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Abstract

pre-selected SNPs.

Background: The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic
acids) is a major factor determining seed quality in soybean.

Methods: To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association
analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536

Results: The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of
the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation.
A total of 37 significant (p < 0.01) associations with FAs were identified by association mapping analysis. These
associations were represented by 33 SNPs (occurring in 32 annotated genes); another four SNPs had a significant
association with two different FAs due to pleiotropic interactions. The most significant associations were cross-
verified by known genes/QTL or consistency across cultivation year and subpopulations.

Conclusion: The detected marker-trait associations represent a first important step towards the implementation of
molecular-marker-based selection of FA composition with the potential to substantially improve the seed quality of
soybean with benefits for human health and for food processing.
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Background

Cultivated soybean (Glycine max L. Merr) produces seeds
with 15 to 25 % oil and is primarily grown as a major
source of plant edible oil [1, 2]. The nutritional value,
flavor and stability of soybean oil is determined by its five
dominant fatty acids (FAs), including saturated palmitic
(16:0) and stearic (18:0), monounsaturated oleic (18:1),
and polyunsaturated linoleic (18:2) and alpha-linolenic
(18:3). Reduction of saturated palmitic acid and increase
of unsaturated FA concentrations in soybean oil is desir-
able to improve human cardiovascular health. »-6 linoleic
and -3 linolenic acids are essential to humans but cannot
be produced by human metabolism and therefore must be
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obtained from the diet. However, the presence of high
levels of polyunsaturated fatty acids (PUFAs), especially
linolenic acid, increases autoxidation which causes off-
flavor, and reduces the shelf life of soybean oil.

The inheritance of the five dominant FAs in soybean is
controlled by major and minor genes [3]. Identifying
molecular marker or quantitative trait loci (QTL) associ-
ated with FAs using marker-assisted selection (MAS)
would facilitate the development of improved varieties
to meet the widespread demand for healthier soybean
oil. Linkage mapping is the traditional strategy for the
identification of QTL using bi-parental mapping popula-
tions and has relatively high power and a low false posi-
tive rate. Several QTLs related to FAs have been
reported [3—9] and a number of molecular markers asso-
ciated with unique FAs were developed subsequently
[10-12]. However, the utilization in breeding programs
of QTL/molecular markers in the development of MAS
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or backcrossing for altering FAs has been limited due to
low consistency across different genetic backgrounds
resulting from the small fraction of the possible alleles sam-
pled. Effectiveness is further restricted by the limited reso-
lution and accuracy of these QTLs resulting from the low
number of recombination events within bi-parental map-
ping populations, especially in genomic regions with high
levels of linkage disequilibrium (LD). Therefore, it is neces-
sary to clarify the molecular basis of natural variation and
identify molecular markers associate with unique FAs in
unrelated soybean germplasm with broad genetic diversity.

LD-based association mapping enables the identifica-
tion of putative nucleotide polymorphisms responsible
for phenotypic differences denoted as quantitative trait
nucleotide(s), QTN, by searching for marker-trait associ-
ations. Association mapping has four main advantages:
high mapping resolution, rich allele number, a reduction
in time spent establishing mapping populations and
greater utilization in MAS. Therefore, association map-
ping is increasingly used to dissect the genetic architec-
ture of complex quantitative traits in soybean using
universal SNP chips (i.e. Universal Soy Linkage Panel 1.0
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with 1536 SNPs, SoySNP6k BeadChip with 5361 SNPs
or SoySNP50K iSelect BeadChip with 52,041 SNPs) [13—
18], genotyping by sequencing (GBS) [19-22] or re-
sequencing [23], as complementary approaches for link-
age mapping. Based on these analysis, a set of QTNs had
been obtained which are significantly associated with
maturity, plant height, seed weight, oil content, protein
content, and resistance to soybean cyst nematode, scleroti-
nia stem rot, or white mold. The genetic basis of FA pro-
duction, however, has not been fully elucidated using the
association mapping approach in soybean.

