular marginated pool of polymor-
phonuclear neutrophils from the airspaces. The endothelium, 
the most abundant cell relative to the total cell population in the 
lung, has additional key regulatory roles apart from gas exchange, 
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FigURe 5 | Myosin light chain kinase (MLCK)-dependent and MLCK-independent pathways involved in endothelial cell (EC) barrier dysfunction (66). Adapted from 
Ware and Matthay (2).
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pulmonary air spaces. This can contribute to important morbidity 
and mortality (66). TNF can reduce capillary endothelial barrier 
function (67, 68).

RegULATiON OF AFC

In the normal lung, fluid and protein leakage is thought to occur 
primarily through small gaps between capillary ECs (2, 3). Since 
both capillary endothelial and AECs have TJ, fluid, and macro-
molecules that are filtered from the circulation into the alveolar 
interstitial space normally do not enter the alveoli (2).

The hydrophobic plasma membranes composed of phospho-
lipids, act as a huge energy barrier for transporting ions (69–71). 
Yet, physiological processes assure for the continuous in- and 
outflow of ions, as such overcoming the plasma membrane 
barrier, which is impermeable to ions. Due to their biological 
complexity, interactions between cytokines and ion channels 
may be under-recognized (72). A group of plasma membrane 
proteins, including active transporters, generate and maintain 
ion concentration gradients for particular ions. These active 
transporters carry out this task by forming complexes with 
the ions they are translocating. The process of ion binding and 
unbinding for transport typically requires several milliseconds. 
As a result, ion translocation by active transporters is much 
slower than ion movement through ion channels, which can 
conduct thousands of ions across a membrane each millisecond. 
Active transporters effectively store energy in the form of ion 
concentration gradients, whereas the opening of ion channels 

namely vascular tone via nitric oxide (NO) and endothelin-1, and 
coagulation, as recently discussed in depth in a review on the 
endothelium and ARDS (34).

In the pulmonary microvasculature, the endothelial cells 
(ECs) form a semi-permeable barrier between the blood and 
the lung interstitium (38). Disruption of this barrier may occur 
during inflammatory disease such as pneumonia, ALI, ARDS, 
or ischemia–reperfusion injury. In sepsis, early microcirculatory 
perfusion indices are more markedly impaired in non-survivors, 
as compared to survivors and correlate with increasing severity 
of vascular dysfunction (62). Lung ECs are considered orches-
trators of the inflammatory response. These cells can directly 
sense pathogens via toll-like receptors and may contain local 
bacterial spreading by coagulation, leading to capillary throm-
bosis and extravascular fibrin deposition (34). This contributes 
to an increased dead-space fraction that correlates with clinical 
outcome (63). In sepsis, overwhelming EC activation can lead to 
apoptosis within minutes to hours (64), which in turn increases 
barrier permeability and subsequent mortality (65). In ARDS, EC 
death can occur in by mechanical insults, like shear stress, and 
by pro-inflammatory mediators, including TNF, angiostatin, and 
TGF-β (39).

Intercellular junctions act as dynamic structures and do not 
statically resist entry to all substances. They that can open or close 
in response to physiological or pathological stimuli. Figure  5 
presents some potential pathways regulating EC barrier function 
(66). Endothelial barrier dysfunction can result in the movement 
of both fluid and macromolecules into the interstitium and 
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FigURe 6 | Role of hypoxia in the pulmonary circulation and alveolar space.
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context, the movement of larger plasma proteins is restricted (2). 
The hydrostatic force for fluid filtration across the lung microcir-
culation is approximately equal to the hydrostatic pressure in the 
pulmonary capillaries, which is partly compensated by a protein 
osmotic pressure gradient (2). The net quantity of accumulated 
pulmonary edema is logically determined by the balance between 
the rate at which fluid is filtered into the lung (1) and the rate at 
which fluid is removed from the air spaces and lung interstitium 
(46). In mild-to-moderate lung injury, the capacity of the alveolar 
epithelium to transport salt and water is not only preserved but 
may also even be upregulated by stress hormones (Figure  3) 
(4). In severe lung injury, pulmonary fluid clearance can also be 
stimulated in lung injury by catecholamine-independent mecha-
nisms (Figure 4) (4).

Moderate hypoxemia was shown to reduce AFC by 50%. 
This is caused by decreasing apical sodium uptake, at least 
partially through impaired trafficking of ENaC to the surface 
membrane (75–77). Hypoxia, moreover, inhibits the function 
of Na+/K+-ATPase in AECs, in part by triggering endocytosis 
through reactive oxygen species (ROS) and phosphorylation of 
the α1 subunit (78) (Figure 6). Restoration of normoxia rapidly 
reversed the depressant effects of hypoxemia in rats. Therefore, 
the simple administration of supplemental oxygen to patients 
with pulmonary edema may enhance the resolution of alveolar 
edema. As discussed more in detail in a contribution by Vadasz 
and Sznajder in this topic issue, hypercapnia can also impair 
AFC by the mechanisms of ubiquitination-mediated retrieval of 
ENaC from the plasma membrane, i.e., a post-translational modi-
fication of βENaC by regulating trafficking and stability, thereby 
modifying, and in this case reducing cell surface expression of 
the channel through βENaC ubiquitinylation in the alveolar 
epithelium (78–80). This mechanism seems of importance in 
ARDS as well in COPD. Hypercapnia and the associated acidosis 
have been shown to have anti-inflammatory effects, which 
might be advantages at sites of excessive inflammation, whereas 

rapidly dissipates this stored energy during relatively brief 
electrical signaling events.

Several types of active transporters have now been identified. 
Although the specific roles of these transporters differ, all must 
translocate ions against their electrochemical gradients (ener-
getically “uphill”). Moving ions uphill requires the use of energy, 
and neuronal transporters fall into two classes based on their 
energy sources. Some transporters acquire energy directly from 
the hydrolysis of ATP and are called ATPase pumps. The most 
prominent example of an ATPase pump is the Na+/K+-ATPase 
pump, which is responsible for maintaining transmembrane 
(TM) concentration gradients for both Na+ and K+ (73). Another 
one is the Ca2+ pump, which provides one of the main mecha-
nisms for removing Ca2+ from cells. The second class of active 
transporters does not use ATP directly as an energy source, but 
rather the electrochemical gradients of other ions. This type 
of transporter carries one or more ions up its electrochemical 
gradient, while simultaneously taking another ion, most often 
Na+, down its gradient. These transporters are usually called 
ion exchangers. An example of such a transporter is the Na+/
Ca2+ exchanger, which shares with the Ca2+ pump the important 
task of keeping intracellular Ca2+ concentrations low. Other 
exchangers regulate both intracellular Cl− concentration and pH 
by swapping intracellular Cl− for another extracellular anion, 
bicarbonate, or the Na+/H+ exchanger that regulates intracel-
lular pH, by regulating the concentration of H+. Although the 
electrochemical gradient of Na+ (or other counter ions) is the 
immediate source of energy for ion exchangers, these gradients 
ultimately depend on the hydrolysis of ATP by ATPase pumps, 
such as the Na+/K+ ATPase pump (74).

Alveolar fluid clearance is mainly regulated by Na+ uptake 
through the apically expressed ENaC and the basolaterally local-
ized Na+/K+-ATPase in type II AECs (Figure  2, lower panel) 
(54). Dysfunction of these Na+ transporters during pulmonary 
inflammation can contribute to pulmonary edema (54). In this 
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on the other hand, ARDS and COPD studies showed that both 
patient groups had worse outcome when they were hypercapnic 
(78). In a randomized controlled trial Köhnlein, Windisch et al. 
showed that in severely sick, chronic hypercapnic COPD patients 
non-invasive ventilation, when targeted to reach noromocapnia 
(PaCO2 < 6.5 kPa/48.1 mmHg) or to improve hypercapnia by at 
least 20%, is associated with much better outcome (81). Survival 
was impressively improved, and also quality of life and lung 
function in terms of FEV1 improved. Possibly further effects exist 
such as sometimes improved cardiac output (82, 83), although 
interactions  between ventilation and cardiac output are complex.

ion Channels and Pumps/Transporters 
and AFC
Ion channels are integral membrane proteins that form a pore 
to allow the passage of specific ions by passive diffusion (84). 
Most ion channels undergo conformational changes from 
closed to open states. Once open, ion channels allow the pas-
sage of thousands of ions (84). This distinguishes them from 
transporters and pumps, which can also transport ions, but 
only a few at a time (84). The opening and closing of chan-
nels can be controlled by various means, including voltage, the 
binding of ligands such as intracellular Ca2+ or extracellular 
neurotransmitters, and post-translational modifications such 
as phosphorylation (84).

Ion channels and pumps also play multiple important roles in 
cell homeostasis (84). Their function promotes passive, agonist-
induced, or voltage-dependent flux of specific ions in and out of 
the cell (84, 85). The mchanisms of removing the infiltrated fluid 
from the alveoli is called AFC (84).

The ENaC in Type I and II Alveolar Epithelial Cells
Epithelial sodium channel, a member of the ENaC/degenerin 
(ENaC/DEG) family of ion channels, constitutes the rate-
limiting entry step in Na+ reabsorption across epithelial in colon, 
kidney, and lungs (86). ENaC is inhibited by the drugs amiloride, 
benzamil, and triamterene, some of which are clinically used as 
potassium-sparing diuretics (87, 88). ENaC is a heteromultim-
eric protein (89) and is composed of at least four homologous 
subunits, α, β, γ, and δ (89–91) which are able to compose an 
ion channel (50, 92). A functional, pore-forming channel usually 
comprises one or two α subunits, together with a β - and a γ 
-subunit (89, 91, 93, 94). δ as a fourth unique subunit can form 
ion channels joining the β and γ subunits but exhibits biophysi-
cal and pharmacological features that are different compared to 
α ENaC channels (95). Investigations of the biological role of 
αENaC in the mouse lungs underlined the crucial role of this 
subunit in AFC (12). The β subunit is highly glycosylated and an 
important regulator of ENaC (4). In the lungs, ENaC is expressed 
not only in alveolar type II and type I cells (96), but also in capil-
lary ECs (97).

Epithelial sodium channel was shown to exert a crucial role 
in pulmonary fluid reabsorption (46). Accordingly, ENaC is 
responsible for the maintenance of Na+ balance, extracellular 
fluid volume and blood pressure (98). ENaC activity is deter-
mined by the number of channels in the surface membrane N, 

which can change according to membrane insertion, degrada-
tion, or retrieval, as well as by the open probability time Po of 
individual channels (86, 99, 100). The basolaterally expressed, 
ouabain-inhibitable Na+/K+-ATPase then further drives the 
vectorial transport into the interstitium and, finally, into the 
lymphatic and blood vessels (73).

In order to maintain the correct composition and volume of 
alveolar lining fluid, Na+ transport through apically located ENaC 
in the alveolar epithelium is critical for gas exchange (92).

Epithelial sodium channel expression was shown to be 
decreased in transplanted lungs, both at the messenger RNA and 
protein level (8, 101).

Physiological ENaC Regulation
Epithelial sodium channel activity is important for fluid homeo-
stasis and blood pressure control, but its regulation is complex 
and remains in many aspects incompletely understood (102) 
(Table 1). ENaC channels are also called highly selective cation 
(HSC) channels, and are presumed to be made up by the three 
ENaC subunits, α, β, and γ (103).

Epithelial sodium channel function can be affected by direct 
modulation of channel activity (92), subunit degradation, and 
membrane trafficking/recycling (104). cAMP indirectly increases 
ENaC activity, since it activates Cl− uptake through CFTR (105). 
Intracellular as well as extracellular proteases, including prostasin 
and furin can affect the activity of the channel by modulating 
the Na+ self-inhibition (106, 107). Another important system 
that modulates ENaC activity is trafficking of the channels to 
the membrane, which involves a complex system of ubiquitina-
tion and binding to Nedd-4-2 (108). Na+ transport can also 
be regulated by gene expression (4). The two major hormonal 
modulators of pulmonary ENaC expression are catecholamines 
(50) and corticosteroids (109).

Many agents that increase Na+/K+-ATPase activity also 
increase ENaC activity (36). Negative ENaC regulators are acti-
vated purinergic P2Y receptors (110), NO (111, 112), Il-1β (113), 
hypoxia (46), and TGF-β (46).

ENaC Dysfunction
Dysfunction of the ENaC, which regulates salt and water homeo-
stasis in epithelial, causes several human pathological conditions, 
including pulmonary edema (114). As ENaC regulates the airway 
surface liquid layer, its exaggerated activity might lead to airway 
dehydration, mucus stasis and bacterial overgrowth, as can be 
seen in cystic fibrosis and chronic bronchitis (115–117). ENaC 
hypo-activity, by contrast, can dramatically impair AFC, which 
is particularly important in conditions of pulmonary edema and 
correlates with mortality and morbidity in patients with ALI and 
ARDS (33).

The significant role of ENaC in inherited diseases associated 
with mutations in ENaC which increase or decrease channel 
activity regarding salt and water homeostasis has been well-
documented (118). Mutations in the PPxY motif of β- and 
γ-subunits cause a severe form of hypertension, associated with 
ENaC in Liddle’s syndrome (OMIM: 177200) (119–123). A 
decrease in ENaC function can also cause a rare, life-threatening 
salt-wasting syndrome in pseudohypoaldosteronism type 1B 
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(PHA1B) (OMIM: 264350) (124–127). This disease does not 
improve with age and patients are at risk from life-threatening, 
salt-losing crises, combined with severe hyperkalemia and dehy-
dration throughout their entire lives (128, 129). Additionally, 
dysregulation of channel function and/or expression can lead to 
organ dysfunction and severe disease (84, 85, 130).

