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Abstract: Dysbiosis is implicated by many studies in the pathogenesis of Parkinson’s disease (PD).
Advances in sequencing technology and computing have resulted in confounding data regarding
pathogenic bacterial profiles in conditions such as PD. Changes in the microbiome with reductions in
short-chain fatty acid (SCFA)-producing bacteria and increases in endotoxin-producing bacteria likely
contribute to the pathogenesis of PD. GPR109A, a G-protein coupled receptor found on the surface of
the intestinal epithelium and immune cells, plays a key role in controlling intestinal permeability
and the inflammatory cascade. The absence of GPR109A receptors is associated with decreased
concentration of tight junction proteins, leading to increased intestinal permeability and susceptibility
to inflammation. In inflammatory states, butyrate acts via GPR109A to increase concentrations of
tight junction proteins and improve intestinal permeability. Niacin deficiency is exacerbated in
PD by dopaminergic medications. Niacin supplementation has been shown to shift macrophage
polarization from pro-inflammatory to an anti-inflammatory profile. Niacin and butyrate, promising
nutrients and unique ligands for the G protein-coupled receptor GPR109A, are reviewed in this paper
in detail.

Keywords: Parkinson’s diseases; brain-gut axis; microbiome; intestinal barrier; permeability; leaky
gut; niacin; butyrate; GPR109A; nutraceutical

1. Introduction

The gut microbiome and its composition have been studied and implicated in the
pathogenesis of multiple conditions, such as asthma, obesity, inflammatory bowel disease
(IBD), autism spectrum disorders (ASD), and Parkinson’s disease (PD) [1–6]. The pathologi-
cal bacterial species in the gut microbiome driving pathogenesis have not been identified in
PD. As technology and computing power have improved over time, the cost of sequencing
microbial samples has decreased, allowing for the characterization of dysbiosis in various
conditions. Dysbiosis in ASD is the most studied. Gut microbiome characterization efforts
in the ASD population, similar to PD, have encountered similar issues across studies such
as recruitment of subjects in small, readily available cohorts, lack of sufficient control
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groups, and failure of accounting for confounding effects on the microbiome such as diet,
geographic location, medications, surgeries, antibiotics, and probiotic use. Therefore, these
studies demonstrate divergent results. Furthermore, chronic constipation, which is highly
prevalent in both ASD and PD, may also alter the gut microbiome. Another consideration is
whether the collection of specimens via stool or mucosal biopsy (biofilm sampling) is more
reflective of brain–gut microbiome interactions. Shifts in microbiome composition obtained
from ileal and cecal biopsies from ASD patients demonstrated correlations with lower
mRNA levels of genes involved in carbohydrate digestion, increased serum serotonin,
increased levels of inflammatory cytokines, and higher prevalence of co-existing functional
gastrointestinal disorder (FGID) diagnoses meeting Rome III criteria [7,8].

Increased intestinal permeability caused by the loss of tight junction proteins in the
setting of intestinal inflammation is the prevailing hypothesis for ‘leaky gut’ [9]. In line
with the aforementioned phenomena, researchers are focused on different mechanisms by
which the intestinal barrier can be compromised. Investigation of intestinal and immune
cell receptors involved in intestinal permeability, influenced by short-chain fatty acids
(SCFAs) and inflammatory markers, has provided researchers mechanistic insights [10–15].
SCFAs such as butyrate are ligands that promote intestinal epithelial cell stability, are
sources of energy, and enhance the intestinal barrier [16].

Niacin, or Vitamin B3, is of growing interest as a potential agent for the amelioration of
PD. In studies involving animal subjects, the vitamin also proved to have neuroprotective
involvement in other neurological pathologies, such as traumatic brain injury and multiple
sclerosis. Niacin has proven anti-inflammatory effects, suppressing pro-inflammatory gene
expression on M1 macrophages and improving vascular permeability [17]. Both niacin
and butyrate are ligands for the G-protein coupled receptor, GPR109A [12,17]. The exact
pathway that intestinal inflammation leads to neuro-inflammation and neurodegeneration
in PD remains unknown. In this paper, we aim to review the gut microbiome, intestinal
barrier permeability, their relation to pathogenesis, and the potential therapeutic roles of
butyrate and niacin in PD.

2. Parkinson’s Disease (PD) as Brain–Gut Disorder

PD is the second most common neurodegenerative disorder with debilitating motor
and non-motor symptoms, affecting 1–2% of the population over the age of 65 [18]. The
pathognomic change in PD is the accumulation of misfolded and aggregated α-synuclein,
called Lewy bodies, in motoneurons, leading to loss of dopaminergic neurons in the sub-
stantia nigra [19]. Gastrointestinal (GI) symptoms are the predominant non-motor features
and part of the widespread autonomic dysfunction in PD, which are observed in both early
and late-stage disease [20]. PD patients more frequently experience drooling, dysphagia,
dyspepsia, gastroparesis, bloating, and/or constipation with significant impairment in
quality of life [21]. Constipation, the most common GI symptom, often precedes motor
symptom onset by more than 15 years; increasing constipation severity corresponds to a
3.3–4.2 hazards ratio for subjects developing PD [22–24]. Chronic constipation in PD pa-
tients is a multifaceted brain-gut and neuromuscular disorder related to dysbiosis, efferent
brain–anal axis neuropathy, visceral hypersensitivity, intestinal methanogen overgrowth,
rectal hyposensitivity, and anorectal incoordination [25–27].

