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ABSTRACT
Community composition of the infaunal bivalve fauna of the St. Lucie Estuary and
southern Indian River Lagoon, eastern Florida was sampled quarterly for 10 years as
part of a long-term benthic monitoring program. A total of 38,514 bivalves of 137
taxa were collected and identified. We utilized this data, along with sediment samples
and environmental measurements gathered concurrently, to assess the community
composition, distribution, and ecological drivers of the infaunal bivalves of this
estuary system. Salinity had the strongest influence on bivalve assemblage across the
15 sites, superseding the influences of sediment type, water turbidity, temperature
and other environmental parameters. The greatest diversity was found in higher
salinity euhaline sites, while the greatest abundance of individual bivalves was found
in medium salinity mixohaline sites, the lowest diversity and abundances were found
in the low salinity oligohaline sites, demonstrating a strong positive association
between salinity and diversity/abundance. Water management decisions for the
estuary should incorporate understanding of the role of salinity on bivalve diversity,
abundance, and ecosystem function.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Ecology, Environmental Sciences,
Marine Biology
Keywords Bivalve, Estuary, Biodiversity, Water flow, Salinity, Sediment

INTRODUCTION
Estuaries are among the world’s most commercially important environments (Costanza

et al., 1997). Bivalves not only constitute a major fisheries resource (Gosling, 2003),

but also serve important roles in the ecology of soft-bottom estuarine communities by

influencing species composition (Newell, 2004; Vaughn & Hakenkamp, 2001), sediment

characteristics (Rhoads & Young, 1970), and the filtration of near-surface waters (Kiørboe

& Møhlenberg, 1981). Less understood, however, are the patterns of spatial and temporal

distribution within bivalve communities, and the functional diversity of these groups

(Vaughn, Spooner & Galbraith, 2007). Estuarine and coastal soft-bottom communities are

some of the ecosystems most likely to be impacted by human activity (Lotze et al., 2006),

thus bivalves have also become important biomarkers of anthropogenic impact (Montagna

& Kalke, 1995).
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There are numerous potential ecological drivers of bivalve distributions; salinity (Wells,

1961), sediment composition (Rhoads & Young, 1970), temperature (McMahon, 1979),

water flow (Dettman et al., 2004), larval transport (Wood & Hargis, 1971), and chemical

pollutants (Doherty & Cherry, 1988) have previously been linked to bivalve occurrence,

abundance, and growth. Recently, in the context of shell calcification, other potential

factors that may influence bivalve distributions have been highlighted as indicators

of changing marine conditions, such as pH and conductivity (Welladsen, Southgate &

Heimann, 2010). Understanding how bivalve communities associate with an array of

potential environmental gradients will help to identify indicator species and ecological

groups linked to particular conditions—whether as a sign of health, recovery from

disturbance, or the need for mitigation.

To examine the distribution of bivalves across a series of environmental gradients, our

research focused on the St. Lucie Estuary and southern Indian River Lagoon (SLE-IRL).

Located in southeastern Florida, the system is a part of one of the largest and most diverse

estuarine systems in North America (Gilmore, 1995). As a part of land-use changes and

wetland conversion to agricultural fields, freshwater outflow from Lake Okeechobee

is diverted into the St. Lucie Estuary and nearby waterways in periodic releases. These

releases have been implicated as major disturbances to the estuarine and saltwater fauna

of the region (Gunter & Hall, 1963), though saline influences are thought to be an effect of

the channelization of the St. Lucie Inlet (International-Americas, 1988). Land-use changes

have also promoted changes in sediment types, particularly the proliferation of ‘muck’, a

fine grained sediment rich in organic content (Trefry, 1996a; Trefry, 1996b) that covers the

bottom of estuary channels in layers as deep or deeper than 1 m (Riegl, Foster & Foster,

2009). The molluscan fauna of the region was previously described in detailed work by

Mikkelsen, Mikkelsen & Karlen (1995).

Studies of bivalve response to environmental change in the SLE-SIRL have been limited;

prior studies have focused on economically important oysters and hard clams (Busby, 1986;

Wilson et al., 2005). Given the diverse assemblage of bivalves found in the region, and

continued concern and interest in understanding the role of anthropogenic change to the

estuary, we examined the entire benthic infaunal assemblage of bivalve molluscs (hereafter

‘bivalves’) in the southern Indian River Lagoon and St. Lucie Estuary over a 9 year period to

elucidate patterns of distribution and environmental drivers.