The Hybrid Acid-Sensing Ion Channel 1a  
(ASIC1a)/α-ENaC (NSC) Channels in Alveolar  
Type I and Type II Cells
Apart from ENaC, another apically expressed channel was 
recently shown to promote AFC. This hybrid channel is relatively 
non-selective for Na+ over K+, has a larger conductance, and 
shorter mean open and closed times (103, 131). In elegant assays, 
Trac et al. showed that the channel included ASIC1a as the man-
datory counterpart to α-ENaC. These hybrid channels are, thus, 
composed of, at a minimum, one α-ENaC subunit and one or 
more ASIC1a subunits. The biological significance is great, as the 
regulation of these NSC channels is dramatically different from 
ENaC. Thus, treatments to reduce alveolar flooding based on the 
known properties of ENaC (HSC) could be suboptimal because 
ASIC1a/α-ENaC-channels are regulated differently (see Table 3). 
Indeed, NSC channels are less sensitive to inhibition by amiloride 
than ENaC HSC channels.

As the proton-gated ASIC1a plays a role in the formation 
of channels, its properties determine the pharmacological 
ASIC1a/α-ENaC-channels (NSC) modulation. The MitTx ago-
nist, derived from Texas coral snake toxin, strongly activates 
ASIC1a/α-ENaC-channels (NSC) (Table 3).

Why Do Alveolar Epithelial Cells in the Lungs Have 
Several Types of Channels That Mediate Na+ 
Uptake?
As shown, an important functional role of non-selective 
cation (NSC) channels, which consist of ASIC1a and of ENaC-α 
subunits (281), is Na+ uptake by AT2 cells in the lung (103). By 
contrast, other sodium-transporting epithelial tissues such as 
the distal nephron of the kidney and the colon were not reported 
to have these functional NSC channels, and mainly transport 
Na+ through ENaC. In the lungs, the alveolar fluid layer must 
be very tightly controlled. Therefore, it may be important to 
have alternative ion transport pathways that respond differ-
ently to physiological stimuli, such as to acidification, which 
accompanies ALI and which activates NSC channels (282). An 
alternative hypothesis is that NSC channels provide a stable 
driving force for cation and anion movement across the alveo-
lar epithelium. Indeed, NSC channels contribute to the apical 
membrane potential, causing the membrane potential to be 
close to zero. This will ensure that there is a driving force for 
the unidirectional movement of anions, through CFTR and for 
movement of Na+ through classical ENaC and NSC into cells. 
This is necessary because of the requirement to move salt, i.e., 
anions plus cations. Other epithelia tend to have counter-ion 
pathways for cations that obviate the need to maintain a strong 
potential driving force.

In an evolutionary context, the lung has been the most recent 
organ to adapt to a terrestrial environment. Typical for evolutionary 

processes is the modification of existing mechanisms to produce 
a different evolutionary outcome, in this case, the formation of a 
new channel type out of parts from two pre-existing channels of 
the same channel family. Of further evolutionary interest is that 
the activity of both HSC channels HSC (ENaC) and NSC chan-
nels is increased by a peptide mimicking the lectin-like region 
of TNF, which binds to ENaC-α, as shown below and in Czikora 
et al. (9), in this issue (9).

The Na+/K+-ATPase
Apart from apical ENaC and, potentially NSC, the basolaterally 
expressed Na+/K+-ATPase, a.k.a. the sodium-potassium pump 
is also a crucial driver of AFC (73, 78). Na+/K+-ATPase activity 
regulation also involves complex patterns, including modula-
tion of the trafficking of the protein to the membrane (73). The  
Na+/K+-ATPase is a ubiquitous enzyme consisting of α and β 
subunits and a less well-characterized regulatory FXYD subunit. 
The Na+/K+-ATPase is responsible for the generation and preser-
vation of the Na+ and K+ gradients across the cell membrane by 
transporting 3 Na+ out and 2 K+ into the cell (283).

Changes in intracellular Na+ concentration and hormones, such 
as mineralocorticoids, glucocorticoids and thyroid hormones 
as well as adrenoceptor stimulants modulate Na+/K+-ATPase 
activity (284). Like ENaC, increase of Na+/K+-ATPase expression 
is considered central to enhance transepithelial Na+ transport 
(4). In addition, thyroid, mineralocorticoid and glucocorticoid 
hormones modulate Na+/K+-ATPase expression (4). Likewise, β 
adrenoceptor activation upregulates Na+/K+-ATPase expression 
in AECs (50).

The Na+/K+-ATPase contains one principal catalytic subunit, 
designated α and one sugar-rich auxiliary subunit, designated 
β. There is also a regulatory subunit FXYD subunit, which was 
recently shown to play an important role in regulation of lung 
inflammation (285). The α-subunit carries the catalytic function 
of the enzyme, and this is reflected in its possession of several 
binding and functional domains (283). The α subunit (4) trans-
ports Na+ out of the cell, providing the driving force for Na+ 
reabsorption (286). It is clear that an essential role for β subunit 
lies in the delivery and the appropriate insertion of the α subunit 
in the membrane (287). In recent years, a variety of studies have 
suggested that the β subunit may be more intimately involved in 
the mechanism of active transport (287–290).

FXYD5 or Dysadherin or RIC is a pro-inflammatory type 
I membrane protein, which belongs to seven members of the 
FXYD family named by their shared TM amino acid motif. 
FXYD5 is an established tissue-specific modulatory subunit of 
Na+/K+-ATPase, expressed in a variety of epithelial cells. Recent 
work shows a role for FXYD5 as a key mediator of the inflamma-
tory response during ALI (285). It impairs adherens junctions 
by downregulating the markers zona occludins-1 (ZO-1) and 
occludin and redistributing beta catenin (291). It is required for 
the secretion of NF-κB, e.g., upon lipopolysaccharide (LPS), and 
inflammatory mediators, including TNF and interferon-α (IFN-
α) and C-C chemokine ligand-2 (CCL2) from AECs that activate 
alveolar macrophages, amplify lung injury by orchestrating an 
overly exuberant inflammatory response, and recruit monocytes 
into the alveolar compartment, or in bronchoalveolar lavage 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


16

Hamacher et al. Cytokine–Ion Channel Interactions in Pulmonary Inflammation

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1644

fluid (285). The presence of FXYD5 is an important component 
for NF-κB activation pathway as shown in AECs induced by 
LPS, TNF, or interferon-α, as its silencing prevented IκB-α 
phosphorylation and reduced cytokine secretion in response 
to these stimuli. Probably FXYD5 increases CCL2 transcrip-
tion by inducing Akt-dependent activation of NF-κB signaling. 
Binding of IFN-α activated phosphoinositide 3-kinase (PI3K) via 
STAT5, which in turn activates NF-κB. Activation of PI3K seems 
downstream of TLR4 and TNFR1. Possibly, FXYD5 modulates 
NF-κB signaling by regulating the location of TNF receptor 1, by 
modulation associations with other proteins and their location 
and mobility in the membrane (285). It is of interest that FXYD5 
regulates inflammation, activates NF-κB dependent cytokine 
secretion and infiltration of immune cells to the alveolar spaces 
as well as alveolar barrier tightness, and is closely linked to one 
key ion transport channel.

The Cystic Fibrosis Transmembrane 
Conductance Regulator
Cystic fibrosis transmembrane conductance regulator is a cAMP-
regulated and post-translationally modified chloride channel of 
1,480 amino acids, which is mainly expressed in epithelial cells. 
The non-glycosylated form of CFTR has a molecular weight of 
127 kDa, with 160 kDa for the glycosylated form. CFTR can either 
take up or release Cl− ions from the AT1 and AT2 cells. Apical 
to basolateral chloride transport may be important because the 
maximal rate of sodium and water transport from the airspaces 
appears to be limited by the concomitant chloride transport 
(115–117). An important part of transepithelial chloride transport 
occurs through the paracellular route in the alveolar epithelium. 
The selectivity and magnitude of paracellular ion conductance 
may influence net transport capacity. Upon increasing Cl− influx, 
CFTR will activate ENaC-mediated Na+ uptake, as such activating 
AFC, but the channel will inhibit AFC upon increasing Cl− efflux. 
Increased cAMP generation will open CFTR in the apical mem-
brane of AT1 and AT2 cells for Cl− uptake, as such increasing 
Na+ uptake and AFC. Therefore, factors that can activate cAMP-
mediated Cl− uptake by CFTR, such as β2 agonists, have been 
investigated as potential therapeutic candidates for pulmonary 
edema (105). Cystic fibrosis, a disease characterized by impaired 
airway dehydration, is caused by a loss of function of CFTR, 
accompanied by an excessive activity of ENaC. A peptide mimetic 
of SPLUNC, i.e., SPX-101, was shown to promote internalization 
of the three ENaC subunits and to restore mucus transport in a 
mouse and a sheep model of CF (292).

The Transient Receptor Potential vanilloid 
4 (TRPv4) Channel
Transient receptor potential vanilloid 4 is a TM cation channel 
and a vanilloid-type member of the transient receptor poten-
tial (TRP) protein superfamily (293). TRPV4 is ubiquitously 
expressed in many cell types in the respiratory system (294). It 
is part of an integrated system, consisting of ion channels and 
membrane pumps, which tightly regulates intracellular calcium 
levels in a spatiotemporal manner (295). TRPV4 counts 871 
amino acids and contains six TM domains, an ion pore located 

between TM5 and 6, an NH2 terminal intracellular sequence 
with several ankyrin-type repeats, and a COOH-terminal 
intracellular tail (296, 297). Both the NH2 and COOH termini 
interact with signal kinases, other molecules (e.g., NO), and 
scaffolding proteins (298). The intracellular tails contain several 
activity-modifying phosphorylation sites (294). In the setting of 
pulmonary inflammation, TRPV4 has been found to be highly 
expressed and upregulated in airway smooth muscle, vascular 
ECs, AECs, as well as in immune cells, such as macrophages and 
neutrophils (298–303).

The Role of TRPV4 in Pulmonary Edema
Transient receptor potential vanilloid 4 mediates cellular 
responses to both physical (such as osmotic, mechanical, and 
heat) as well as chemical stimuli (304). It is also involved in lung 
diseases associated with parenchymal stretch and inflammation 
or infection (254, 294). Target diseases include cough, asthma, 
cancer, and pulmonary edema associated with ARDS (253, 294, 
305–310).

These studies support a role for TRPV4 in a broad spectrum 
of lung and airway functions and disease processes. TRPV4 also 
has been implicated as a key regulator of lung endothelial barrier 
integrity, specifically, the integrity of the lung alveolar–capillary 
endothelium, which is most relevant to alveolar edema generation 
in ALI (311). TRPV4 activation increases vascular permeability, 
thus promoting protein and fluid leak (254).

Several studies have shown that TRPV4 can regulate 
generation of inflammatory cytokines that play key roles in 
orchestrating lung tissue homeostasis and inflammatory lung 
disease (301, 307, 309, 310, 312–314). Therefore, TRPV4 could 
be considered a potential target for lung disease pathogenesis, 
including to alveolar–capillary barrier function (300). TRPV4 
has been proposed as a candidate target for the management 
of ALI that develops as a consequence of aspiration of gastric 
contents, or acute chlorine gas exposure (254). Protection from 
the ALI response to intratracheal HCl and a key role in vivo of 
polymorphonuclear neutrophil TRPV4 (294) was noted in mice 
that lack TRPV4 (TRPV4 KO), or in mice that were treated with 
three different small molecule inhibitors of TRPV4 (253, 301, 
307, 309, 312, 313, 315).

However, in view of its ubiquitous expression, and the mul-
titude of functions attributed to the channel, including its role 
in pulmonary vasomotor control, endothelial barrier tightness, 
inflammatory response and systemic blood pressure regula-
tion, TRPV4 blockade may represent a double-edged sword. 
Therapeutic benefits of TRPV4 inhibition have, therefore, to be 
carefully weighed against potential adverse effects (254).

Transient receptor potential vanilloid 4 activation and its 
downstream signaling pathways differ in response to varying 
stimuli, cell types, and contexts (294). For instance in asthma, 
TRPV4 mediates hypotonicity-induced airway hyperresponsive-
ness, but not release of Th2 cytokines (312, 316). In CF, TRPV4 
appears to play paradoxical roles in CBF/mucociliary clearance 
and epithelial cell pro-inflammatory chemokine (IL-8/KC) secre-
tion (317, 318). Depending on the underlying etiology, TRPV4 
may play different roles in ARDS (307, 310, 314, 319). Also, 
in pulmonary fibrosis, TRPV4 has been shown to mediate the 
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mechano-sensing that drives myofibroblast differentiation and 
experimental lung fibrosis in mice (308).

TRPV4 and Macrophage Function in Lung Injury
Alveolar macrophages are known to be effector cells in bacterial 
and particle clearance but also in any injury and repair process 
(320). Since intracellular Ca2+ is known to be required for the 
phagocytic process, and because TRPV4 plays a role in force-
dependent cytoskeletal changes in other systems/cell types, the 
role of TRPV4 in macrophage phagocytosis was extensively 
studied by Scheraga and colleagues (213, 253, 307, 315, 321–323). 
The process of phagocytosis in macrophages requires integra-
tion of signals from macrophage surface receptors, pathogens, 
and the extracellular matrix (324–326). However, the effects of 
matrix stiffness on the macrophage phenotypic response or its 
signal transduction pathways have yet to be fully elucidated (294). 
TRPV4 mediates LPS-stimulated macrophage phagocytosis of 
both opsonized particles [immunoglobulin G (IgG)-coated latex 
beads] and non-opsonized particles (Escherichia coli) in  vitro 
(294). Inhibition of TRPV4 by siRNA or pharmacologic inhibi-
tors completely abrogated both the LPS effect and the matrix 
stiffness effect on phagocytosis (294). These data indicate that 
both the LPS and stiffness effect on macrophage phagocytosis are 
TRPV4 dependent (310). Concordant with their in vitro data, also 
LPS-induced alveolar macrophage phagocytosis was proposed to 
be TRPV4 dependent (294).