Lewy bodies are present in the enteric nervous system eight years prior to the central
nervous system [28,29]. Abnormal activation of the intestinal immune response by micro-
bial products and toxins crossing the intestinal barrier elicits neuropathological changes
in the enteric nervous system (ENS). This cascade of events leads to an initial insult, for
example, α-synuclein misfolding and LRRK-2 upregulation in PD, thereby developing
GI dysfunctions featuring the early onset of neurodegenerative disease in the gut [30–32].
Braak postula suggests the progression of Lewy pathology from the gut to the brain via
the vagal innervation of the stomach based on extensive autopsy examinations of PD
patients [33]. The stomach was assumed to be a site of prolonged antigen exposure, and
susceptible unmyelinated vagal neurons served as the most direct path in the brain–gut
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axis, which runs from the dorsal motor nucleus in the medulla and extends through the
abdomen to the viscera [34]. A similar, retrograde prion-like progression of Lewy pathol-
ogy could occur via the unmyelinated motoneurons of Onuf’s nucleus, which also send
projections to the midbrain, innervating the rectum, another site of prolonged antigen ex-
posure [24]. In addition, a disturbed gut-microbiome axis and altered metabolome, which
include SCFA, branched-chain amino acids, and peptidoglycans, may also increase intesti-
nal permeability, drive diffuse neuro-inflammation, and potentiate the pathogenesis in
PD [35]. Regardless of the mechanism of progression, neuro-inflammation and subsequent
neurodegeneration in PD are diffuse. Neuronal α-synuclein aggregates have been found in
tissues throughout the body, including tissues outside the central nervous system, such as
the skin, adrenal medulla, cardiac plexus, submandibular glands, and olfactory bulb [36].

3. Gut Microbiome

The emergent of data highlighting the importance of the gut microbiome in health and
disease, specifically the well-established connection between PD and the gut, have raised
the possibility that the dysbiosis of the gut microbiome may play a role in PD pathogenesis
(Table 1). [37]. While characterizing the gut microbiome by taxonomy is important, it
is the ratio between commensal and pathogenic bacteria that alters the integrity of the
intestinal barrier [38]. Inflammatory cell-signaling markers have also been observed to
change intestinal permeability, as well as lead to cerebrospinal fluid (CSF)/central nervous
system (CNS) inflammation [39,40].

Table 1. Summary of significant changes in populations of bacterial taxa observed in gut microbiome
studies of Parkinson’s disease (PD) patients.

Levels Compared
to Controls Bacteria Phylum/Family/Genus References

Decreased
Bacterioidetes, Enterobacteriaceae, Enterococcaceae,
Faecalibacterium, Lactobacillaceae, Lachnospiracea,

Prevotellaceae, Ruminococcus, Sediminibacterium
[38,41–43]

Increased
Actinobacteria, Akkermansia, Anaerotruncus,

Aquabacterium, Bifidobacterium, Butryociococcus,
Clostridium, Holdemania, Proteobacteria, Sphingomonas

[38,41–43]

The brain–gut axis, bidirectional neural connections from the CNS to the ENS, is evolv-
ing to incorporate the gut microbiome. Investigation of the microbiome–gut–brain axis has
led researchers to propose a GI origin pathogenesis for PD and other neurodegenerative
disorders [44–46]. A recent microbiome-wide association study by Wallen et al. found three
clusters of co-occurring microorganisms in PD with an overabundance of a polymicrobial
cluster of opportunistic pathogens, reduced levels of SCFA-producing bacteria, and/or ele-
vated levels of carbohydrate metabolizers commonly known as probiotics [47]. In a study
of 24 PD patients compared to 14 healthy controls, proportions of endotoxin-producing
bacteria, Actinobacteria and Proteobacteria, were increased, whereas populations of SCFA-
producing bacteria, Bacteroides, Prevotella, and Ruminoccoccus, were decreased, as shown
in Table 1 [41]. The presence of SCFA-producing bacteria ferments resistant non-starch
polysaccharides, non-digestible oligosaccharides, and dietary fibers to produce SCFAs.
SCFAs such as acetate, butyrate, propionate, formic acid, and isobutyric acid decrease
intestinal inflammation and downstream pathology in various diseases [11,14,48].