METHODS
The benthic monitoring project conducted by the Marine Ecology Laboratory at the

Smithsonian Marine Station as a part of Everglades restoration activities (http://www.

evergladesrestoration.gov) generated long-term data on the infaunal bivalves of the

IRL-SLE, covering the years 2005–2014, sampled quarterly. We analyzed these data using

non-parametric statistics to examine patterns of occurrence, community composition,

distribution, and ecological drivers.

The SLE-SIRL benthic sampling program is a fixed site monitoring effort directed at

identifying trends in benthic condition and biodiversity. Sampling stations are situated
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Figure 1 Map of the study area. Numbered points indicate sampling sites; “C” labels indicate canals.

outside of maintained channels, not on sandbars or spoil areas. Each station is submerged

in at least 1 m of water at low tide, and less than 2 m of water at mean high tide. Sampling

is conducted at 15 sites (Fig. 1). Each site is visited 4 times per year—in January and

April (dry season) and July and October (wet season). These sites span all salinity regimes

within the St. Lucie Estuary and the southern Indian River Lagoon (SLE-IRL) including

Euhaline (30–40 parts per thousand), Mixohaline (5–30 ppt) and Oligohaline (0.5–5.0
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ppt). The sites cover the watershed in such a way that benthic responses to hydrologic

events stemming from the system’s tributaries can be detected and analyzed. Samples

consist of 3 ponar grabs for fauna, a series of water metrics, and two cores for sediment

characteristics from each site.

Infaunal invertebrates are collected utilizing a 0.02-m2 Petit Ponar grab (3 replicates

per site). After being extracted through a sieve with 0.5-mm mesh size in the field, the

samples are immediately preserved in a solution of 4–7% buffered formalin, diluted in sea

water, and stained with Rose Bengal. Infaunal samples are stored in the buffered formalin

solution for at least 1 week, then transferred to 70% ethanol and sorted by means of a stereo

microscope (×6 magnification). All specimens are identified to the lowest possible taxon,

and the number of individuals of each taxon is calculated.

Environmental variables including surface and bottom water temperature, conductivity,

dissolved oxygen, pH, and salinity are measured at each site on each sampling occasion

(YSI 556, and YSI ‘Professional Plus’ instruments). The turbidity is measured with both a

Secchi disk (limnological), and a Hach 2100P Turbidimeter. The time of day and weather

conditions are recorded at each sampling site on each occasion. This data is maintained at

the Smithsonian Marine Station.

Bottom substrate samples for sediment analyses are collected by means of an Ogeechee

corer. Two replicate cores are taken at each site, independently of Ponar grabs. The

sediment from the cylinders is further divided into subsamples from two substrate depths

(0–2 cm and 2–5 cm). The color of the sediment at ca 5-cm substrate depth is recorded. A

general sediment type (sandy, silty, clay) on the basis of appearance and texture, and the

absence/presence of hydrogen sulfide (H2S) odor are also determined. Sediment samples

are frozen until processed in the lab. The frozen sediment samples are placed individually

in pre-weighed aluminum containers. After weighing, these samples are placed individu-

ally in a drying oven (80 ◦C) until the sample has reached constant weight (usually about

one week). When they have reached room temperature, the samples are weighed again

and transferred to a muffle furnace (500 ◦C) for 5 h. After weighing (procedure described

above), these samples are discarded. Water content, and percent loss on ignition (a coarse

measure of organic content in the sediment) are calculated from these measurements.

Separate sediment core sampling at a substrate depth of 0–5 cm are conducted at every

site once per year for granulometric analyses following ICES standards, utilizing geological

sieves of 4,000 µm, 2,000 µm, 500 µm, 250 µm, 125 µm, and 63 µm sizes in a Meinzer II

Sieve shaker. Grain size distributions were calculated from geological sieves (Folk, 1980).

ANALYSIS
Annual sediment analysis was conducted using the program Gradistat (Blott & Pye,

2001). We utilized ‘geometric mean particle size’, along with ‘Percent Loss on Ignition’

at two different sediment depths, as descriptive environmental variables of sediment

characteristics in total community analysis. Sediment types were defined using the

modified Folk and Ward method supported by Blott & Pye (2001). More complete

descriptions of the annual sediment samples are presented in Table 2.
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Table 1 Diversity analysis of bivalves surveyed in the Indian River Lagoon and St. Lucie River.