Collectively, obtained data demonstrate that TRPV4 responds 
to extracellular matrix stiffness, thereby altering the LPS signal 
to mediate macrophage phagocytosis and cytokine production 
(310). Furthermore, TRPV4 regulates a feed-forward mechanism 
of phagocytosis in activated lung tissue macrophages when they 
interact with stiffened infection/injury-associated lung matrix. 
This concept is further supported by the observation that sur-
factant protein B-deficient mice have altered alveolar macrophage 
shape and function in association with increased alveolar surface 
tension (327).

Other ion Channels
Recent research has given much more detail to a number of fur-
ther ion channels and their interactions, such as Cl− regulators in 
the paracellular TJ area including claudin-4 and -18 implicated in 
epithelial ion and fluid transport and ARDS regulation in specific 
infectious, inflammatory, or other stimulatory situations. The 
reader is referred to further reviews as that of Brune et al (11). 
and Weidenfeld and Kübler (5). The transient receptor potential 
channel 6 (TRPC6), a Ca2+-permeable non-selective cation 
channel, widely expressed in the lungs, was proposed to be a 
key regulator of acute hypoxic pulmonary vasoconstriction and 
was demonstrated to be implicated in pulmonary hypertension. 
TRPC6 is also involved in pulmonary vascular permeability and 
lung edema formation during LPS- or ischemia/reperfusion-
induced ALI as discussed in this topic issue (328).

CYTOKiNe-iON CHANNeL iNTeRACTiON

Cytokines, which are organized in a cytokine network, play a 
major role in maintaining lymphocyte and leukocyte homeostasis 

under both steady-state and inflammatory conditions (329). 
Regulatory cytokines have to function in combination with other 
environmental signals to properly modulate the function and the 
extent of lymphocyte and leukocyte activation (329). Increased 
generation of pro-inflammatory cytokines represents a first-line 
defense mechanism against bacterial infections of the lung (102). 
Dysregulation of cytokine generation leads to alterations in cell–
cell interactions (330). Cytokines, such as TNF, IL-1, IL-6 activate 
host defense by promoting the production of a wide spectrum of 
other cytokines and chemokines, including GM-CSF, G-CSF and 
IL-8 in inflammatory processes (331, 332). They moreover medi-
ate the increase of surface adhesion molecule expression through 
activation of leukocytes and ECs (38). As such, cytokines can 
contribute to the pathogenesis and development of pulmonary 
edema (37, 99, 333–338). During the acute phases of ARDS, 
higher levels of TNF were detected in the BALF from patients 
with early-stage ARDS (39).

The Dichotomous Yin and Yang effects  
of TNF in Pulmonary edema
Tumor necrosis factor is a homotrimeric 51 kDa protein, bind-
ing to two types of membrane receptors: TNF receptor 1, which 
signals either apoptosis, necroptosis or inflammation; and 
TNF receptor 2, which is mainly implicated in inflammation 
and which is devoid of a death domain (239, 339, 340). TNF 
is one of the central cytokines in inflammation and moreover 
modulates ion channel activity (341–344). An intriguing fea-
ture of the ligands of the TNF and TNFR family is that when 
certain members are shed, they inhibit the function of the 
ligand-receptor complex and act as inhibitors (345). A central 
regulatory process may, therefore, be the proteolytic release of 
soluble bioactive oligomers from membrane-bound forms, e.g., 
for TNF by the protease TACE. The existence of TM forms of 
most of the TNF-superfamily ligands indicates that they are 
meant to act locally. Only under non-physiological conditions, 
when these ligands are released, they may prove to be harmful 
(345) or beneficial, as is the case of immune defense to bacterial 
infection (346). As a consequence, long-term treatment with 
TNF neutralizing substances can cause increased sensitivity to 
tuberculosis (346).

Tumor necrosis factor contributes to the pathogenesis and 
development of pulmonary edema (38), but, paradoxically, also 
plays an important role in edema reabsorption (347–350). It was 
assumed for a long time that cytokines exert their activities solely 
upon activating their respective receptors, but in the case of TNF, 
this is not true, which broadens this concept (38). TNF was shown 
to exert a lytic, i.e., killing effect on certain bloodstream stages 
of African trypanosomes, by means of a lectin-like interaction 
with trimannoses and N,N’-diacetylchitobiose oligosaccharide 
residues in the variant surface glycoprotein on the surface of 
the parasites (344). Later investigations could demonstrate that 
this lectin-like activity can be attributed to a special 17 amino 
acid long domain, named the lectin-like domain of TNF in the 
molecule’s tip region (351, 352) (Figure 7). This special region 
is spatially distinct from its receptor binding sites (353) and is 
not present in lymphotoxin, which has a highly similar tertiary 
structure as TNF. Comparative sequence analysis of TNF and 
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LT allowed for the identification of the lectin-like domain of 
TNF (353).

For experimental purposes to mimic the TNF lectin-like 
domain, the amino acid sequence-identic synthetic 17 amino acid 
peptide which has shown to biologically mimic the lectin-like tip 
domain of TNF (353–355), as described above, has been used in 
a variety of experimental researches. It, moreover, gave rise to a 
therapeutic candidate that was recently evaluated in clinical trials 
(a.k.a AP301 and Solnatide) (356–358).

There are conflicting data about the critical involvement of 
TNF in the regulation of AFC (359). In situ and in vivo investiga-
tions conducted by Braun et al. in flooded rat lungs demonstrated 
a dual role for TNF in pulmonary edema (37, 38). This is possibly 
due to the opposite effects of, on the one hand, the classical TNF 
receptor 1 binding sites and, on the other hand, the lectin-like 
domain of TNF on pulmonary fluid reabsorption (37). In fact, 
the TNF tip region with its lectin-like activity is spatially distinct 
from the cytokine’s receptor binding sites and causes an increase 
of alveolar fluid reabsorption, which is completely independent of 
the TNF receptors type 1 and 2, and further increases the cell–cell 
barrier tightness as shown in the alveolar EC barrier (Figure 7) 
(38, 99).

As discussed more in detail in this issue (361), in murine 
models of ventilator-induced ALI, TNF receptor 2 can have pro-
tective effects, whereas TNF receptor 1 is deleterious, thus adding 

another level of complexity to the role of TNF in edema (362). 
As such, the complex between soluble TNF receptor 1 and TNF 
can stimulate fluid reabsorption. TNF causes receptor-mediated 
edema formation in part by decreasing the expression of ENaC 
mRNA in AECs in  vitro (135) leading to decreased amiloride-
sensitive sodium uptake (135). Moreover, TNF receptor 1 sign-
aling initiates the process of neutrophil migration (363) which 
can also contribute to the formation of pulmonary edema. It is 
also involved in orchestrating mechanisms, such as complement 
activation, cytokine regulation, chemokine production, and acti-
vation of adhesion molecules as well as their respective adhesion 
molecule receptors (364).

A TNF-dependent and amiloride-sensitive increase in AFC 
occurs in a rat model of Pseudomonas aeruginosa pneumonia 
(365). Other studies have shown in rats that intestinal ischemia–
reperfusion leads to stimulation of AFC. This stimulation is at 
least in part mediated by a TNF-dependent mechanism which is 
independent of catecholamine release, because propranolol did 
not influence the AFC, and there was no observed cAMP stimu-
lation (366). This indicates a protective effect of TNF-dependent 
stimulation of AFC in the early phase of injury (366).

Fukuda et al. could show that in ventilated rats TNF increased 
AFC by about 67% (136). This increase was inhibited by ami-
loride, but not by propranolol, indicating the mechanism is 
catecholamine-independent. A triple TNF mutant, in which 

FigURe 7 | Tumor necrosis factor. Tumor necrosis factor (TNF) as a “moonlighting” or dual role, or dichotomal yin-yang cytokine. The TNF receptor 1 binding sites 
within the TNF homotrimer mediate edema formation and blunt edema reabsorption. The lectin-like domain of the same cytokine activates epithelial sodium channel 
function and as such promotes alveolar fluid clearance and acts on endothelial cell barrier tightness (360).
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three crucial residues for the lectin-like activity were mutated to 
alanines, did not show any increase in AFC. The effect of TNF 
occurred within 30 s from the onset of perfusion in A549 cells and 
within 1 h in the distal airspaces of the rat. This shows that the 
primary mechanism does not depend on a transcriptional effect 
of TNF. This indicates that TNF increased AFC most probably by 
an amiloride-sensitive mode of action, independent of any TNF 
receptor binding and mediated through the lectin-like region.

These antagonistic functions of the same molecule on pulmo-
nary edema refer to the complex biology of the TNF molecule 
(361). Indeed the TNF receptor 1 binding sites of TNF inhibit, 
whereas its lectin-like domain activates edema reabsorption 
(Figure  7) (37), and, as described above, tightens intercellular 
epithelial and endothelial barrier function (8, 9).

The impact of TNF on Pulmonary edema 
generation by TNF Receptor-Mediated 
effects
Tumor necrosis factor is mainly known for its receptor-mediated 
pro-inflammatory functions in the systemic inflammatory 
response and the induction of apoptosis on a cellular level 
(339, 367). Both of these activities of TNF are implicated in the 
pathogenesis of pulmonary edema, which is often associated 
with ALI (37).

Tumor necrosis factor promotes pulmonary dysfunction 
through edema formation and inhibition of edema reabsorption 
by several procedures (37), for instance:

•	 TNFR-dependent upregulation of chemokine production 
(338, 363) and adhesion molecule expression (333, 334, 368), 
which leads to neutrophil attraction and sequestration.

•	 Decrease in barrier function in human pulmonary artery ECs 
and rearrangement of microtubules (67).

•	 Induction of reactive oxygen intermediates (336).
•	 Down-regulation of ENaC expression in alveolar type 2  

cells (135)

TNF Inhibits Transcription of All Three ENaC Subunits
Seminal studies conducted by Dagenais et al. clearly demonstrated 
the involvement of TNF in modulation of Na+ absorption in cul-
tured AECs is investigated. The results show that TNF decreased 
the expression of the α-, β-, and γ-subunits of ENaC mRNA after 
24-h treatment and reduced to 50% the amount of ENaC-α pro-
tein in these cells (135). There was no impact, however, on α1 and 
β1 Na+/K+-ATPase mRNA expression (135). Amiloride-sensitive 
currents and ouabain-sensitive Rb+ uptake were reduced. A strong 
correlation was found at different TNF concentrations between 
the decrease of amiloride-sensitive current and ENaC-α mRNA 
expression (135). All these data show that TNF has a profound 
effect on the capacity of AECs to transport Na+ (135). In another 
study performed by Yamagata et al., mRNA expression of all three 
ENaC subunits in whole lung tissue was inhibited by TNF (359). 
TNF also inhibited ENaC function, as indicated by the reduction 
of amiloride-sensitive current (359). These data suggest that TNF 
may affect the pathophysiology of ALI and pulmonary edema 
through the inhibition of AFC and sodium transport (359).

TNF Increases Permeability of the Epithelial–
Endothelial Barrier
The activation of TNF receptor 1 by TNF modulates the 
integrity of the alveolar barrier, in addition to its direct effects 
on ion channels and pumps of the alveolar epithelium. TNF 
increases the endothelial expression of chemo-attractants and 
adhesion molecules including IL-8 (formerly called neutrophil 
chemotactic factor), the IL-8- receptor 2, the intercellular adhe-
sion molecule-1 (ICAM-1), platelet endothelial cell adhesion 
molecule-1 (PECAM-1), and vascular adhesion molecule-1, thus 
promoting excessive recruitment of mononuclear phagocytes and 
neutrophils during lung inflammation (71, 369–371).

Tumor necrosis factor is released in acute inflammatory lung 
syndromes linked to the extensive vascular dysfunction associ-
ated with increased permeability and EC apoptosis (372). The 
critical importance of the pulmonary vascular barrier function 
is shown by the balance between competing EC contractile 
forces, which generate centripetal tension, and adhesive cell–cell 
and cell matrix tethering forces, which regulate cell shape. Both 
competing forces in this model are intimately linked through the 
endothelial cytoskeleton, a complex network of actin microfila-
ments, microtubules, and intermediate filaments, which combine 
to regulate shape change and transduce signals within and 
between ECs (66).

Tumor necrosis factor can activate ECs, cause acute pulmonary 
vascular endothelial (VE) injury or even EC death and increase 
pulmonary vascular permeability in vivo as well as in vitro (39, 
67, 373). Also, TNF increases the permeability of EC monolay-
ers to macromolecules and lower molecular weight solutes by 
involving pertussis toxin-sensitive regulatory G protein (374). 
Furthermore, it is reported that TNF can increase the perme-
ability of lung EC monolayers and that fibronectin can blunt this 
effect (375). In addition, TNF-induced increase in endothelial 
permeability involves the loss of fibronectin and remodeling of 
the extracellular matrix (376). Moreover, it has also been shown 
that TNF can increase capillary permeability causing transcapil-
lary filtration in vivo (377).

TNF Increases ROS Generation
In addition to the above-mentioned mechanisms, TNF can induce 
pulmonary edema indirectly through increasing ROS (336). ROS 
have been shown to be able to disrupt the pulmonary endothelial 
barrier (336) and to decrease Na+ channel activity (378).

identification of the Alveolar Liquid 
Clearance-Promoting effects of TNF
Lung Transplantation and Primary Graft Dysfunction 
(PGD)/Ischemia–Reperfusion Injury
The receptor-independent lectin-like domain of murine TNF has 
a potential physiological role in the resolution of alveolar edema 
in an in situ mouse lung model and an ex vivo rat lung model (99). 
The lectin-like domain of TNF can activate amiloride-sensitive 
sodium uptake in type II AECs (99, 100). Therefore this TNF 
domain is a potential therapeutic candidate (360).

As there is no specific treatment for ischemia–reperfusion-
mediated lung injury, which is accompanied by a disrupted 
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capillary barrier integrity and an impeded AFC, the capacity of 
the TNF tip peptide to improve lung function after unilateral 
orthotopic lung iso-transplantation was tested in  vivo in adult 
rats (8).