To identify maximum genetic and phenotypic diversity
of FAs, extant genetic resources from representative
Chinese soybean core and applied collections [24], were
genotyped using a 1536 SNP (mainly non-synonymous)
chip and phenotyped in this study over three years. Sub-
sequently, a genome-wide scan for significant markers
was performed for further understanding of the genetic
basis of differences in FAs and to enable the effective
use of FA genetic resources. The results suggest that the
association mapping approach is valid for detecting fa-
vorable alleles for FAs in soybean.
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Fig. 1 The geographic location, distributions and population structure across the range of cultivated soybean. a The geographic distributions of
421 soybean accessions analyzed in this study. The accessions assigned into three inferred genetic clusters (Northeast, central and South China)
are indicated by solid blue, red and green circles respectively. Accessions with mixed genomes are indicated by the solid gray circle. b Inferred
population structure of the soybean panel partitioned into three segments (K= 3). Each color represents one cluster, and the length of the
colored segment shows the accession’s estimated proportion of membership in that cluster as calculated by STRUCTURE. The accessions are
shown in order of latitude (°N) of their origin
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Methods

Plant materials

A worldwide set of 421 soybean accessions was selected
(Additional file 1) comprising 248 genotypes from the
Chinese mini-core collection, 142 lines from the ap-
plied core collection of the Chinese National Soybean
GeneBank (CNSGB) and 31 accessions from other
countries worldwide (Fig. 1a). The lines from the Chinese
mini-core and applied core collections have been de-
scribed elsewhere [24, 25]. Each accession used in this
study has been examined for phenotypic and/or genotypic
homogeneity.

Phenotyping data collection and analysis

The 421 accessions were evaluated in field trials in 2010,
2011 and 2012 in Sanya (SY10, SY11 and SY12, 18.2°N,
109.5°E), Hainan Province, China. The experiments were
conducted following sowing in early January to early
March each year. In all years, three biological replicates
(rows) were planted following a complete random design.
A row was 0.55 m wide and 1.5 m long with a spacing
between plants of 0.10 m.

Seed was harvested after the accessions were grown to
final maturity. The seeds from three replicate samples
were pooled by accession and analyzed for FA compo-
nents at the Agricultural Experiment Station chemical
laboratories of the Chinese Agricultural University
(CAU) in 2010, 2011 and 2012, respectively. The FA
components were analyzed using an HP6890 gas
chromatogram (GC) (Agilent Technologies, Palo Alto,
CA, USA). Individual FA contents were calculated as
percentage (%) of total free FA. All of the data were
normalized by using both the seed weight and an
internal reference. FA data used in the association
mapping was the average of three replicates for a
genotype. Variance component and heritability of tar-
get traits were analyzed using the R software lme4
package assuming random genotype and environment
effects (http://www.r-project.org/). Pearson moment
correlations between the five FAs pairwise were calcu-
lated by PASW statistics [26].

SNP genotyping data collection

Twenty-four metabolic pathways and more than 600
annotated genes have been reported to be associated
with the biosynthesis and degradation of acyl-lipids in
Arabidopsis [27]. To dissect the genetic basis of FA
production in soybean, using a targeted association
mapping approach, 1794 putative homologous genes
were annotated in the palaeopolyploid soybean by se-
quence comparison of known gene families in Arabidopsis
[27, 28]. A total of 1536 single-nucleotide polymorphism
(SNP) were selected from the group of SNPs produced by
comparison of 55 whole-genome re-sequenced soybean
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genomes [29, 30] and the first soybean transcript map
[31], to design a SNP genotyping array, which originated
from putative homologous genes [28] and known QTL re-
gions [5, 7, 8, 32, 33], randomly selected along chromo-
somes. Four hundred and twenty-one soybean accessions
were assayed using the Illumina BeadArray platform
(lumina Inc., San Diego, CA, USA) following the
manufacturer’s protocol. DNA was extracted from a
bulk of young leaf tissue of 20-30 plants per accession as
previous described [34]. A group of 242 SNPs with a
GenCall score of <80 % and GenTrain< 0.6 were ex-
cluded from further analysis since it was difficult to
separate homozygote and heterozygote clusters, as de-
scribed in our previous study [25]. A further 69 SNPs
were removed due to either an excessive failure rate
(10 % or more of samples) or to apparent heterozy-
gosity (>20 % of samples). Finally, 20 polymorphic
loci with minor allele frequency (MAF) <5 % were re-
moved from association mapping analysis. In the end,
the final data set reflected the allelic state at 1205
SNP loci (Additional file 2)

Analysis of population structure

Summary statistics, including the number of alleles, the
frequency of major allele, gene diversity, the proportion
of heterozygous individuals in the population and het-
erozygosity for each SNP locus were calculated using
PowerMarker 3.25 software [35]. A subset of 756 SNPs
which were evenly distributed across all 20 soybean
chromosomes was selected to determine the population
structure (Additional file 2), using Bayesian Markov
Chain Monte Carlo approaches incorporated in the soft-
ware package STRUCTURE 2.1 [36]. The admixture and
independent allele frequency model was employed, using
cluster number (K) ranging from 1 to 10. Twenty runs
were performed for each value of K, without using
previous population information, with a 100,000 burn-in
length and 100,000 iterations. The estimated log likelihood
values increased as the values of K increased, which indi-
cated no clear genetic structure so the derivative of the log
likelihood (AK) was used to determine the most likely
number of sub-clusters as previously reported [37].