Site S N d J′ H′ (loge) 1-Lambda′

M01 8 7.26 3.53 0.46 0.95 0.54

M02 24 165.21 4.50 0.35 1.11 0.59

M03 5 18.14 1.38 0.41 0.66 0.45

M04 8 35.99 1.95 0.05 0.10 0.03

M05 6 4.68 3.24 0.18 0.32 0.16

M06 30 10.46 12.35 0.52 1.77 0.74

M07 67 38.58 18.07 0.64 2.68 0.90

M08 55 29.73 15.92 0.68 2.74 0.93

M09 60 18.25 20.31 0.68 2.77 0.95

M10 32 19.39 10.46 0.73 2.52 0.94

M11 38 13.72 14.13 0.71 2.57 0.96

M12 59 47.14 15.05 0.60 2.45 0.89

M13 52 7.89 24.69 0.81 3.19 1.08

M14 15 91.96 3.10 0.32 0.87 0.39

M15 6 2.33 5.90 0.58 1.04 1.01

Notes.
S, Total species; N, Average number of individuals; d, Species Richness (Margalef); J′, Pielou’s evenness; H′, Shannon;
1-Lambda′, Simpson.

Environmental variables were normalized, and evaluated using a Euclidian distance

matrix in PRIMER- 6 (Clarke & Warwick, 2001), avoiding the application of Bray-Curtis

measures to non-community data (Clarke & Gorley, 2006). Draftsman plots and Principle

Components Analysis (PCA) were utilized to evaluate orthogonality and colinearity

amongst environmental variables. Groups of variables found to be colinear were reduced

to a single representative for graphical presentation.

Biological data was analyzed using the multivariate statistics package PRIMER-6

and the statistical programming environment R (Team, 2006). Only samples which

contained at least one bivalve were included in the analysis (n = 1,029 grabs). Datapoints

missing critical environmental measures (such as sediment) were excluded. The three

grab subsamples were averaged within a single sampling date per site (n = 343). In

some analyses and visualizations (such as nMDS), all samples for a single site were

averaged. Diversity analyses included Species Richness, Shannon, and Simpson indices

(Table 1). As a means of reducing zero-inflated skew, the bivalve data were square-root

transformed and initially analyzed using a Bray-Curtis distance matrix for comparison

within the dataset. Similarities among the bivalve communities at the 15 sites were

visualized using nonmetric multidimensional scaling and measured using cluster

analyses. Paired measures of similarity among the sites were tested with a Permutational

MANOVA. Bivalve community composition and the dominance of individual species

were compared between sites within the IRL-SLE using the SIMPER program (Clarke &

Warwick, 2001).
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Table 2 Granulometric analysis of sediment distribution and classification arranged by sampling site.

%4 mm %2 mm %500 µm %250 µm %125 µm %63 µm %<63 µm

M1 0.15 0.15 0.73 0.97 55.45 41.53 1.02

0.30 1.70 96.98 1.02 100.00 FINE SAND

M2 14.62 2.43 5.00 3.69 30.94 38.25 5.06

17.05 8.69 69.20 5.06 100.00 COARSE SANDY FINE SAND (W. GRAVEL)

M3 1.66 9.61 8.13 9.94 21.15 14.42 35.09

11.27 18.06 35.57 35.09 100.00 SAND FINE/COARSE SAND/CLAY (W. GRAVEL)

M4 5.19 5.10 3.13 4.04 12.26 15.65 54.62

10.29 7.17 27.91 54.62 100.00 FINE SANDY CLAY (W. GRAVEL)