The unilateral rat transplant study showed that a highly severe 
lung injury with blood gas parameters qualifying for severe 
ARDS could be virtually prevented by the activation of the 
TNF lectin-like region. Furthermore, a significant reduction in 
polymorphonuclear neutrophilic leukocytes (PMN) infiltration 
in the bronchoalveolar lavage fluid was observed. The TNF tip 
peptide reduced ROS generation in the transplanted rat lungs 
in  vivo and diminished ROS generation in pulmonary artery 
ECs in  vitro under hypoxia and reoxygenation (8). ROS, the 
generation of which is increased during ischemia–reperfusion 
ALI (379–381), have been shown to be able both to disrupt pul-
monary endothelial barrier integrity (378) and to inhibit ENaC 
activity (382).

Moreover, the effect of the lectin-like domain of TNF likely 
has physiologic relevance during inflammation and infection (8). 
As the soluble TNF receptors are cleaved by the same enzyme 
that generates soluble TNF, i.e., TACE (383), complexes between 
soluble TNF receptors and TNF can form (8). Soluble TNF recep-
tors do not inhibit the activity of the lectin-like domain of TNF 
and complexes between these receptors and TNF are even able 
to stimulate AFC in in situ flooded rat lungs (37, 99, 353). At the 
same time, unfavorable actions of TNF on edema reabsorption 
and formation that are mediated by TNF receptor 1 activation 
are being blocked by the soluble receptors (37). Therefore, the 
favorable actions of the lectin-like domain of TNF might occur 
in conditions where both TNF and its soluble receptors are being 
generated (8).

A recent pilot study of 20 patients on treatment of PGD by 
twice daily nebulized 125 mg inhalation of the TNF tip peptide 
(AP301, solnatide) randomized 1:1 showed an improved gas 
exchange (mean and SD, daily measured up to 72 h, PaO2/FiO2 
365.6 ± 90.4 versus 335.2 ± 42.3 mm Hg; p = 0.049) and clearly 
less time intubated (2 ± 0.82 versus 3.7 ± 1.95 days, p = 0.02) in 
the verum group, which also seems clinically relevant (357).

In summary, the lectin-like activity of TNF, and thus, the TNF 
tip peptide significantly improves lung function after lung trans-
plantation in the rat. Pilot studies confirm a relevant effect in clini-
cal treatment (8, 357). The experimental model showed a reduced 
alveolar neutrophil content and less ROS generation. It exerts a 
favorable effect on organ function in terms of gas exchange (8). 
It was furthermore shown that the apically expressed ENaC was 
found to be decreased at the messenger ribonucleic acid and the 
protein level in transplanted lungs, suggesting that ENaC, rather 
than the basolaterally expressed Na+/K+-ATPase, is important in 
the abnormal AFC (101). These studies reinforce the idea that 
the TNF tip peptide acts as an agent with potential therapeutic 
traits against the ischemia–reperfusion injury associated with 
lung transplantation.

The Lectin-Like Region of TNF Ameliorates  
High-Altitude Pulmonary Edema (HAPE) in Rats
About 100 million people live at altitudes greater than 2,500 m, 
about 15 million above 3,000 m, and some above 5,000 m (384). 

Most of these individuals have developed the ability to live and 
reproduce at elevation as high as 5,000  m, but in some cases, 
develop chronic medical problems due to their high-altitude 
residence. At 5,500 m barometric pressure is about only half of the 
one at sea level. Furthermore, many lowlanders venture to high 
altitude for work and recreation. The prevalence of HAPE depends 
on an individual’s susceptibility, the rate of ascent, the final alti-
tude, but also on heavy and prolonged exercise, and is higher in 
males (385). Although the mechanism underlying HAPE remains 
incompletely understood, it appears that the elevated pulmonary 
artery pressure plays a pivotal role in the process. Multiple studies 
demonstrated that susceptible individuals have abnormally high 
pulmonary artery pressure in response to hypoxic breathing, dur-
ing normoxic and hypoxic exercise, and on high altitude before 
the onset of edema. Increased sympathetic tone, and alteration 
in vasoactive mediators such as endothelin-1, NO produced by 
pulmonary ECs, may also lead to stronger hypoxic pulmonary 
vasoconstriction (384). In autopsies, a red cell rich proteinaceous 
alveolar exudate with hyaline membrane is characteristic. In all 
autopsies, areas of pneumonitis with neutrophil accumulation 
but no evidence of bacterial accumulation have been observed. 
The estimated death rate of altitude illness is about 7.7/100,000 
trekkers, with increasing mortality during the last decade (386). 
Treatment of HAPE consists, if ever possible, in descent from 
altitude, rest, oxygen supplementation, and administration of 
drugs like corticosteroids and furosemide.

Prophylactic inhalation of salmeterol, an inhalative β2-
adrenergic receptor (β2AR) agonist, decreased the incidence of 
HAPE by more than 50% (387). The most pertinent explanation 
was that salmeterol would enhance the clearance of alveolar fluid 
since β2-adrenergic agonists upregulate AFC by stimulating 
transepithelial sodium transport. This hypothesis is supported by 
the fact that the level of sodium transport in the respiratory epi-
thelium is lower in patients prone to HAPE. However, the study 
results cannot exclude the possibility that the β2 agonist could 
have modulated vascular permeability or the hemodynamic 
response associated with hypoxemia and HAPE (4).

In an experimental rat model simulating HAPE by hypobaric 
and hypoxic conditions equivalent to an altitude of 4,500 m with 
exhaustive treadmill exercise of 15 m per minute for 24 h, then 
for an equivalent of altitude of 6,000 m for further 48 h, the TNF 
tip peptide reduced pulmonary edema and increased expression 
of the epithelial TJ protein occludin, as compared to high-altitude 
controls. Compared to untreated high-altitude control animals, 
TNF tip peptide significantly lowered levels of the inflammatory 
cytokines TNF, IL-1β, IL-6 and the chemokine IL-8 in bron-
choalveolar lavage. TNF tip peptide-treated animals experienced 
less pulmonary edema, as compared to dexamethasone-treated 
animals, and was more effective than its comparators in reduc-
tion of bronchoalveolar lavage protein content and inflammatory 
parameters (7).

Identification of the Mechanism of ENaC Activation 
by the Lectin-Like Region of TNF
It has been shown that the lectin-like domain of TNF can activate 
ENaC (353) and increases sodium uptake capacity in type II AEC 
(38). Intriguingly, the TNF tip peptide was shown to directly 
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bind to the α subunit of ENaC (54, 102) in a two-hit manner, first 
interacting with the glycosylated extracellular loop of the subunit 
and subsequently in the TM 2 domain, where the actual activa-
tion of the channel occurs (54, 102, 114). The former interaction 
was proposed to increase the expression of ENaC at the surface 
membrane in the presence of bacterial toxins, whereas the lat-
ter increases the channel’s open probability time (102). Indeed, 
the binding of ENaC to the lectin-like domain of TNF or to the 
TNF tip peptide stabilizes the channel’s complex formation with 
myristoylated alanine-rich C kinase substrate and with phos-
phatidylinositol 4,5-bisphosphate, both of which are important 
for the open conformation of the channel (388), in the presence 
of the pneumococcal pore-forming toxin pneumolysin (PLY), 
an important mediator of permeability edema in pneumococcal 
pneumonia (54). Knock-in mice expressing a TNF mutant lack-
ing a functional lectin-like domain was shown to be more prone 
to develop capillary leak and permeability edema than their wild-
type counterparts after instillation of a low dose of PLY, which did 
not induce significant barrier dysfunction in control mice (54). In 
short, these results demonstrate a novel TNF-mediated mecha-
nism of direct ENaC activation and indicate a physiological role 
for the lectin-like domain of TNF in the resolution of alveolar 
edema during inflammation (54).

The Lectin-Like Region of TNF Increases Activity  
of Na+/K+-ATPase
Vadasz et al. investigated the impact of the TNF tip peptide on 
fluid balance in experimental lung injury. Alveolar–capillary 
permeability and fluid clearance were assessed in adult male 
rabbits. Aerosolized TNF tip peptide improved ALC by both 
reducing vascular permeability and by enhancing the absorp-
tion of excess alveolar fluid in experimental lung injury. TNF 
tip peptide increased Na+/K+-ATPase activity by promoting its 
exocytosis to the AEC surface and increased amiloride-sensitive 
sodium uptake, which increased the active Na+ transport 2.2-fold 
and consecutively the AFC (196). Together with its previously 
discussed effects on ENaC, these data suggest a role for the 
TNF tip peptide as a potential therapeutic agent in pulmonary 
edema (196), since the two main mediators of Na+ transport 
are both activated by the TNF tip peptide. It should be noted 
that the primary target is likely ENaC and that the activation of  
Na+/K+-ATPase could be through the indirect increase in intra-
cellular Na+ upon prior stimulation of ENaC (8). Moreover, the 
TNF tip peptide was recently also shown to increase the activity 
of NSC channels (9).

The Lectin-Like Region of TNF Restores ENaC 
Function in PHA1B Mutants
The lectin-like domain of human TNF activates the ENaC in vari-
ous cell- and animal-based studies. The synthetically produced 
cyclic peptides Solnatide (a.k.a. tip peptide or AP301) and its 
congener AP318 possess molecular structures that mimic the 
TNF tip region. AP318-mediated ENaC activation was shown to 
rescue loss of function in a phenotype of ENaC carrying mutations 
and restored the amiloride-sensitive Na+ current to physiological 
levels or even higher (118). This implies that the TNF tip domain 
can activate ENaC by a mechanism which remains intact even in 

the presence of various mutations occurring in different subunits, 
because binding to the putative binding site in the TM 2 domain 
of the glycosylated α subunit apparently remains basically unaf-
fected in all tested point mutations or was compensated in frame 
shift mutations via a moderate activation of αβ- and βγ-ENaC, 
respectively (389). Apart from the mechanism responsible for 
loss of the ENaC performance in the studied ENaC mutations, 
the synthetic TIP and AP318 peptides could restore ENaC func-
tion up to or even higher than current levels of wild-type ENaC 
(118). As therapy of PHA1B is only symptomatic so far, these 
TNF tip peptides, which directly target ENaC, are promising 
candidates for the treatment of the channelopathy-caused disease 
PHA1B (118).

Clinical Trials on the Effect of the Lectin-Like  
Region of TNF
In a recent phase 2a clinical trial with ALI, patients received 
inhalable TNF tip peptide in the ventilator twice daily over a 
7-day period. There was no significant improvement in lung 
liquid clearance over all patients, as assessed by the PiCCO 
method. However, there was a significant increase in extravas-
cular lung water removal in those patients with a sequential 
organ failure assessment score higher than or equal to 11, rep-
resenting more than 50% of the subjects in this trial (358). One 
hypothesis for this observation is that patients in this group, 
apart from suffering from impaired AFC capacity, might also 
suffer from more severe capillary barrier dysfunction. The TNF 
tip peptide was recently shown to not only improve AFC (54, 
102), but also capillary barrier function (97) in the presence of 
bacterial toxins.

As mentioned before, in a randomized pilot study performed 
with 20 patients on the treatment of established PGD after lung 
transplantation by twice daily inhalation of the TNF tip peptide 
(AP301, solnatide) versus placebo, the TNF tip peptide improved 
gas exchange and clearly reduced the intubation—and thus 
mechanical ventilation—time in a probably clinically relevant 
manner (357).

TNF-Related Apoptosis-inducing Ligand 
(TRAiL)
TNF-related apoptosis-inducing ligand, a member of the 
superfamily of TNF ligands, is a homotrimeric type II TM 
protein with a conserved C-terminal extracellular domain that 
mediates receptor binding and which can be cleaved by metal-
loproteinases to generate a soluble mediator (390). TRAIL is 
produced by several cell types, including immune cells such 
as macrophages and T  cells and can be induced by both type 
I and type III Interferons (IFNs), a family of cytokines with 
fundamental importance in the innate immune response to 
viral infections (209, 391). Macrophages generate both soluble 
and membrane-bound TRAIL, which operate through distinct 
receptors on infected and non-infected, neighboring cells (209). 
TRAIL is a potent activator of cell death in transformed cells 
and activates cellular stress pathways in epithelial cells, as such 
finally leading to caspase-dependent or -independent cell death 
(209). In view of the prominent role of IFNs in antiviral response, 
IFN-dependent induction of TRAIL is a prominent regulator of 
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disease outcome especially in respiratory viral infection, enters 
into the scene (209). As such, the IFN/TRAIL signaling axis is of 
potential interest in disease progression and attenuation of tissue 
injury during respiratory viral infection (209). Here we focused 
on the role of TRAIL in edema reabsorption and in alveolar 
epithelial function.

TRAIL Disrupts the Alveolar Epithelial Barrier
TRAIL plays adverse roles in viral infection (392–394). On the 
one hand, TRAIL drives infected cells into apoptosis in order 
to limit virus distribution (209). On the other hand TRAIL can 
induce functional and structural damage not only in infected 
cells, but also in bystander cells, such as uninfected cells of the 
alveolar epithelium (199, 208). As such TRAIL can at the same 
time prevent viral spreading, but also cause lung injury in acute 
respiratory viral infection (209). Accordingly, in influenza A virus 
(IAV) infection, TRAIL acts as a detrimental factor contributing 
to tissue injury and impaired inflammation resolution when 
released in excessive amounts by recruited immune cells (209). 
The activation of proapoptotic and pro-necroptotic pathways 
in respiratory infection can result in a structural disruption of 
the airway and the alveolar epithelial barrier, which is a major 
hallmark of respiratory disease and its progression to the ARDS 
(395, 396).