Association mapping

Marker/trait associations were tested for 1205 SNP loci
with each of five averaged FAs using TASSEL 4.0 standa-
lone software (http://www.maizegenetics.net). Since gen-
ome wide association studies can be susceptible to false
positive associations from population stratification, a
mixed linear model (MLM) method [38] with subpopu-
lation membership percentage (Q matrix) and Kinship
(K matrix) were performed. Q matrix and K matrix were
inferred from the STRUCTURE and TASSEL 4.0 standa-
lone programs, respectively, using allelic data from 756
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evenly distributed SNP markers (Additional file 2). The
threshold p-values for significant marker-traits associa-
tions were set at 0.001 by considering the scale of SNPs
used in this study.

Results and discussion

Genotyping results

Four hundred and twenty-one soybean accessions were
fingerprinted by a genotyping array designed with 1536
SNPs known to be present in 55 representative soybean
accessions [29]. After exclusion of SNPs with a high fail-
ure rate or heterozygosity, 1205 markers met the thresh-
old of quality control in this panel. Since an annotated
gene approach was adopted to design the genotyping
array, the majority (93 %) of the 1205 SNP were located
in coding regions (CDS), the untranslated region (UTR)
and the introns of 1074 annotated genes (Glyma v1.1).
Of the 1077 SNPs in coding regions, 345 (32 %) were
synonymous whereas 702 (65.2 %) were non-synonymous.
In addition, 16 SNPs created a stop codon and 14 were
found to have caused a change of open reading frame.
The detailed information for each SNP can be found in
Additional file 2.

Population structure

For inferring population structure in the 421 soybean ac-
cessions, 756 SNPs evenly distributed across 20 soybean
chromosomes were selected from 1205 SNPs. STRUC-
TURE analysis showed that the logarithm of the data
likelihood (Ln P(D)) continued to increase with increas-
ing numbers of assumed subpopulations (K) from 1 to
10. The ad-hoc quantity based on the second order rate
of change in the log probability (AK) revealed that the
uppermost model value of K was at K=3 suggesting
three genetically distinct subpopulations with limited
evidence of admixture among them (Fig. 1b, c). The
three subpopulations illustrated a trend related to lati-
tude of original cultivation (Fig. 1a, c), and were subse-
quently denoted as NER (North East region of China),
NR (North region of China) and SR (South region of
China). The NER subpopulation consisted of 117 ac-
cessions mainly from high latitude areas (>40° N, 112
accessions); the NR subpopulation comprised 48 acces-
sions mainly from areas between latitudes of 35-40° N
(33 accessions); and SR subpopulation contained 180
accessions mainly from low latitude areas (<35° N,
172 accessions).

Phenotyping and statistical analysis for five FA
components

Four hundred and twenty-one diverse soybean acces-
sions were evaluated in field trials across three years in
Sanya, the southernmost city in China. Five dominant
FAs of the seeds, ie. linoleic, linolenic, oleic, palmitic
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and stearic acids, were determined using gas chromatog-
raphy. Abundant variations were observed which ranged
from a 1.2-fold difference in palmitic acid component to
a 1.8-fold difference in linolenic acid (Table 1). Corres-
pondingly, broad-sense heritability values for all of five
FA components obtained from three years of phenotypic
characterization were moderate to high with a range
from 0.5 to 0.7.