M5 1.50 4.38 5.95 5.69 14.87 13.43 54.18

5.88 11.64 28.30 54.18 100.00 FINE SANDY CLAY

M6 0.58 1.80 13.00 29.31 15.14 14.24 25.93

2.38 42.31 29.38 25.93 100.00 SAND FINE/COARSE SAND/CLAY

M7 0.01 0.07 0.45 5.69 21.82 63.65 8.32

0.08 6.14 85.47 8.32 100.00 FINE SAND

M8 0.04 0.23 1.74 17.54 30.31 41.12 9.02

0.27 19.28 71.43 9.02 100.00 COARSE SANDY FINE SAND

M9 0.38 0.32 5.37 44.63 31.28 13.26 4.76

0.70 50.00 44.54 4.76 100.00 CLAYEY COARSE SAND

M10 1.27 0.12 0.36 1.10 21.64 68.95 6.56

1.39 1.46 90.58 6.56 100.00 FINE SAND

M11 0.20 0.07 0.33 1.05 17.23 75.41 5.70

0.27 1.38 92.64 5.70 100.00 FINE SAND

M12 0.07 0.31 4.72 43.88 27.16 18.62 5.25

0.37 48.60 45.78 5.25 100.00 CLAYEY COARSE SAND

M13 1.86 1.02 4.66 38.93 38.00 9.58 5.95

2.88 43.59 47.57 5.95 100.00 COARSE SANDY FINE SAND

M14 0.63 0.93 1.30 1.74 34.38 54.43 6.59

1.56 3.04 88.81 6.59 100.00 FINE SAND

M15 0.20 0.61 2.36 8.28 34.56 30.78 23.22

0.80 10.63 65.34 23.22 100.00 CLAYEY FINE SAND

Links between the patterns of abundance of bivalve species in the faunal samples and

environmental variables were sought utilizing the BEST routine in PRIMER. Permutation

tests (999) allowed for the determination of statistical significance at the 1% level.

RESULTS
A Principle Components Analysis (PCA) was used to visualize the environmental data

(Fig. 2). Colinearity of the same environmental variables at different depths (i.e., Surface

O2, and Benthic O2) justified the removal of surface readings (data not shown). As

expected, bottom temperature and bottom oxygen are nearly orthogonal, with oxygen

declining with increased temperature. Sediment characteristics were grouped, with “Per-
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Figure 2 Principle components analysis of environmental measures taken across 15 sites in the Indian
River Lagoon and St. Lucie River.

cent Loss on Ignition” and Sediment Geometric Average grain size roughly co-linear. Also

visible is a negative relationship between declining pH, and increasing Loss on Ignition.

The bivalve dataset was composed of 38,514 individuals of 137 taxa. Bivalve richness

ranged from 5 to 67 taxa per sample (at sites M7 and M3, respectively). Excluding samples

where no bivalves occurred, average abundance ranged from 2.33 (sd = 2.7) to 165.21

(sd = 337.29) individuals per grab (at sites M15 and M2, respectively).

Permutational MANOVA (999 permutations, site as random factor) reveals that

bivalve groups differed at each of the 15 sites (pseudo-F = 15.146, P = 0.001). Pair-wise

comparisons within the Permutational MANOVA are suggestive that all groups differ from

one another (P < 0.05), with the exception of sites M3 and M4, which did not significantly

differ (P = 0.234).

A Bray-Curtis matrix of square root transformed abundance data was used in

non-metric Multi Dimensional Scaling and related Cluster analysis to visualize patterns of

similarity within the bivalve community. Clustering demonstrated statistically significant

grouping at the 20, 40, and 60% similarity levels. Sites M1 and M15, grouped together

at the 20% level. Sites M2, M14, M3, M4, M5, and M6, also grouped at 20%, with 40%

similarity of two groupings: M2 and M14, and M3–M6. Sites (M7–M13) grouped at 40%

similarity (Fig. 3). The three groupings of the community data at the 20% level correspond

with salinity habitat descriptions. Sites M1 and M5 are oligohaline, with average salinities

less than 5 ppt. Sites M2–M6 and M14 are mixohaline, while M7–M13 are euhaline.

Heterogeneity of Dispersion, here used as a measure of Beta Diversity following

Anderson, Ellingsen & McArdle (2006), was calculated for the sites (alpha = 0.05). The

highest values were found for site M13 (49.618), the lowest for site M3 (29.688). Beta

Diversity was also calculated for the three habitat types established in Cluster Analysis

(oligohaline, mixohaline, euhaline). Euhaline habitats in the SLE-IRL had the lowest
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Figure 3 Cluster analysis of community resemblance, as nMDS overlay. The three clusters visible at the
20% level correspond to the average salinities: M1 and M15 are oligohaline (almost freshwater), M2–M6,
M14 are mixohaline (brackish), M7–M13 are euhaline (saltwater).

heterogeneity (42.785, se = 0.8237), followed by mixohaline (48.075, se = 1.2357), and

oligohaline (52.437, se = 2.8626).

The search for linkages between environmental parameters and the abundance data

of the bivalve fauna was performed with the BEST procedure (Clarke & Warwick,

2001). Bottom salinity was the best descriptor of community composition, with a

correlation between the Bray-Curtis faunal abundance matrix and the Euclidian matrix

of environmental variables describing 51% of the pattern (BEST match permutation

test, p < 0.001). Increasing the number of environmental variables contained in the

model did not improve the correlation, with the strongest alternative descriptors being

a two-variable combination of bottom salinity and bottom pH, capable of describing 34%

of the combined matrices.