TRAIL Decreases Na+/K+-ATPase Expression and 
Impairs AFC
Peteranderl et al (199). have investigated whether IAV infection 
alters Na+/K+-ATPase expression and function in AECs and 
the ability of the lung to clear edema. IAV infection reduced α1  
Na+/K+-ATPase expression in the plasma membrane of human 
and murine AECs and in distal lung epithelium of infected mice. 
Accordingly, the decreased Na+/K+-ATPase expression impaired 
AFC in IAV-infected mice. A paracrine cell communication 
network between infected and non-infected AECs and alveolar 
macrophages was identified, which led to decreased alveolar 
epithelial Na+/K+-ATPase function, thus to AFC inhibition (199). 
The IAV-induced reduction of Na+/K+-ATPase was mediated by 
a host signaling pathway that involved epithelial type I IFN and 
an IFN-dependent elevation of macrophage TRAIL (199). In 
non-infected cells within the IAV-infected lung, TRAIL severely 
compromised the function of the ion channel Na+/K+-ATPase, 
which was mediated by induction of the stress kinase AMPK 
(199) thereby potentially revealing a cross-link to TRAIL-induced 
autophagic cell stress pathways in bystander cells both in vitro 
and in  vivo (199). The TRAIL-induced and AMPK-mediated 
downregulation of the Na+/K+-ATPase, a major driver of vecto-
rial ion and fluid transport from the alveolar airspace toward 
the interstitium, resulted in a reduced capacity of IAV-infected 
mice to clear excessive fluid from the alveoli (395). Thus, TRAIL 
signaling contributes to intensive edema formation, a hallmark 
of disease in virus-induced ARDS (395). Notably, this effect of 
TRAIL on Na+/K+-ATPase expression was induced indepen-
dently of cell death pathways elicited by caspases, as treatment 
of cells and mice with a specific caspase-3 inhibitor diminished 
apoptosis in AECs but still allowed for the reduction of the Na+/
K+-ATPase (199).

Transforming growth Factor-β (TgF-β)
Transforming growth factor-β is a pleiotropic cytokine with 
a broad regulatory role in the immune system. Three highly 
homologous isoforms - TGFβ1, TGFβ2, and TGFβ3—share a 
receptor complex and signal transduction pathway, but their tis-
sue expression levels are different (397). All are produced as inac-
tive complexes, which must be activated to bind to their receptors 
(398). Platelets, T lymphocytes, macrophages, ECs, keratinocytes, 
smooth muscle cells, fibroblasts, i.e., a wide range of cells, can 
produce TGF (399). Following wounding or inflammation, all 
these cells are potential sources of TGF-β (400). Receptors for 
TGF-β have been found almost on every cell type tested so far, 
which enables this cytokine to exert its effects on almost any 
body tissue (401). Classically, TGF-β receptor signaling occurs by 
activating the Smad-dependent intracellular signaling pathway 
(398). The TGFβ receptor complex consists of two receptor subu-
nits, TGF-β receptor (TGF-βR) I and II (398). These receptors 
mediate multiple responses (401).

TGFβ Context-Dependent Mode of Action
Transforming growth factor-β action is highly context-dependent 
and can be influenced by cell type, culture condition, interaction 
with other signaling pathways, developmental or disease stage 
in vivo and innate genetic variation among individuals (402). As 
such, TGF-β can be both a pro- and anti-inflammatory cytokine, 
which affects the growth and proliferation of many cell types 
(399). During inflammation, TGF-β1 is also able to effectively 
inhibit inflammatory response (403). The action of TGF-β fol-
lowing inflammatory responses is characterized by increased 
production of extracellular matrix components, as well as mes-
enchymal cell proliferation, migration, and accumulation (404). 
Pleiotropic nature of TGF-β modulates expression of adhesion 
molecules, provides a chemotactic gradient for leukocytes and 
other cells participating in an inflammatory response in one hand 
and, in contrast, inhibits them once they have become activated 
(405). Also in autoimmunity, TGFβ represents a double-edged 
sword (406). It can cause both T-cell growth promotion, as well 
as immune suppression (406).

Role of TGF-β Role in Pulmonary Edema
Transforming growth factor-β has a dual role in pulmonary 
edema. It can up- or downregulate alveolar ion and fluid trans-
port, through its impact on ion channels/pumps (ENaC, CFTR 
and Na+/K+-ATPase) or on the pulmonary barrier. As such, 
TGF-β can decrease the expression of ENaC through decreasing 
expression of its α subunit mRNA and protein during bacterial 
infection (132). During ALI/ARDS, increased TGF-β1 activity in 
the distal airspaces promotes alveolar edema by reducing distal 
airway epithelial sodium and fluid clearance (132). Moreover, 
TGF-β can induce the internalization of βENaC from the lung 
epithelial cell surface and, hence, block the sodium-transporting 
capacity of AECs (133). In fact, TGF-β causes the subsequent acti-
vation of phospholipase D1, phosphatidylinositol- 4-phosphate 
5-kinase 1α, and NADPH oxidase 4 (Nox4) (133). Nox4 activa-
tion moreover results in the production of ROS, which in turn 
reduces cell surface stability of the αβγENaC complex and thus 
leads to edema fluid accumulation (371). Apart from its effects 
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on ENaC expression, TGF-β can also decrease CFTR expression 
and function (179) and it, moreover, impairs expression of the  
Na+/K+-ATPase β1 subunit, resulting in decreased Na+/K+-ATPase 
activity in lung epithelial cells (197, 198).

Transforming growth factor-β decreases lung epithelial bar-
rier function (203–205) in  vitro by a mechanism that involves 
depletion of intracellular glutathione (206, 407). The cytokine 
moreover induces endothelial barrier dysfunction via Smad2-
dependent p38 activation (235).

The integrin αvβ6 (408) can activate latent TGF-β in the lungs 
and skin (409). Using this clue, Pittet et al. have shown that mice 
lacking integrin αvβ6 are completely protected from pulmonary 
edema in bleomycin-induced ALI. Furthermore, pharmacologic 
inhibition of TGF-β also protected wild-type mice from pulmo-
nary edema induced by bleomycin or Escherichia coli endotoxin 
(206). In short, integrin-mediated local activation of TGF-β is 
critical for the development of pulmonary edema in ALI, and 
blocking TGF-β or its activation attenuates pulmonary edema. 
This neutralization can be done e.g., by the administration of 
a soluble type II TGF-β receptor, which sequesters free TGF-β 
during lung injury (206).

All of the deleterious actions of TGF-β discussed above will 
ultimately lead to decreased ion transport and may, therefore, 
promote and worsen pulmonary edema. However, TGF-β can 
also positively impact pulmonary edema. Intriguingly, TGF-β 
was proposed to increase the function of ENaC, via enhancing 
the expression of Na+/K+-ATPase α1- and β1-subunits (134).

interleukin-8
Interleukin-8 is a pro-inflammatory chemokine produced by a 
variety of tissue and blood cells (410), including bronchial epi-
thelial cells (411), that correlates with neutrophil accumulation 
in distal airspaces of patients with ARDS. IL-8 is also a predictor 
of mortality in ALI (412–414). As such, significantly higher 
concentrations of IL-8 are found in the pulmonary edema fluid 
and plasma of patients with a septic versus a non-septic etiology 
of ARDS (415). Moreover, IL-8 promotes edema formation by 
blocking AFC (105).

The Role of IL-8 in Inhibiting β2AR Agonist
Roux et al (105). have shown that IL-8 or its rat analog cytokine-
induced neutrophil chemokine-1 significantly decreased β2AR 
agonist-stimulated vectorial Cl− and net fluid transport across 
rat and human alveolar epithelial type II cells, through reducing 
CFTR activity and biosynthesis (105). This reduction process was 
mediated by heterologous β2AR desensitization and downregula-
tion (50%) via the G-protein-coupled receptor kinase 2 (GRK2)/
PI3K signaling pathway (105) (Figure  8). Consistent with the 
experimental results, high pulmonary edema fluid levels of IL-8 
(>4,000 pg/ml) were associated with impaired AFC in patients 
with ALI. Taken together, these results suggest a role for IL-8 
in inhibiting β2AR agonist-stimulated alveolar epithelial fluid 
transport via a GRK2/PI3K-dependent mechanism (105). On 
top of this, IL-8 can promote edema formation by increasing 
endothelial permeability (250).
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interleukin-1β
Interleukin-1β is associated with decreased alveolar fluid 
reabsorption and thus with worse outcome in ALI and sepsis. 
IL-1β primarily decreases alveolar fluid reabsorption via a 
p38 MAPK, reducing the expression of the α-subunit of ENaC 
(113) as well as the β-subunit (137). In ARDS patients, the 
mean initial plasma levels of TNF IL-1β, IL-6, and IL-8 were 
significantly higher in non-survivors and in patients with 
sepsis. High plasma levels of IL-1β were associated with poor 
patient outcome (417). Likewise, high levels of IL-1β in the 
lungs of patients with ARDS were associated with an increased 
risk of mortality (417). The FAS/CD95 system acts together 
with TNF and IL-1β (57, 219, 418–420), leading to NF-ĸB pro-
duction and neutrophil accumulating IL-8 secretion. Of note, 
an epithelial repair effect for type II pneumocytes via IL-1β 
was described in the injured alveolus (139), possibly in a spe-
cific context of cytokines, mediators and growth factors (139). 
Only in a specific fetal context IL-1β may increase alveolar 
fluid reabsorption by a hypothalamus-pituitary-adrenal gland 
axis (421) and an increase of both ENaC and Na+/K+-ATPase 
expression (140).

Fas/FasL System (CD95/CD95 Ligand 
System)
Fas is a 45-kDa type I cell surface receptor that belongs to the 
TNF receptor family. It can cause cytokine and chemokine 
release, especially the neutrophil attractant IL-8, via MAP kinase 
activation in lung epithelial cells, as such promoting inflamma-
tion (219). Binding of FasL to membrane Fas activates apoptosis 
through activation of caspases, which seems the key to AEC 
apoptosis, thus epithelial barrier breakdown and its consequences 
in ALI (57, 418).

Keratinocyte growth Factor (KgF, FgF-7)
KGF is an epithelial cell-specific growth factor that has been 
shown to exert beneficial actions in many animal models of 
ALI and ARDS as well as in the ex vivo human lung (143, 
422–430). Rats in which KGF was intratracheally adminis-
tered increased AFC by about up to 50%, and this was further 
increased by the β2 agonist terbutaline (427). In vitro studies 
using mesenchymal stem cell-derived medium suggested that 
this growth factor plays a dominant role in tissue repair, even in 
the presence of the inflammatory cytokines IL-1β, TNF-α, and 
interferon-gamma, as well as in hypoxia. The observation that 
no downregulation of ENaC-α expression occurred despite of 
the presence of three key inflammatory cytokines suggested a 
dominant biological role of KGF in the acutely injured alveo-
lar milieu (431). There is a currently a large interest in stem 
cell therapies as therapeutic approaches in clinical disorders 
like myocardial infarction, limb ischemia, diabetes, hepatic 
and renal failure, and ALI/ARDS. Stem and progenitor cell 
therapies as well as work with factors influencing those cells to 
reduce injury and increase repair have been performed. KGF 
has been proposed to be one of the main candidates to promote 
the repair capacity of stem cells in ALI. A recently performed 
double-blind, placebo-controlled phase 2 clinical trial—the 

KARE trial—tested the effects of KGF in 29 verum patients 
versus 31 placebo patients (432). There was no difference in the 
primary outcome variable, the oxygenation index, at day 7, and 
the treatment group had a trend to higher mortality, and more 
adverse events in terms of pyrexia. Nevertheless, these data do 
not exclude that the combined use of KGF and stem cells might 
provide protection in ALI.

Soluble Receptor for Advanced glycation 
end Products (sRAge)
Receptor for advanced glycation end products, first character-
ized in 1992 by Neeper et al. is a 35 kDa TM receptor which 
belongs to the immunoglobulin superfamily (433). RAGE is 
one of the AT1 cell-associated proteins in the lungs (434, 435). 
RAGE and its ligands have been recognized to be involved in 
the pathobiology of a wide range of diseases which are accom-
panied by symptoms, like enhanced oxidative stress, immune/
inflammatory responses, and altered cell functions (436). RAGE 
is highly expressed in the lungs at readily measurable levels and 
its level increases quickly at sites of inflammation, mainly in 
inflammatory and epithelial cells (437). RAGE has three forms, 
consisting of N-truncated, dominant-negative, and soluble 
RAGE, which can be produced either by natural alternative 
splicing or by the action of membrane-associated proteases 
(438). The correlation between sRAGE levels and AFC rate was 
investigated in both a clinical study of patients with ARDS, as 
well as in an experimental model of acid-induced lung injury in 
mice (264). The results obtained showed a correlation between 
elevated levels of sRAGE with lung injury and an impairment 
of AFC (264). Accordingly, an increase in alveolar–capillary 
barrier permeability, arterial oxygenation impairment, lung 
injury scores, and the extent of human lung damage on CT 
scan are all associated with sRAGE levels (264). Conversely, 
it has been shown that RAGE regulates lung fluid balance 
via protein kinase C-gp91(phox) signaling to ENaC (177). In 
fact, hAGE, a RAGE ligand, increases ENaC activity through 
oxidant-mediated signaling, which can ultimately impact lung 
fluid clearance (177).

β2ARs AS iMPORTANT MODULATORS  
OF AFC

Structure and Subtypes
β2-adrenergic receptors are G protein-coupled receptors with 
seven-TM domains (439). Their three subtypes are β1, predomi-
nantly found in the heart, β2 in the respiratory system, and β3 
in adipose tissue (440). β2 adrenergic agonists activate the β2-
adrenoceptors (β2AR) on airway smooth muscle and are used 
to treat bronchoconstriction in asthma and chronic obstructive 
pulmonary disease (COPD) (441). In their canonical signaling 
pathway, agonist binding couples the β2AR to the Gs subtype of 
G protein. Gs activation leads to adenylyl cyclase, production of 
cAMP and activation of the cAMP-dependent protein kinase A 
(PKA), which mediates most of the functional consequences of 
Gs-coupled receptor activation (442). In airway smooth muscle, 
β2AR-stimulated PKA activity mediates relaxation through 
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phosphorylation of multiple proteins involved in regulating 
intracellular calcium levels, calcium sensitivity, and cross-bridge 
cycling (442).