These five FAs showed significant differences among
the three subpopulations (p at 0.05 level) (Fig. 2). NER
had the lowest proportions of linolenic and linoleic
acids, and the highest amounts of oleic and stearic acids.
NR had the lowest oleic acid level and the highest lino-
leic and palmitic acid components. SR had the lowest
levels for both palmitic and stearic acids. These differ-
ences may be attributed to natural selection due to en-
vironment factors such as temperature and planting days
as well as artificial selection during domestication and
genetic improvement. For example, the presence of a
high component of linolenic acid is responsible for auto-
xidative instability and off-flavors associated with the
oils, and thus farmers or breeders have always selected
or developed soybean accessions with inherently low
levels of linolenic acid. It has been reported that on aver-
age cultivated soybeans contain only around two-thirds
of the linolenic acid found in wild soybean (Glycine soja
Sieb. & Zucc., the progenitor of cultivated soybean) [39].
Wild soybean accessions produced up to 23 % linolenic
acid [40, 41]. This study detected a significant difference
in linolenic acid contents between the three subpopula-
tions. Accessions from NER, the main high-oil soybean
producing area in China, contained the lowest propor-
tion of linolenic acid (8.7 %), followed by SR (9.3 %) and
NR (9.5 %). These results agree with the suggestion that
linolenic acid levels underwent selection to meet the de-
mands of oil industry during domestication and the ex-
pansion of domesticated soybean production [39, 42].
The patterns of correlation coefficients (r) calculated
across all five traits (Fig. 3) coincided with the previous
observations [43]. Oleic acid levels were significantly
negatively correlated (p < 0.01) with the other four traits.
The closest relationship was detected with linoleic acid

Table 1 Phenotypic variation of five fatty acid components
across soybean accessions

Traits Mean Min Max CV (%) H?

Linoleic acid (%) 50.5 441 555 35 0.55
Linolenic acid (%) 9.1 6.7 121 88 0.70
Oleic acid (%) 255 200 316 76 0.51
Palmitic acid (%) 124 11.0 138 28 0.55
Stearic acid (%) 38 3.1 5.0 45 0.52

H? broad-sense heritability; min minimum value; max maximum value; mean
mean values; CV coefficient of variation
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Fig. 2 Variation in five fatty acids among different subpopulations of the soybean diversity panel. The error bar represents the standard error.

NER, NR and SR contained 117, 48 and 180 soybean accessions, respectively

(r=-0.89) and the least significant relationship with
stearic acid (r=-0.14). Most of the relationships
among the other four traits were significantly (p <0.01)
positive. Among them, linolenic acid showed the closest
relationship with linoleic acid (r=0.45), followed by
palmitic acid (r = 0.36). The relationship between linolenic
and stearic acids was essentially random, with an r value
of 0.01.

Marker-trait association analysis

Following the distinct population structure detected
within this panel by STRUCTURE, the MLM model,
which takes account of both kinship matrix and genetic
structure (K + Q), was used to reveal QTNs associated
with the five FAs. In total, 37 significant (p <0.01)
marker-trait associations were identified for these FA
(Table 2). Around one-third of these QTNs were located
within or near known QTLs (Table 2). The number of
QTNs in the current study associated with a single FA
ranged from five for oleic acid and stearic acid to 12 for
linolenic acid (Fig. 4). A high consistency of associations
(30 of 37 QTNs) was found between significant SNPs

and alleles with the target trait in at least two of three
environments. These QTNs were represented by 33
unique SNPs and lay in 32 annotated genes. Four SNPs
(Map-3670, —-6135, —6325, and —6520) exhibited signifi-
cant (p <0.01) associations with more than one trait. Of
the 32 SNPs with significant (p < 0.01) associations, 28
were located in coding regions (87.5 %). The effects of
18 of these were determined: non-synonymous polymor-
phisms (15), stop codons (2) and frameshift (1) (Table 2).
In the following we discuss in detail the marker-trait as-
sociations found for each of the five FAs:

Linoleic acid

A total of eight significant marker-trait associations were
detected each located in a distinct candidate gene associ-
ated with linoleic acid biosynthesis (Fig. 4, Table 2).
Three SNPs were non-synonymous (Map-6283, -6325
and -6520). Individually, each of the eight putative
QTNs explained a small proportion of the phenotypic
variance, with effects ranging from 1.7 % (Map-6135 and
-6325) to 2.7 % (Map-6146). Of eight QTNs, two (Map-
6325 and -6326) were neighboring with a 41.4-kbp
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Fig. 3 Pearson's co-efficient of correlation for pairwise comparison of five fatty acids in soybean accessions. Differences significant at p < 0.05 are
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Table 2 Summary of significant marker-trait associations identified by mixed model association mapping in the panel of 421 diverse soybean accessions