The similarity percentages routine ‘SIMPER’ was used to examine the percent

contribution of individual species to the community composition of individual sites

(Dataset S1). Species that composed 20% or greater of the individuals found at any site

were considered dominant taxa. Seven taxa fit this criterion: Rangia cuneata, Mytilopsis

leucophaeata, Mulinia lateralis, Tellina sp., Abra aequalis, Chione sp., Nucula proxima

(Fig. 4). Shifts in the abundance and, therefore, assemblage of these key species is evident

along a gradient of salinity (Fig. 5). Mulinia lateralis for example, composes a large portion

of the total bivalve abundance at mixohaline sites M2–M6 + M14, and quickly decreases in

euhaline sites M7–M13 (Fig. 4).

DISCUSSION
In accordance with Wells (1961) and other classic studies, we found that patterns of bivalve

community richness corresponded most strongly to bottom salinity. Other environmental
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Figure 4 Species composition by site, arranged in order of salinity (increasing to the right). Dominant
species are represented as individual colors, all other bivalve species together are coded as grey. Numbers
at the top of each bar are the total number of individuals (subsamples averaged) at each site represented
in the analysis.

measures related to sediment type and condition and to water pH, turbidity, and

temperature—which play roles in bivalve community structure in other areas—did not

play a major role in the structuring of the bivalve community in the IRL. Total abundance,

however, was not tied to salinity, but instead was dominated by a few ‘opportunistic’

species capable of maximizing the resources available at sites that appear to be challenging

for a more diverse community.

Two groupings are apparent within the bivalve community. Of our dominant taxa,

Mulinia lateralis, Mytilopsis leucophaeta, and Rangia cuneata cluster within the St. Lucie

River Estuary, while Tellina sp., Abra aequalis, Chione sp. and Nucula proxima are more

frequently found within the Indian River Lagoon (Fig. 4). The division between these

groups most clearly corresponds to a shift in salinity, but taxon-specific traits likely

contribute to associations within each group.

All of the dominant species in our study have planktonic larvae, including Rangia

cuneata, which has the greatest penetration upstream. Larval feeding behavior for these

taxa is largely planktotrophic, or unknown, with only Nucula proxima having lecithotropic

larvae (Mikkelsen, Mikkelsen & Karlen, 1995). Adult size may also be factor in the

distribution of bivalves in the IRL-SLE, with larger, heavy shelled taxa such as Chione

found almost exclusively in the lower reaches of the system, while smaller lighter shelled
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Figure 5 Average abundance (number of individuals) of dominant bivalve species represented as
bubble-map overlay on nMDS plot of sample sites within the SLE-IRL. nMDS plot prepared with
Bray-Curtis similarity matrix. Larger bubbles indicate higher abundance. Location of sites within the
nMDS roughly corresponds with geographic locale, St. Lucie River Estuary to the left, Indian River
Lagoon to the right.
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species such as R. cuneata and Mulinialateralis were competent and abundant in the more

loosely aggregated sediment types of the middle reaches of the estuary.

Suspension feeders were found throughout our study area, but the three deposit feeders

(Abra aequalis, Tellina sp., Nucula proxima; Mikkelsen, Mikkelsen & Karlen, 1995) were

largely restricted to the most saline sites, suggesting that the lower salinity mixohaline sites

are entirely lacking this guild of bivalves. This is particularly interesting in that benthic

suspension feeders and deposit feeders generally do not occur at the same sites (Dame,

2012), but in this dataset, deposit feeders are limited to sites shared with suspension

feeders. This may also explain the higher diversity at high salinity sites. The composition

of suspended sediments may impact the feeding ecology of benthic organisms through

variation in the ability to separate organic and inorganic particles (Galimany, Ramon &

Ibarrola, 2011), or ecological impacts of turbidity (Lunt & Smee, 2014), when at levels

above those observed in the study area.

Sites with the greatest freshwater influence (predominantly within SLE) had exception-

ally low diversity/richness. The Oligohaline site M1 had a single dominant taxon- Rangia

cuneata. Of the ‘native’ bivalve fauna, R. cuneata has the greatest tolerance for low salinity

environments (Henry & Mangum, 1980). R. cuneata was believed extirpated from the

Atlantic coast, before a recent expansion (Hopkins & Andrews, 1970). Invasive freshwater

clams Corbicula flaminea, were also detected at site M14, our site closest to the freshwater

outflowing from Lake Okeechobee via the C44 canal (Fig. 1). Total numbers were low (n =

264), but composed up to 43% of the limited bivalve samples from this area at some times.