The Role of β2AR Agonists in AFC
The presence of pulmonary β2ARs includes the alveolar space 
and provides the possibility to modulate the active Na+ transport. 
β2adrenoceptors and the β-adrenergic agonists accelerate AFC 
(439) due to Na+ transport via an amiloride-sensitive pathway 
(443) as shown in vitro (444), ex vivo (445), and in vivo in rat 
(446), dog (447), sheep (448), guinea pig (449), mouse (443, 450), 
and human lung tissue (451). β2AR knockout mice results suggest 
that the β2AR is responsible for most of the β-adrenergic–medi-
ated upregulation of AFC (452). Therefore, β2ARs appear to be 
responsible for the bulk of the β-receptor–sensitive alveolar active 
Na+ transport likely due to direct and indirect up-regulation of 
the alveolar active Na+ transport (445, 449, 452–454). β-agonists 
via activation of β2ARs regulate necessary key proteins for the 
process of alveolar epithelial active Na+ transport such as ENaC, 
Na+/K+-ATPase and CFTR in animal models as well as in human 
lung tissue (445, 449, 453, 455). β2ARs mediate short-term 
regulation of Na+ pumps which occurs within minutes of recep-
tor engagement via highly regulated recruitment of assembled  
Na+/K+-ATPase from intracellular compartments through phos-
phorylation of intermediary proteins and RhoA-kinase (456, 457). 
Long-term regulation is carried out via transcription (458) and 
translation of α1-subunit of Na+/K+-ATPase and ENaC subunits 
through PKA induced phosphorylation of cAMP-responsive ele-
ments and post-transcriptional regulation via mitogen-activated 
protein kinase/extracellular signal–regulated kinase and rapa-
mycin sensitive pathways (455, 459) by direct modulation of Na+ 
channels at the apical surface of the cells (460) or an activation of 
PKA to modulate a cation channel (92, 453).

Impact of β2AR Agonists on ENaC
Protein kinase A-mediated β2-agonist action phosphorylates 
cytoskeleton proteins and promotes trafficking of Na+ chan-
nels through the cell membrane and direct phosphorylation of 
epithelial Na+ channel β and γ subunits stimulate the β2AR and 
increases the number of epithelial Na+ channels and their open 
time in alveolar type II cells (453) and enhances the expression of 
the α-subunit of the epithelial Na+ channel ENaC (458). β-agonists 
and cAMP analogs increase the open probability and open time 
of amiloride-sensitive Na+ channels (161). β2AR agonists thus 
increase Na+ flux across the apical cell membrane by increasing 
both membrane-bound channel abundance and Na+ flux through 
ENaC (439).

Impact of β2AR Agonists on Na+/K+-ATPase
β-adrenergic agonist modulate Na+/K+-ATPase partially through 
adenosine 3’,5’-cyclic monophosphate (461). β2-adrenergic 
agonists increase the gene expression of Na+/K+-ATPase which 
leads to:

•	 Increased expression of α1-Na+/K+-ATPase mRNA and  
protein (458).

•	 Increase of the quantity of Na+/K+-ATPase (458)
•	 Increased activity of Na+/K+-ATPase (456, 458, 462–464).

Impact of β2AR Agonists on CFTR
Cystic fibrosis transmembrane conductance regulator is required 
for cAMP-mediated upregulation of fluid clearance, but is not 
necessary for basal fluid absorption (183), thus for alveolar fluid 
homeostasis in the uninjured lung (182, 183). β2-adrenergic 
stimulation activates CFTR by cAMP and PKA activation (184). 
In airway epithelial cells, the interaction of β2-AR with CFTR 
is mediated by scaffold proteins, such as NHERF1, allowing its 
interaction with PKA and stabilizing it on the plasma membrane 
(465). β2-adrenergic stimulation increases CFTR regulator 
expression in human airway epithelial cells through a cAMP/
PKA-independent pathway (466).

β2-Adrenergic Agonists Are at Least in 
Part Not of Clinical benefit in ALi/ARDS 
Studies and May increase Mortality
In mild-to-moderate lung injury, alveolar edema fluid clearance 
is often preserved by catecholamine-dependent or -independent 
mechanisms (467). Stimulation of AFC is then related to activa-
tion or increased expression of sodium channels like ENaC or the  
Na+/K+-ATPase pump and may involve CFTR (467). In severe lung 
injury, AFC perturbation result through increased endothelial-
interstitial-epithelial alveolar permeability and changes in activ-
ity or expression of sodium or chloride transport molecules (467). 
Improved barrier function and increased alveolar fluid reabsorp-
tion, theoretically by β-adrenergic agonists or the lectin-like TNF 
activity or alternatives, vasoactive drugs, regenerative or repair 
measures are therefore therapeutic alternatives (467). Whereas 
in the BALTI-2 study with salbutamol given as an intravenous 
infusion for up to 7 days, compared with a placebo, more than 
160 patients [age 55 (SD 17) years] per group were studied, the 
study was stopped as salbutamol treatment was associated with 
increased 28-day mortality of 34% compared to 23% (risk ratio 
1.47, 95% confidence interval 1.03 to 2.08) (468).

Salbutamol early in the course of ARDS was poorly tolerated. 
The authors concluded that such a β2-agonist therapy is unlikely 
to be beneficial and could worsen outcomes. Follow-up data 
further suggested worse outcome at 6 and 12 months in ARDS 
patients treated with salbutamol. They discussed that further 
trials of β-agonists in patients with ARDS were therefore unlikely 
to be conducted.

Some questions remained open, such as whether or not there 
may be benefit at a different dose or in specific populations 
(468). The survival curves for salbutamol and placebo appeared 
to continue to diverge after the end of the study drug infusion 
after 7 days, suggesting that the mechanisms may involve indirect 
effects as, e.g., more systemic disease under and after intravenous 
salbutamol. Concerning morbidity and mortality, Salbutamol can 
cause arrhythmia and tachycardia, and electrolyte and metabolic 
disturbances such as hypokalemia, hypomagnesemia, and lactic 
acidosis, which was observed in the study, and led to more  
salbutamol discontinuation. The used salbutamol dose of 15 µg/kg  
ideal body weight/hour i.v. was considered the maximum that 
critically ill patients could receive without an increase in ven-
tricular or atrial tachycardia or ectopy. It was at the higher end of 
the recommended dosing regimen, and it is possible that lower 
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doses might have been better tolerated and caused fewer adverse 
outcomes (468).

Rather similar results were observed in the USA in the ALTA 
trial (Albuterol for the Treatment of ALI). ALTA was a placebo-
controlled multicentre study of nebulized salbutamol in patients 
with ALI. Patients were randomized to receive either salbutamol 
5 mg every 4 h or saline placebo, for up to 10 days. The primary 
outcome was ventilator-free days. Recruitment started 2007 with 
a target sample size of 1,000 patients. It was terminated after 282 
patients had been enrolled because of futility. There was no clear 
difference observed in both ventilator-free days between the 
salbutamol and placebo arms (14.4 versus 16.6 days; 95% CI –4.7 
to 0.3 days) or in hospital mortality (salbutamol 23.0% versus pla-
cebo 17.7%; 95% CI –4.0% to 14.7%). Although the β2 stimulator 
intervention was delivered by a different route in ALTA, and the 
early termination of recruitment caused that confidence intervals 
are wide, the results seemed much consistent with the BALTI-2 
trial.

One alternative way was to use combination of inhaled cor-
ticosteroid and inhaled β2 agonist. In a recently published pilot 
study, a typical asthma treatment combination of twice daily 
inhaled formoterol and budesonide for 5 days showed its feasibil-
ity and promising results. The rationale was to reduce by both 
budesonide and formoterol alveolar inflammation, and to further 
improve by formoterol AFC. The aim was to reduce ARDS. More 
patients in the placebo group developed ARDS (7 versus 0) and 
required mechanical ventilation (53% versus 21%) (469).

Further Potentially Critical Mechanisms  
of Action β-Adrenergic Agonists
Besides two futile ARDS trials, further factors might restrict the 
β2 receptor agonist usage as a therapy to increase the resolution of 
pulmonary edema (467). Prolonged stimulation of β-adrenergic 
receptors with endogenous catecholamines could desensitize 
the β-receptors and prevent their stimulation with exogenous 
catecholamines (467). For instance, in some patients the alveolar 
epithelium might be too injured to respond to β-adrenergic 
agonist therapy (467), likewise circulating factors could limit 
the action of β-adrenergic agonists (467). Also, in the presence 
of left atrial hypertension, atrial natriuretic peptide can inhibit 
the stimulatory effect (467). Similarly in prolonged hemorrhagic 
shock and resuscitation, cAMP agonists may not stimulate AFC 
because oxidant-mediated injury may reduce the response of the 
alveolar epithelium to β-2 agonists (467).

An important clinical aspect is the potential to increase cardiac 
index by β2 receptor agonists (470), by both cardiac stimulation 
and pulmonary arterial vasodilation. Cardiac stimulation can 
lead to a higher cardiac index. This is potentially dangerous, as 
due to the injured lung put in the circulation in series, there is 
an increase in filtration, which further increases alveolar fluid 
and gas exchange disturbance. An interrelated second, and in 
ALI most probably untoward “Robin Hood effect” of potential 
opening of vascular beds that are closed by vasoconstriction is, 
e.g., observed in COPD patients inhaling β2 receptor agonists 
and developing more hypoxemia (471). This is probably due 
to increased perfusion in badly ventilated ALI/ARDS alveolar 
areas. As shown by Briot et al., β2 receptor agonist therapy seems 

therefore to have the potential to heighten the protein leakage 
from plasma to alveoli in the acutely injured lung (470).

PROTeiN CLeARANCe OUT OF THe 
ALveOLAR SPACe

Clearance of serum and inflammatory proteins from the 
alveolar space is an important and possibly vital process in 
recovery from pulmonary edema. Albumin and IgG are present 
in pulmonary edema fluid in concentrations that are 40–65% 
of plasma levels in hydrostatic pulmonary edema and 75–95% 
in non-cardiogenic pulmonary edema. Concentrations of 
albumin, for example, may be 5 g/100 ml or more. Protein con-
centrations rise during recovery from alveolar edema because 
the salt and water fraction of edema fluid is cleared much faster 
than albumin and IgG. Clearance of alveolar protein occurs 
by paracellular pathways in the setting of pulmonary edema. 
Transcytosis may be important in regulating the alveolar milieu 
under nonpathological circumstances. Alveolar protein degra-
dation may become important in long-term protein clearance, 
clearance of insoluble proteins, or under pathological condi-
tions such as immune reactions or ALI.

Early since the first descriptions of ARDS, we know that 
protein content is high, “haemorrhagic,” and about the same as 
plasma proteins. Plasma and coagulative products such as fibrin 
strands are degraded or modified, e.g., also to hyaline membranes 
in a high number of patients (31). They are observed in ARDS, are 
especially covering denuded basement membranes where pneu-
mocytes are missing, and may be related to adverse outcome (56).

Recent research hints to a better understanding of the resolu-
tion of those alveolar proteinaceous contents and debris out of 
the distal airways. Counterintuitively, neither macrophages, nor 
the mucociliary transport processes seem to play major roles 
in protein clearance also over several days time (472). Protein 
clearance from the distal air spaces is in part facilitated by active 
endocytotic processes including for albumin by the 600 kDa TM 
glycoprotein called megalin or LDL-receptor related protein-2, 
a member of the low-density lipoprotein-receptor superfamily 
(6). Again, its important functional inhibition seems TGF-beta1 
related. Megalin seems negatively regulated by glycogen synthase 
kinase 3b (GSK3b). An important regulator for this protein 
kinase signaling molecule seems the RNA binding protein 
Embryonic Lethal, Abnormal Vision, Drosophila Like 1/Human 
antigen R (ELAVL-1/HuR) as an upstream regulator of GSK3b 
(6). ELAVL-1/HuR is an RNA binding protein that increases 
mRNA stability. Its importance has been shown in ventilator-
induced and acid-induced mouse lung injury. In EC lines it 
induces ICAM-1 and IL-8 after TNF stimulation.

Endocytosis of macromolecules can be mediated by a non-
selective fluid phase uptake, which is a very slow process in 
alveolar epithelium. A receptor-mediated endocytosis is much 
faster and occurs when specific high-affinity receptors are impli-
cated. Two pathways are described, called caveolae-mediated and 
clathrin-mediated endocytosis.

Detailed research on alveolar protein and debris clearance 
have only recently begun. Judging their roles is more complex, 
as hyperosmotic stimuli might be of anti-inflammatory action, 
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and possibly there is even more biological signaling as formerly 
assumed that may influence underlying lung disease.