Trait Marker name Gene ID P value R? Annotation/Pathway® Marker/QTL reported in the previous studies
Marker/region Physical position Reference
Linoleic BARC-028709-05992 Glyma03g32920 3.9E-03 0.020 Oxidoreductase activity Sat_304_Satt022 41,100,977_44,682,615 [7]
Map-6135 Glyma06g10830 7.6E-03 0017 DNA photolyase activity
Map-6146 Glyma06g24830 4.1E-03 0.027 Molecular chaperone
Map-6283 Glyma08g14200 6.2E-03 0.018 Protein binding
Map-6325 Glyma08g17170 74E-03 0017 Motor activity
Map-6326 Glyma08g17190 1.0E-02 0.022 Fatty acid elongation & Wax biosynthesis,
Lipid transfer protein®
Map-6383 Glyma10g36250 1.7E-03 0.024 _ Satt153 45,959,176 [32]
Map-6520 Glyma15g11810 7.5E-03 0.024 Malonyl-CoA decarboxylase®
Linolenic Map-0008 Glyma01g01830 2.7E-03 0.022 Catalytic activity
BARC-017909-02439 Glyma01g07120 2.8E-03 0.022 Ureide permease
Map-0076 Glyma01g24850 3.6E-03 0.028 Galactosyltransferases
Map-6017 Glyma02g15600 2.9E-04 0.032 SACPD-B or FAB2; Fatty acid synthesis The deletion of an 14,107,987 [45]
and Fatty acid elongation® ‘A" nucleotide
Map-6077 Glyma05g34030 2.6E-03 0.022 Hosphatidylethanolamine binding protein®
Map-6270 Glyma08g13060 2.1E-03 0.030 Protein kinase activity
Map-6520 Glyma15g11810 7.6E-03 0.024 Malonyl-CoA decarboxylase® Satt384 4,036,564 [41]
BARC-063195-18266_ 5,085811_5522,353 [59]
BARC-028907-06042
Map-6738 Glyma18g05980 94E-03 0016 _
Map-3569 3.0E-03 0.022
Map-3580 Glyma18g34290 2.8E-03 0.029 _
Map-3665 Glyma18g43900 9.1E-03 0.023 Dirigent-like protein Sat_164 53,656,448 [33]
Map-6782 Glyma18g51400 7.5E-03 0.017
Oleic Map-6056 Glyma03g41850 4.7E-03 0.020 Phospholipid signaling®
BARC-042719-08393 Glyma04g12490 7.6E-03 0.017 Protein binding
Map-6135 Glyma06g10830 7.7E-03 0.017 DNA photolyase activity
Map-6325 Glyma08g17170 1.3E-03 0.025 Motor activity
Map-3670 Glyma18g44690 6.5E-03 0.018 MAC/Perforin domain Sat_164 53,656,448 [33]
Palmitic Map-0751 Glyma05g07630 3.1E-04 0.040 Strictosidine synthase activity GmFATBl1a 1,127,438_1,131,632 [60]
Map-6064 Glyma05g07730 24E-08 0.077 Translocase®
Map-1323 Glyma07g18890 6.8E-03 0.025 Carbohydrate binding Satt175 15,307,093 [61]
Map-6356 Glyma09g09800 7.7E-03 0.024 PPR repeat Satt544 11,309,091 [8]
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Table 2 Summary of significant marker-trait associations identified by mixed model association mapping in the panel of 421 diverse soybean accessions (Continued)

Map-6395 Glyma12g01380
Map-6540 Glyma15g17090
Map-6590 Glyma15g41680
Stearic BARC-013927-01275 Glyma14g27380
Map-6506 Glyma14g27990
Map-6568 Glyma15g37410
Map-3670 Glyma18g44690
Map-6776 Glyma18g50790

5.8E-03

4.2E-03

1.4E-03
14E-07

4.0E-08

6.5E-03

4.9E-03
44E-03

0.025

0.020

0.032
0.078

0.085

0018

0019
0.026

Triacylglycerol biosynthesis and Eukaryotic
phospholipid synthesis & Editing®

Sequence-specific DNA binding transcription
factor activity

Cell cycle control protein

Transcription cofactor activity
SACPD-C or FAB2G; Fatty acid synthesis®
Serine/Threonine protein kinase

MAC/Perforin domain

Iron ion binding

Sat_189
Satt474
Sat_189
Satt474

Satt288
Sct_199_Sat_064

33,180,365
33,076,661
33,180,365
33,076,661

55,407,034
58,093,451_60,612,567

?Deduced metabolic pathways in soybean by sequence comparison of known gene families in Arabidopsis [27]
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genomic distance. Map-6326 is a synonymous polymorph-
ism in Glyma08g17190, which was predicted to be in-
volved in fatty acid elongation and the wax biosynthesis
pathway by comparison with homologs in Arabidopsis
thaliana [28]. We identified a strong pairwise LD between
Map-6325 and -6326 with r* of 0.854.