Mulinia lateralis had the most variable occurrence—spanning many conditions—of

any species studied here. Previous work on M. lateralis has supported the idea that while

the adults are capable of withstanding great variability in environment, the larvae are

less robust to salinity change (Lough, 1974). M. lateralis was also among the ‘r selected’

species found to dominate post-catastrophic benthic invertebrate populations in Tampa

Bay (Santos & Simon, 1980). The apparent dietary preference of this species for suspended

bacterial particles (Chalermwat, Jacobson & Lutz, 1991) corresponds well with the “poor

water quality” (i.e., aqueous muck, low bottom oxygen content, etc.) observed at sites

where it is most abundant. This suggests that the tremendous variability seen in this

species’ occurrence could also be a result of salinity ‘windows of opportunity’ for the

larvae to colonize polyhaline sites out of the range of more stenohaline competitors, and a

tolerance for “muck” at poor water quality sites.

Mulinia lateralis was the single most abundant bivalve taxon, with an average of 15.79

individuals per sample (range = 0–1,885), and a total of 16,251 individuals included in this

study. M. lateralis reach peak abundance at site M2, with a much reduced presence in areas

of greater bivalve diversity (sites M7–M13) (Fig. 4), which likely indicates the dynamics of

an opportunist that reaches greater densities when released from competition from other

bivalve species (Chalermwat, Jacobson & Lutz, 1991). Thus, future research could reveal

interesting effects of direct or indirect interactions within the bivalve communities.

Among the species associated with the saltier IRL, Tellina sp. apparently avoid the sites

with the most total environmental variability (M3–M5), but do appear at M2 and M14,
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which are mixohaline (Fig. 5). The sites with the most abundant Tellina sp. shared variable

salinity, but fine-grained sand, suggesting that sediment drives the distribution of this

particular taxon (Table 2).

Other ecological factors not included in this study may impact the abundance and

distribution of estuarine bivalves and contribute to the patterns observed. Seasonal

estuarine waterfowl such as Lesser Scaup (Aythya affinis) are active predators on bivalve

molluscs (Badzinski & Petrie, 2006), as are locally important fishes such as Black Drum

(Pogonias cromis) (Brown et al., 2008). Crabs of several families are important modifiers

of bivalve communities in southeastern estuaries (Johnson, Grabowski & Smee, 2014).

Interactions between predation and physical parameters such as turbidity (Lunt & Smee,

2014) may also have large scale impacts on community structures that are not attributable

in the data presented here.

CONCLUSION
Throughout all analysis, salinity regime was the dominant influencing factor. Salinity

changes within the IRL-SLE have a long history with human use of the area (Trefry, 1996a),

coming from the hardening of inlets, increases in water-impermeable surfaces in the

watershed, and direct releases of water-storage from Lake Okeechobee (Kim et al., 2002;

Sime, 2005). The fluctuation of salinity within the study area is likely to have large effects

on the salinity-driven benthic community documented here. Temporal patterns in salinity

effects will be described in a forthcoming manuscript. The role of altered freshwater flow

regimes and salinity in altering the ecological characteristics of individual bivalve species

is well documented from estuaries around the world, including the Colorado River Delta

(Schone et al., 2003), and has been one of several factors considered in the reduction of

seagrass in the Indian River Lagoon (Fletcher & Fletcher, 1995).

The results of this study, when viewed with the importance of bivalves as predictors of

environmental change, determinants of water quality, and ecosystem engineers, inform

decision making for the region. One result is a demonstration of the primacy of salinity

in the development of bivalve community structure in the area. The manipulation of

salinity in this ecosystem will have predictable, detectable consequences on the bivalve

community. The abundance and apparent proliferation of muck sediments in the southern

IRL and St. Lucie River Estuary has led to management efforts to curb their spread (Zhang

et al., 2003). Our long-term invertebrate sampling reveals that while muck sediments

may be a limitation for some species, the overall importance of these sediments to bivalve

community structure in the IRL-SLE is minor in comparison to salinity. Management

strategies for sediment composition and other issues affecting the IRL-SLE need to be

paired with salinity control, as one without the other will likely be ineffective in shifting

community diversity and overall lagoon health.
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