POTeNTiAL NOveL APPROACHeS  
TO UNDeRSTANDiNg THe eFFeCTS  
OF iON CHANNeL STiMULANTS  
iN LUNg DiSeASe

Hyperosmolarity, High Na+ Content,  
or High Oncotic Pressure
One biological effect that has, to our knowledge, not yet been 
assessed is the question whether due to fluid reabsorption out 
of the alveolus the hyperosmolarity or hyper-oncotic situation 
is of biological effect. Several limitations have to be mentioned: 
Certainly the pulmonary surfaces including the mucus and the 
surfactant system and its layers are complex and disease-prone 
systems, as suggested in cystic fibrosis. Dose- and time response 
have to be taken into account. Actually, there are contradictory 
results on those effects: Some observations described anti-
inflammatory effects of hyperosmolarity in the airways, as in the 
nose and sinuses with a few randomized controlled trials that 
compared isoosmotic versus hyperosmotic irrigating solutions 
(473, 474). Honey is hyperosmotic and antibacterial, and in 
wound healing it seems frequently beneficial (475). This is also the 
case for hyperosmotic salt pastilles in throat and neck infections. 
However, nebulized hypertonic saline is still disputed in infants 
with acute viral bronchiolitis (476). There are also in  vitro cell 
model results showing a switch from adaptive to inflammatory 
gene expression by hyperosmotic stress by protein kinase R activa-
tion, NF-kappaB p65 activation with responsive genes including 
inducible NO synthase, interleukin-6, and interleukin-1β (477), 
others with some protection via p53 gene regulation (478). In 
a rat seawater drowning model, alveolar hypertonicity, but not 
iso-or hypotonicity-induced inflammation and vascular leak, 
thus edema probably by hypoxia-inducible factor-1 and including 
ataxia telangiectasia mutated kinase and PI3 kinase (479).

Local Na+ accumulation and enhanced availability have 
been linked to activation of tonicity-responsive enhancer bind-
ing protein (TonEBP) via the mononuclear phagocyte system 
in the skin (480), a system also widely represented in the lung. 
Enhanced local Na+ has been shown to boost pro-inflammatory 
TH17 cell production and, finally, IL-17 release (481). The 
pro-inflammatory phenotype is maintained in high-salt condi-
tions with upregulation of TNF-α and IL-2. As it is currently 
unclear what is the mechanism of enhanced Na+ presentation 
to activate the TonEBP, an enhanced Na+ accumulation in the 
extracellular matrix (482), the activation of Na+ channels or 
even a permissive role of an altered Na+/K+-ATPase activity 
via endogenous ouabain have to be considered (483). As all of 
these mechanisms are also represented in the lung, both Na+ 
presentation and availability should, therefore, be considered 
in pulmonary fluid regulation.

Briefly, there may be important, but so far not yet well 
understood anti-, or even pro-inflammatory, stimuli, or signals 
by hyperosmotic stimulation, underlining the importance to 
investigate this subject further.

SPeCiFiC CLiNiCAL SeTTiNgS wiTH 
POTeNTiAL SigNiFiCANCe OF ALveOLAR 
FLUiD ReAbSORPTiON iN iNFLAMeD 
LUNgS

RDS in the Newborn
Respiratory distress syndrome is one of the most important causes 
of morbidity and mortality in newborns and has a prevalence 
of about 1%. It is clinically manifesting as respiratory distress 
accompanied by abnormal pulmonary function and hypoxemia 
directly in the first minutes or hours after birth. RDS prevalence 
increases with decreasing gestational age. As such the incidence 
of RDS is highest in extremely preterm infants, affecting more 
than 90% of infants at a gestational age of 28 weeks or less. In a 
birth cohort of more than 230,000 deliveries, the syndrome was 
observed at 34 weeks gestation in 10.5%, at 35 weeks in 6%, at 
36 weeks in 2.8%, at 37 weeks in 1%, at 38, and more in 0.3%. 
Therapy is supportive, includes surfactant replacement, fluid 
restriction, and glucocorticoids. Whereas a viewpoint has been 
that qualitative and quantitative surfactant deficiency, inflam-
mation including alveolar neutrophil influx, and fluid overload 
(in part by low urine output) account for this syndrome, some 
reports hint to a suboptimal Na+ transport. During gestation, 
the lung epithelium secretes Cl− and fluid and develops the 
ability to actively reabsorb Na+ only during late gestation. At 
birth, the mature lung switches from active Cl− and consecutive 
fluid secretion to active Na+ and consecutive fluid absorption 
in response to circulating catecholamines. Changes in oxygen 
tension augment the Na+-uptake capacity of the epithelium and 
increase ENaC gene expression. The inability of the immature 
fetal lung to switch from fluid secretion to fluid absorption 
results, at least in large part, from an immaturity in terms of 
low expression of ENaC, where all three ENaC subunits are low 
in preterm relative to full-term infants. ENaC-α is increased in 
the respiratory epithelium by therapeutic glucocorticosteroids 
(484, 485).

However, in the last years the incidence of near-term and term 
infants with RDS has increased, and their clinical characteristics 
differ from those of premature infants with RDS. Li et al. found 
that death was virtually inevitable for some babies, despite 
intensive care and surfactant replacement therapy, particularly 
in near-term and term infants. Lung tissue slices taken during 
autopsies of near-term and term infants who died of neonatal 
RDS showed that some alveoli were obviously dilated, with a 
large amount of lung fluid. This was in addition to an alveolar 
collapse from a lack of surfactant, and suggested that lung fluid 
absorption disorders might be an important additional cause of 
RDS by influencing gas exchange or surfactant function (486). In 
their study on 120 neonates with RDS and 129 controls, 7 new-
borns died despite of intensive care and surfactant replacement 
therapy. All of them received surfactant more than once and four 
of them were near-term or term infants. Preterm babies (less than 
35 weeks of gestational age) had a better response to surfactant 
treatment than near-term and term babies. These results were 
consistent with the finding that the surfactant therapy was not 
effective for all newborns with RDS. The authors assessed the 
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relationship between RDS and 7 candidate polymorphisms of 
the SCNN1A gene that encodes α-ENaC. One single nucleotide 
polymorphism (rs4149570) of the SCNN1A gene was associated 
with RDS. Moreover, in a group of term infants (gestational age 
was 37  weeks or greater), another single nucleotide polymor-
phism locus (rs7956915) was associated with RDS. These results 
are consistent with the hypothesis that the causes of RDS are 
multifactorial, and that in term infants it might differ from those 
in preterm infants (487). Alveolar fluid reabsorption and, thus, 
α-ENaC might play a key role in the pathogenesis by influencing 
the amount of lung liquid absorption, especially in term infants 
with RDS.

Acute infection-Related Respiratory 
Failure
Pulmonary infections are the most prevalent infections world-
wide, most of bacterial or viral origin. Community-acquired 
pneumonia is a frequent infectious respiratory disease with an 
annual incidence of about 5–12/1,000, and leads to hospitaliza-
tion in 20–50% of patients. Mortality in hospitalized patients 
ranges from 5 to 15%. The most common reason for hospital 
admission in childhood is pneumonia and accounts for up to 50% 
of admissions. The high morbidity, mortality, and epidemiologic 
dangers with viral or bacterial pneumonias are of high concern. 
Pneumonia mortality is typically caused by flooding of the pul-
monary alveoli preventing normal gas exchange and consequent 
hypoxemia. We refer to excellent recent reviews (117, 371). Of 
note is that pneumonia and sepsis are by far the leading causes 
of ALI and ARDS. Sepsis is a major healthcare burden, mirrored 
by up to 45% of intensive care unit costs (64) and bearing a high 
mortality of about 30%. Cytokines and ion channels are key ele-
ments in this common health problem.

Lung Transplantation
Lung transplantation is a substitutive treatment of various end-
stage pulmonary disease. Cystic fibrosis, COPD, and idiopathic 
pulmonary fibrosis (IPF) are the most important transplanted 
patient groups (488). The high mortality rate relative to other 
solid-organ transplants is in part due to chronic rejection. The 
limited availability of donor lungs results in a highly limited treat-
ment strategy for patients in whom a survival benefit—estimated 
5-year survival is about 60%—is expected (488).

Primary graft dysfunction (PGD) is termed the development 
of allograft infiltrates within 72  h of transplantation together 
with impaired oxygenation, when other identifiable insults such 
as volume overload, pneumonia, acute rejection, atelectasis or 
vascular compromises are excluded. PGD is usually referred 
to ischemia–reperfusion injury, but additionally to any further 
mechanical, surgical or chemical trauma such as inflammatory, 
neural or hormonal events of the donor, high oxygen fraction 
during reperfusion, or lymphatic disruption. PGD is mild and 
transient in most cases, but 10–20% of patient situations are 
sufficiently severe to cause life-threatening hypoxemia similar to 
ARDS, based on the same mediators and cytokines and a dif-
fuse alveolar damage resembling ARDS. Similar to ARDS, it is 
considered a systemic disease, not only affecting the lung, but the 

whole patient. Thereby, the increased occurrence of cerebral dys-
function, i.e., patient delirium, worsens prognosis. Severe PGD 
quadruples perioperative mortality, the leading cause of early 
death of lung transplant recipients. In one study it is associated 
with a 30 day mortality of 63 versus 9%, and associated duration 
of mechanical ventilation is 15 versus 1 day (489) (Figures 9 and 
10). The risk of higher morbidity and death risk persists even 
after an often protracted recovery, suggesting that PGD triggers 
an increased risk for bronchiolitis obliterans syndrome as a 
manifestation of chronic allograft rejection (490).

Ischemia–reperfusion injury is the main mechanism for 
PGD (503, 504). With logarithmic function ischemia time is 
associated with reperfusion injury: Whereas 4  h ischemia is 
associated with about 13% more risk than 2  h, 6  h ischemia 
increases the risk by more than 50%, 8 h by a factor of 3, and 
10 h by a factor of about 8 (494). The hypothermic preservation 
increases oxidative stress, leads to accumulation of intracellular 
sodium and loss of intracellular potassium and an intracellular 
calcium overload, cell death with apoptosis (240) and necrosis. 
The release of pro-and anti-inflammatory cytokines such as 
TNF, INF-γ, IL-8, IL-10, IL-12, and IL-18 and complement 
cause smooth muscle contraction and increase vascular per-
meability, amplify by C5a the inflammatory response and are 
chemoattractant. Soluble complement receptor-1 is an accepted, 
but underused treatment based on a placebo-controlled clinical 
trial with 59 patients (505).

A huge part of the ischemia–reperfusion injury of lung allo-
grafts is mediated by the change in vascular shear stress due to the 
blood flow cessation. The endothelial sensing mechanism called 
mechanosome chiefly consists of PECAM-1, VEGR receptor-2 
(VEGFR2) and VE cadherin in the EC caveolae (499). It closes 
the KATP channel of the EC membrane, depolarizes it and leads 
to NADPH oxidase 2 activation as the main source to generate 
ROS. EC depolarization results in opening of T-type voltage-
gated Ca2+ channels, increase intracellular calcium, and NO 
synthase activation and consecutive NO-mediated vasodilation, 
and an overproduction of ROS that causes oxidative injury which 
triggers inflammation or even cell death (499). PI3K-Akt leads 
to NADPH activation, producing ROS. With ischemia, there is 
also an NO production by endothelial NO synthase, probably as 
a physiological response to the loss of blood flow. The ROS gener-
ated in ECs interact with signaling-related proteins and thus with 
enzymatic activity. NF-ƙB, activator protein 1 (AP-1), and c-Jun 
and c-Fos and the redox-sensitive HIF-1α, Nrf2, ATR/CREB are 
increased (499). Even although PMN are then recruited into 
lungs, the production of ROS by the endothelium is the initial 
signal.

Reperfusion further activates NADPH oxidase-2 leading to 
lipid peroxidation, which can be several fold more extensive than 
ischemia alone. Opening of an inward K+ channel was accompa-
nied with hyperpolarization and ROS as well as NO production. 
Mainly a PMN influx and macrophage activation contribute 
to that injury. There is a strong correlation between excessive 
oxidative stress markers and the acute donor lung injury extent, 
and immunological rejection including later chronic rejection in 
terms of bronchitis obliterans syndrome as both the major causes 
for lung graft failure (499) (Figure 9).
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The success of lung transplantation is much tempered by the 
limited organ supply. Many potential recipients are dying on the 
waiting list or being removed from the list because of clinical 
decline (506). Groups have therefore tried to expand the donor 
polls using extended criteria donors, with efforts to suggest rates 
of PGD, bronchiolitis obliterans syndrome, early morbidity 
and mortality to have equivalent to those with standard criteria 
donors (506). Most lung grafts come from brain-dead donors, but 
only about 15–20% of donors provide lungs that are satisfactory 
for lung transplantation (506). Strategies to expand the donor 
pool include the use of donation after cardiocirculatory death by 
doing a normothermic ex vivo lung perfusion (507), resulting in a 
study an about 28% increase in lungs suitable for transplantation. 
Problems are the increased risk of perioperative hypotension, 
warm ischemia time, a higher rate of aspiration, and more uncer-
tainty to predict the lung’s usability for transplantation. Ex vivo 
assessment and reconditioning might overcome some issues in 
the longer term (506) (Figure 9).

As shown before, using TNF tip peptide as preventative strategy 
in the left-sided unilateral orthotopic rat lung transplant model 
of prolonged cold ischemia we could show important biological 
effects, as highly severe lung injury with blood gas parameters 
qualifying for severe ARDS could be virtually prevented by the 
activation of the TNF lectin-like region (8) (Figure  11). The 
clinical pilot study of Aigner et  al. suggests relevant improve-
ment during established PGD by the TNF tip peptide (357). Both 

studies underline the biological potential of the TNF lectin-like 
region, i.e., the cytokine’s ion channel activation, thus its potent 
modulation of ALI, and thus its potential effect to prevent unto-
ward long-term effects.

interstitial Lung Disease, especially Acute 
exacerbation of idiopathic Pulmonary 
Fibrosis (aeiPF)
Idiopathic pulmonary fibrosis is a chronic and progressive lung 
disease of unknown etiology that occurs primarily in adults in 
their 50s and 60s and higher. Annual incidence is about 7–16 
cases per 100,000 in the USA and 0.2 – 7 per 100,000 in Europe. 
Prognosis is severe with a median survival of about 2–3 years after 
diagnosis (508).

Acute exacerbation of idiopathic pulmonary fibrosis is a 
highly important disease progression of high morbidity and 
an extremely high mortality of 50–90% (509). It is typically 
reported to have an annual incidence of 5–15 or more %, with 
a higher incidence in advanced disease, and is defined as an 
acute worsening of dyspnea and lung function without an 
identifiable cause. Intriguingly, aeIPF has quite similar clinical 
features and similar prognosis compared with non-idiopathic 
causes of acute respiratory worsening in IPF such as infection 
or aspiration. It is, therefore, debated whether etiologies are to 
be separated (509).