Oleic acid

Five significant (p <0.01) marker-trait associations were
observed, which explained 1.7-2.5 % of oleic acid com-
ponent variation (Table 2, Fig. 4). These SNPs lay in five
annotated genes and two of them (Map-6325 and
-3670) were deduced to be non-synonymous polymor-
phisms. Map-6056 was a synonymous polymorphism in

Glyma03g41850 which, by comparison with homologs in
Arabidopsis thaliana, is likely to be involved in the
phospholipid signaling pathway.

Linolenic acid

Twelve Significant (p <0.01) marker-trait associations
were detected located on GmO1 (3), GmO02 (1), GmO05
(1), GmO08 (1), Gm15 (1), and Gm18 (5). Map-6017, a
synonymous polymorphism within Glyma02g¢15600, had
the most significant association (p =2.9E-04) and ex-
plained 3.2 % of the variation in proportion of linolenic
acid. Glyma02¢15600 encoded one of three isoforms of
89-stearoyl-acyl carrier protein-desaturase (SACPD-B or
GmFAB2B) [44, 45] and was predicted to play a role in
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fatty acid synthesis and fatty acid elongation [28]. It has
been reported that a 1-bp insertion in exon 3 of SACPD-
B which caused 28 amino acids changes compared to
Williams 82 SACPD-B, was associated with linolenic
acid production in soybean [45]. Map-6017 was 46-bp
away from this 1-bp insertion. For each year, the acces-
sions with allele T had significantly (p <0.01) higher
linolenic acid than those with allele C (Fig. 5a). Allele T
in the SNP Map-6017 is a minor allele with a frequency
of 9.5 % in this representative cultivated soybean panel,
suggesting that this locus potentially underwent selec-
tion for low linolenic acid levels during soybean do-
mestication. Further evidence that selection against
allele T took place in genetic improvement arises
from the decrease in frequency from landrace (13 %)
to modern cultivars (2.2 %). Geographical distribution
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of bi-alleles in Map-6017 was uneven across the three
subpopulations. The allele T occurred in 25 % of ac-
cessions from NR (the predicted domestication site of
cultivated soybean [34]), its frequency decreased to
10.5 % in SR and to 0.9 % in NER subpopulations
(Fig. 5b). These findings clearly suggest that this locus
has been strongly selected in NER for production of
linolenic acid levels.

Palmitic acid

Of seven SNPs associated with palmitic acid, Map-0751
and 6064 were the two most significant loci. They cover
a 55-kbp genomic region. The most significant locus
Map-6064 (p = 2.4E-08) explained 7.7 % of the pheno-
type variation and is a synonymous SNP within Gly-
ma05g07730, a homolog of a potentially lipid trafficking
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Fig. 5 Diagrams depicting the genetic effects on associated fatty acids across three years, and allele frequencies in three subpopulations inferred
from STRUCTURE analysis at three most significant SNP (p < 0.001) loci. a Linolenic acid bi-alleles at Map-6017. b Bi-allele frequency at Map-6017.
¢ Palmitic acid bi-alleles at Map-6064. d Bi-allele frequency at Map-6064. e Stearic acid bi-alleles at Map-6506. f Bi-allele frequency at Map-6506.
SY10, SY 11 and SY12 respectively indicate 2010, 2011 and 2012 growing seasons in Sanya
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gene in Arabidopsis thaliana (AT3G25610) [46]. In
addition, Map-6064 is located 288-kbp upstream of
Glyma05g08060 (GmFATBla). A nonsense mutation
within exon 1 of GmFATBIla was previously found to
be responsible for the reduction of palmitic acid in soybean
[47]. Non-synonymous Map-0751 in Glyma05g07630 was
found to have significant LD (p =3.6E-44) with Map-6064
(r?=0.53, D’ = 0.98).

Since saturated palmitic acid give rise to negative
health effects in humans associated with a diverse lipo-
protein profile arising from consumption of this fatty
acid [48], soybean accessions with reduced palmitic acid
are desirable. However, for each year the bi-alleles of
Map-6064 locus were observed not to be correlated with
palmitic acid variation in our 421 worldwide soybean ac-
cessions (p>0.05) (Fig. 5c¢). Nevertheless, considering
the subpopulations individually, significant differences
for palmitic acid (p <0.05) were detected between the
bi-alleles of Map-6064 locus (Additional file 3), suggest-
ing that this locus was affected by population structure.
Soybean accessions with Map-6064-C allele tended to
contain higher levels of palmitic acid than those with
Map-6064-T. Similar frequencies of favored allele were
detected in landraces (25.2 %) and modern varieties
(19.7 %) suggesting that no significant selection occurred
in the Map-6064 locus during soybean genetic improve-
ment. The allele frequencies of favorable Map-6064-T
were further estimated for 117 NER, 48 NR and 180 SR
accessions (Fig. 5d) and a large change was detected
across subpopulations: the majority of NR accessions
(77.1 %) possessed the Map-6064-T allele, whereas only
a small proportion of NER and SR accessions (25.4 %
and 8.3 % respectively) exhibited this favorable allele. Of
48 NR accessions examined, all modern varieties (3) and
34 of 45 landraces with Map-6064-T provide potentially
important genetic resources for reducing palmitic acid
in soybean seeds.

Stearic acid

Four of five loci significantly associated with stearic acid
were near or overlapped with previously identified
QTLs. The exception was Map-6568 on Gm15 (Table 2).
Notably, the two most significant associations (Map-
6506, p = 4.0E-08 and BARC-013927-01275, p = 1.4E-07)
on Gml4 overlapped with the fas locus with respect to
Sattd74, Sat_189 and Satt556 [32, 49]. Map-6506 and
BARC-013927-01275 explained 8.5 % and 7.8 % of ste-
aric acid, respectively. Map-6506 is a synonymous muta-
tion within exon 1 of Glymal4g27990 (SACPD-C or
GmFAB2C), a gene predicted to be involved in convert-
ing stearic acid into oleic acid. Besides Map-6506, two
SNPs within SACPD-C - one non-synonymous and one
nonsense mutation - had previously been found to cause
variation of stearic acid levels in soybean [47, 50]. The
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second most significant SNP, non-synonymous BARC-
013927-01275 in Glymal4g27380 is within 752-kbp
upstream of Map-6064, and exhibited a strong LD rela-
tionship with r* of 0.91 and D’ of 0.99.

Unlike palmitic acid, a high level of stearic acid is de-
sirable since it is not related to negative effects on hu-
man health and also offers potential for improving
soybean oil quality in food-processing applications [51].
Significant differences in stearic acid were detected be-
tween bi-alleles at the Map-6506 locus across all three
years studied (Fig. 5e). Average stearic acid of the acces-
sions with favorable Map-6506-A allele were 3.86 %,
0.16 % higher than that of accessions with Map-6506-G
(3.70 %). Desirable Map-6506-A represented only 27.3 %
of accessions in the current diversity panel, and also in
its three subpopulations (Fig. 5f).