FigURe 9 | Pathophysiology and biological significance of pulmonary reimplantation response after lung transplantation (491–501). Adapted from Chatterjee 
et al (499), Whitson et al (496), Hartert et al (501), Basseri et al (498), Bharat et al (495), Bharat et al (497), Christie et al (492, 493), Huang et al (502),  
and King et al (491).
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There is some similarity between aeIPF and ARDS. However, 
the biological backgrounds are even much less understood. 
Gene expression profiles mainly show primarily infections or 
overwhelming inflammatory etiology, but more epithelial injury 
and proliferation as main profile, including gene expression of 
CCNA2, alpha-defensin, and apoptosis. Histopathologically, dif-
fuse alveolar damage seems frequently observed in aeIPF. This 
finding is similar to ARDS and also has systemic multiorgan 
disease consequences, as evidenced by autopsy findings (510).

A number of current pharmacotherapies are under inves-
tigation for the therapeutic challenge of aeIPF as reviewed by 
Juarez et  al., but no substance, combination of substances, or 
treatment modality (such as non-invasive ventilation which 
seems beneficial) has demonstrated such a clear benefit to 
become a new standard of therapy. This leaves clinicians with 
polypragmatic, mainly supportive care. Novel approaches are 
actually developed concerning immune suppression including 
calcineurin inhibitors, rituximab, removal of immune cells and 
mediators by either therapeutic plasma exchange or haemoperfu-
sions with polymycin-B immobilized fibers aimed to remove not 
primarily endotoxin, but also contributing cytokines, and maybe 
hemostasis modulating agents such as intravenous recombinant 
thrombomodulin (508). The option of modulating the inflam-
mation and to protect barrier function with, e.g., the biological 
action of TNF tip region is actually conceptualized in this group 
of severely sick patients.

Pre-eclampsia
Pre-eclampsia refers to the new onset of the combination of 
hypertension and proteinuria or of hypertension and end-organ 
dysfunction without or with proteinuria in previously normo-
tensive pregnant women after at least 20  weeks of gestation. 
About 4–5% of pregnancies worldwide are complicated with pre-
eclampsia, and first pregnancies are more frequently associated 
with this disease. Together with hemorrhage, thromboembolism, 
and cardiovascular disease, pre-eclampsia is one of the four 
leading causes of maternal death, accounting for 15% of them 
in the Western world. Prevalence is about 1 maternal death per 
100,000 live births. When pre-eclampsia occurs, the fatality rate 
is about 6 per 10,000. Severe acute diastolic dysfunction in severe 
pre-eclampsia can lead to pulmonary edema in this patient group. 
Maternal and fetal/placental factors seem responsible, such as 
abnormal trophoblast invasion of the spiral arteria of the decidua 
and myometrium early in pregnancy, a suboptimal uteroplacental 
blood flow possibly leading to high oxidative placental stress, 
altering placental angiogenesis, poor feto-placental vasculature 
and abnormal vascular reactivity. Endothelial dysfunction can 
be caused by systemic anti-angiogenic signals by anti-angiogenic 
factors. Elevated levels of soluble fms-like tyrosine kinase 1 (sFlt-
1; an inhibitor of vascular endothelial growth factor), reduced 
levels of placental growth factor (PlGF), and an increased sFlt-1: 
PlGF ratio have been reported both in women with established 
pre-eclampsia and in women before the development of pre-
eclampsia (511). This is moreover accompanied by increased pro-
inflammatory cytokine production, which in turn promotes renal 
and pulmonary barrier dysfunction and impaired ion channel 
activity. As a consequence, pulmonary edema is a severe feature 

FigURe 11 | Oxygenation at 24 h after transplantation. At sacrifice, 24 h 
after reperfusion of the left-sided lung transplant, the PaO2/FIO2 ratio was 
measured after excluding the native right-sided lung by clipping the 
right-sided stem bronchus and right-sided pulmonary artery. The animals 
were tracheotomized and ventilated with an FIO2 of 1.0. The tumor necrosis 
factor tip peptide significantly increased gas exchange compared with all 
other study groups. *p < 0.003 versus NaCl. Data are mean ± SEM. i.t., 
intratracheally (8).

FigURe 10 | Time course of mean AaPO2 after the onset of reperfusion 
pulmonary edema. Comparison of mean AaPO2 in four patients with intact 
alveolar epithelial fluid clearance (open squares) to the patients with no 
net alveolar epithelial fluid clearance (solid squares). The data for Patients 3, 
5, 6, and 8 are expressed as mean 6 SD. The data for Patients 2 and 4 are 
expressed as the average of the AaPO2 at each time point (45). Reprinted 
with permission of the American Thoracic Society. Copyright © 2017 
American Thoracic Society.
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of the disease. In this case, the edema can be multifactorial, due 
to left heart failure, and thus excessive pulmonary vascular hydro-
static pressure, to decreased plasma oncotic pressure, to capillary 
leak, or to iatrogenic volume overload (511, 512).

High-Altitude Pulmonary edema
About 100 million people live at altitudes greater than 2,500 m, 
about 15 million above 3,000 m, and some above 5,000 m (384). 
Most have developed the ability to live and reproduce at elevation 
as high as 5,000 m, but in some cases, develop chronic medical 
problems due to their high-altitude residence. At 5,500  m the 
pressure is about only half the normal. Furthermore, many low-
landers venture to high altitude for work and recreation. These 
more acute exposures also pose the hazards of acute altitude ill-
ness, e.g., in Colorado skiers in 15–40% of them with an incidence 
of HAPE then of 0.1–1%. The prevalence of HAPE depends on 
an individual’s susceptibility, the rate of ascent, the final altitude, 
but also heavy and prolonged exercise, and is higher in male. At 
altitudes of 4,500 m the prevalence is between 0.2 and 6%, and 
at 5,500 m between 2 and 15% (385). Many adaptive processes 
can vastly reduce the risk of such sickness. Susceptibility to 
altitude illness varies considerably between individuals, but for 
a single individual, the symptoms are often reproducible given 
the same rate of ascent. High-altitude pulmonary odemea is the 
most important complication of high-altitude illness and its most 
common cause of death. It typically manifests with 2–4 days of 
ascent to altitudes above 2,400 m, most commonly beginning on 
the second night. In the early stage of disease, decreased exercise 
performance occurs and individuals require increased amount of 
time to recover from exertions. Individuals also complained of 
fatigue, weakness, and persistent dry cough, possibly combined 
with symptoms of acute sickness. As the disease progresses, indi-
viduals become short of breath with minimal exertion. Dyspnea at 
rest, audible chest congestion, generalized pallor, nail bed cyanosis 
and production of pink frothy sputum are late findings in severe 
disease. Even in the absence of concurrent high-altitude cerebral 
edema, severe hypoxemia may produce mental changes, ataxia, 
and altered levels of consciousness. In general blood gas analysis 
reveals severe hypoxemia. Pulmonary arterial pressure is high, 
but pulmonary wedge pressure is normal, and heart size is not 
increased. Although the mechanism underlying HAPE remains 
incompletely understood, it appears that the elevated pulmonary 
artery pressure plays a pivotal role in the process. Multiple studies 
demonstrated that susceptible individuals have abnormally high 
pulmonary artery pressure in response to hypoxic breathing, dur-
ing normoxic and hypoxic exercise, and on high altitude before 
the onset of edema. Increased sympathetic tone, and alteration 
in vasoactive mediators-like endothelin-1, NO produced by 
pulmonary ECs may also lead to stronger hypoxic pulmonary 
vasoconstriction (384). In autopsies, a red cell rich proteinaceous 
alveolar exudate with hyaline membrane is characteristic. In all 
autopsies, areas of pneumonitis with neutrophil accumulation but 
no evidence of bacterial accumulation has been observed. Most 
reports mentioned capillary and arterial thrombi, fibrin deposits, 
hemorrhage, and infarcts. Uneven hypoxic vasoconstriction is 
discussed. Uneven perfusion is suggested clinically by the typical 
patchy radiographic appearance and by MRI studies in patients 

together with hypoxic blood gas parameters which demonstrates 
greater heterogeneous regional perfusion in HAPE-susceptible 
subjects (384). The estimated death rate of altitude illness is about 
7.7/100,000 trekkers, with increasing mortality during the last 
decade (386).

Treatment of HAPE consists, if ever possible, in descent from 
altitude, rest, oxygen supplementation, and administration of 
drugs such as corticosteroids and furosemide.

Prophylactic inhalation the β2AR agonist salmeterol decreased 
the HAPE incidence by more than 50% (387). The most pertinent 
explanation was that salmeterol would enhance the clearance of 
alveolar fluid since β-adrenergic agonists upregulate the clearance 
of alveolar fluid by stimulating transepithelial sodium transport. 
This hypothesis is supported by the fact that the level of sodium 
transport in the respiratory epithelium is lower in patients 
susceptible to HAPE. However, the study results cannot exclude 
the possibility that the beta2 agonist could have modulated vas-
cular permeability or the hemodynamic response associated with 
hypoxemia and HAPE (4).

In an experimental rat model simulating HAPE by hypobaric 
and hypoxic conditions equivalent to an altitude of 4,500  m 
with exhaustive treadmill exercise of 15  m per minute for 
24 h, then for an equivalent of altitude of 6,000 m for further 
48  h, it has been shown that the TNF tip peptide reduced 
pulmonary edema and increased the TJ occluding expression 
compared to high-altitude controls, dexamethasone, and ami-
nophylline treated control animals (7). Compared to untreated 
high-altitude control animals, TNF tip peptide significantly 
lowered levels of the inflammatory cytokines TNF, IL-1β, IL-6 
and IL-8 in bronchoalveolar lavage. TNF tip peptide-treated 
animals experienced less pulmonary edema also compared to 
dexamethasone-treated animals, and was more effective than 
its comparators in reduction of bronchoalveolar lavage protein 
content and inflammatory parameters (7). The higher expres-
sion of occludin may have translated in an increased stability of 
the alveolar–capillary barrier, probably related to the reduction 
in the extent of protein leakage in TNF tip peptide-treated ani-
mals. The results suggest that the biologic potential of the TNF 
tip region is more active in this model than dexamethasone as 
standard therapy on one hand, and as the glucocorticosteroids 
(7). The model suggests that HAPE can be treated with TNF tip 
peptide at least in a part of patients affected, and clinical studies 
are underway.

However, inhaled budesonide seems not consistently able to 
prevent acute mountain sickness and HAPE (513).

SUMMARY AND CONCLUSiON

Alveolar fluid reabsorption is of high clinical importance in both 
cardiac and non-cardiac edema. Clinically, a conservative fluid 
strategy in ARDS patients resulted in more ventilator-free days 
(514). There is evidence that lower vascular pressures reduce 
pro-inflammatory pathways (515), and in chronic hydrostatic 
pulmonary edema tissue remodeling ensues (516).

Recent studies of cytokine-ion channel interactions have 
clearly shown that the concept of ion channel modulation to 
improve AFC has to be broadened, also taking into account 
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previously ignored functions of these mediators. The concept of 
active interactions between barrier function and ion transport-
ers to maintain lung fluid balance plays a pivotal biological role. 
TNF’s lectin-like domain, mimicked by the TNF tip peptide, 
was demonstrated to strengthen capillary barrier function in 
the presence of bacterial toxins in vitro and in vivo. Indeed, 
influx, efflux, and tightness of the EC layer are all biologically 
interrelated. Such a relationship is also present in the alveolar 
epithelium with interactions with ion transporters and TJs (11). 
These observations suggest that the biologic potential of ion 
channel modulation with drugs or peptides is more relevant than 
initially presumed.

A conceptual problem in ALI and other inflammatory 
conditions is how fluid reabsorption can function in such an 
“un-tight system” as in partially destroyed endothelial-interstitial 
or interstitial-alveolar barriers, and what is the expression level 
of ion channels in those conditions (25). The same may hold 
true in the context of hypoxia and the decreased expression of 
ENaC. Regeneration and repair of injured, apoptotic or necrotic 
endothelial or AECs can be fostered endogenously by local or 
bone-marrow derived precursors or by exogenously administered 
factors, as formerly studied in animal models using progenitor cell 
populations and stimulants. Clinical refinements are underway 
and update outcome parameters, such as AFC (517).

In clinical situations with cardiogenic as well as with non-
cardiogenic pulmonary edema, i.e., ALI and ARDS, we have to 
be extremely cautious with prescribing drugs that might interfere 
with alveolar fluid transports or inflammation. Furosemide might 
further be the mainstay of diuretic drug and the alveolar flood-
ing stopper especially in cardiogenic edema due to its effect on 
NKCC1 and CFTR. Amiloride should not be taken. Many clinical 
questions will be open around beta blocking agents as well as beta 
stimulating agents in the context of pulmonary edema and will 
probably depend on their indication. cAMP may play some role, 
but from which point those two drug classes are counterproduc-
tive, remains actually open.

There has been much work focused on one ion channel with-
out considering the interconnection between major biological 

ion channels or its modulators, which may limit the validity 
of conclusions or findings of much published work. In future 
research it would be important to try to better integrate these 
channels, as well as their interactions with cytokines present in 
the lung milieu during the various pathologies. Many parallels 
exist between different organ systems and ion channels, underlin-
ing that interdisciplinary network is promising.

As shown in lung transplant primary graft failure, and thus 
probably also true in ARDS, ALI causes important and systemic 
long-term injury, especially brain injury. The critical step of high 
ethical impact for the scientific community is to expand integra-
tive translational research in terms of clinical investigation with 
the known targets to improve clinical outcome. This is especially 
important in lung transplantation, as donor shortage still leaves 
many patients worldwide dying without this therapeutic option, 
and possibly in ALI and ARDS.
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