Estimation of the function of genes exhibiting significant

marker-trait associations

In the current study, 32 annotated genes were identified
to be significantly associated with one or two fatty acid
components. Their function were estimated using
comprehensive gene expression profiles of the RNA
Seq-Atlas [52] from Soybase database (http://www.soyba-
se.org/soyseq/). The expression level of all of 32 genes
were compared among 14 tissues, including six tissues
without seeds (root, nodule, young leaf, flower, pod shell-
10 days after flowering DAF) and eight tissues with seeds
(small pod, seeds-10DAF, -14DAF, -21DAF, -25DAF,
—-28DAF, -35DAF, and -42DAF) (Additional file 4). Five
genes (including Glyma01g24850, Glyma08g13060, Gly-
mal5gl7090, Glymal8g05980, and Glymal8g34290) were
not expressed in any tissue analyzed. Of the remaining 27
genes which were expressed in more than one tissue, three
genes, Glyma05g07630 with Map-0751, Glyma05¢34030
with Map-6077, and Glymal4g27990 with Map-6506, ex-
hibited preferential gene expression in tissues with seeds
and the gene expression level of the later two increased
with the seed development (Additional file 4). Seeds-
specific Glyma05g07630 was located nearby GmFATBla
[47] and identified to be significantly (p <0.001) related
with palmitic acid inferred from the association mapping.
In Arabidopsis thaliana, FatB encodes a palmitoyl
thioesterase, which is primarily involved in regulating
the production of palmitic acid by catalyzing the con-
version of 16:0-acyl carrier protein (ACP) (palmitic
acid with ACP) to 18:0-ACP (stearic acid with ACP)
[27]. In addition, it was reported that Glyma05¢g34030
(GmMFT) may be a negative regulator of seed ger-
mination [53]. In this study, GmMFT maybe play an-
other role on regulating linolenic acid in soybean
seeds. Therefore, the functions of Glyma05¢34030 still
need to be further analyzed through functional studies
such as genetic transformation.
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Glymal4g27990 (SACPD-C) was one of four soybean
isoforms of SACPD (also referred to as FAB2), a soluble
desaturase which determines the relative proportions of
saturated stearic acid and three unsaturated FAs [54].
The other three isoforms in soybean identified by com-
parative analyses were GmSACPD-A (Glyma07¢g32850) and
SACPD-B (Glyma02g¢15600) and a pseudogene SACPD-D
(Glyma13g08990) [45, 55]. It has been reported that both
of SACPD-B and SACPD-C are responsible for the vari-
ation of seed stearic acid content in soybean [45, 47, 55].
However, in this study Map-6506 in GimnSACPD-C was sig-
nificantly (p <0.001) associated with stearic acid, whereas
Map-6017 in GmSACPD-B was significantly (p < 0.001) as-
sociated with linolenic acid. This suggests that the roles
of the two orthologs of GmSACPD (GmSACPD-B and
GmSACPD-C) are different (Fig. 3).

Pleiotropic effects

Starting from saturated stearic acid, three unsaturated
fatty acids, including oleic, linoleic and linolenic are syn-
thesized as a result of the fatty acid desaturation pathway.
Consequently, strong phenotypic correlations due to plei-
otropy are expected for these four FA traits [5]. In accord-
ance with this expectation we observed in our study that
five out of the six pair-wise comparisons among these four
FA traits were significantly (p <0.01) correlated, except
linolenic vs stearic acid. Moreover, association mapping
analysis identified four SNPs (Map-6135, —6325, —6520
and —3670) exhibiting pleiotropic effects on stearic, oleic,
linoleic or linolenic acid (Table 2). For example, as the
precursor of linoleic acid, oleic acid exhibited a significant
negative correlation with linoleic acid (Fig. 3). Map-6135
and Map-6325 were found to be significantly associated
with both oleic and linoleic acid, but showed significant
opposite effects, a decrease of oleic acid and an in-
crease of linoleic acid with the Map-6135-A and Map-
6325-C. These findings indicate that the QTNs exhibit
strong pleiotropic effects.

Conclusions

Due to predominant self-pollination, intensive selection
during domestication and following genetic improve-
ment, and genetic drift, extensive LD was observed for
FA traits in soybean, especially in cultivated soybean (i.e.
landrace and modern accessions) [23, 29, 56, 57]. There-
fore, although resolution was limited, the association
mapping approach employing diverse soybean cultivars
allowed the identification of QTNs using a relatively
small density of markers. In the present study, marker-
trait association analysis detected 33 SNPs associated
with at least one FA trait. Although further validations
in independent panels or bi-parental populations are de-
sirable, the co-localization of a group of associated loci
with known genes/QTLs (as evidenced for Map-6017 in
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GmSACPD-B, Map-6506 in GmSACPD-C, and Map-6064
near GmFATBI1a related with linolenic acid, stearic acid,
and palmitic acid, respectively) suggests that the LD-based
association mapping approach is suitable for detecting re-
liable associations with FA traits. These functional SNPs
are essential tools for molecular soybean breeding pro-
grammes aimed at improving the FA quality of seeds and
processed oil. In the future, labor/time-saving and cost ef-
fective SNP assays, such as Kompetitive Allele Specific
PCR (KASP) and Cleaved Amplified Polymorphic Se-
quence (CAPS) assays, might be exploited based on these
functional SNPs for assisted selection of specific desirable
FA compositions, such as soybean varieties with increased
stearic acid (>20 %) for food and industrial products [58].
It is important to note that some associations may have
failed to be detected in this study owing to the limited
marker density. A high density marker or sequencing-
based analysis (i.e. re-sequencing, Genotyping by Sequen-
cing etc.) should be conducted to further deepen our un-
derstanding of the genetic architecture of FAs in soybean
using LD-based association mapping approach.
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