4. Intestinal Barrier

The intestinal barrier comprises a single layer of epithelial cells tightly stitched together
by a special group of tight junction proteins such as claudins, occludens, tricellulin, and
cadherins, shown in Figure 1. These tight junction proteins play an important role in
maintaining gut permeability and homeostasis [49]. The luminal surface of the intestinal
barrier is the largest body surface in close contact with external pathogens and the gut
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microbiome. Therefore, optimal functioning of these tight junction proteins is critical to the
protection of the enteric nervous system, vasculature, and other crucial structural elements
on the tissue side.

Figure 1. (a) Normal intestinal barrier with intact and functional tight junction proteins (Occludins/Claudins); (b) Leaky
gut with increased intestinal permeability and dysfunctional tight junction proteins. Lipopolysaccharide (LPS) and bacterial
toxins result in neuro-inflammation and Lewy pathology in PD pathology.

Gut microbiome and their bacterial byproducts can activate immune cells to regulate
the expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, which, in
turn, act on tight junctions to increase barrier permeability [50]. These pro-inflammatory
cytokines also initiate the recruitment of neutrophils, monocytes, and components from
circulation to sites of inflammatory insult, thus prolonging the inflammatory response.
Bacterial lipopolysaccharide (LPS) is a well-known endotoxin that is a potent trigger for
TNF-α production [51]. GPR109A, a luminal G-protein coupled receptor on the intestinal
epithelial surface, is a promising target for the modulation of intestinal permeability and
potential reversal of leaky gut.

5. GPR109A

GPR109A, also known as HCAR2, is expressed on both hematopoietic and non-
hematopoietic cells and serves as a receptor for both niacin and butyrate. GPR109A is found
on dendritic cells and macrophages in addition to the intestinal epithelium. Downstream
activation of this G-protein coupled receptor is involved in IL-8 and IL-10 production,
which can influence regulatory T (Treg) cells to prevent or decrease inflammation [15,48].
The anti-inflammatory action of niacin occurs through a similar cascade of intramolecular
events [52]. In a study led by Singh et al., Foxp3, a Treg cell marker and transcriptional
regulator expression was decreased within the lamina propria of GPR109A-knockout mice
compared to wild-type (WT) mice [15]. The anti-tumor molecular mechanism suggested
by Singh et al. [15] includes a central role of GPR109A mediated anti-inflammatory re-
sponse elicited in macrophages and dendritic cells, which in turn leads to differentiation of
Tregs and IL-10 producing CD4+ T-cells. It has been shown that colonic health is highly
dependent on the SCFAs such as butyrate, which are generated by gut microbiota by
fermentation of dietary fibers. Changes in frequency of butyrate producing commensals
is highly diminished in colonic diseases like ulcerative colitis and colon cancer [53,54]. It
implies that the microbiome with or without GPR109A has a bidirectional relationship
with intestinal inflammation and permeability.
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Populations of Actinobacteria and Firmicutes increase, whereas Bacteroidetes de-
creases with age, resulting in an increased Firmicutes/Bacteroidetes (F/B) ratio [55]. High
F/B ratios have also been observed in the setting of sepsis and are being studied to serve
as a measure of sepsis severity [56]. Chen et al. found that GPR109A−/− mice had in-
creased Firmicutes, Verrucomicrobia, and Proteobacteria proportions when compared to
WT mice [10]. The study also demonstrated a significant improvement in survival of
GPR109A−/− mice that underwent a fecal transplant of specimens from WT mice. This ex-
emplifies the relationship between the composition of the microbiome, GPR109A presence,
and the intestinal barrier’s integrity [10].

Chen et al. further investigated the colonic protective effect of GPR109A in the
GPR109A−/− mice [10]. The presence of GPR109A promotes survival in the setting of
sepsis, as investigators demonstrated that GPR109A−/− mice had a decreased survival rate,
bodyweight loss, and increased disease severity. An increase in levels of pro-inflammatory
IL-6 and IL-1β were seen in GPR109A−/− mice compared to WT mice. GPR109A−/− mice
undergoing cecum ligation and puncture (CLP) to replicate sepsis were found to have
decreased concentrations of tight junction proteins claudin-1, claudin-2, ZO1, ZO2, and
occludin compared to WT [10].

6. Butyrate

Butyrate interacts with the GPR109A receptor and exhibits anti-inflammatory and anti-
carcinogenic properties [12]. Butyrate is also the intestinal epithelial cells’ most-utilized
SCFA for energy, making its investigation of the utmost importance for intestinal well-
being [15]. In the study led by Feng et al., 24 piglets weaned at 21 days with diarrhea
were divided into two groups. One group was fed with the basal diet and the other with
basal diet plus 2000 mg/kg sodium butyrate. This experiment lasted a total of 21 days
in which the diarrhea rate, frequency, and index were decreased compared to control.
It was determined that intestinal permeability also was influenced by the addition of
sodium butyrate, with upregulation of occludin and claudin-3 in the ileum and occludin,
claudin-3, and ZO-1 expression in the colon. Using Western Blot analysis, ERK1/2, Akt,
and P38 were phosphorylated, which indicated activation of the GPR109A pathway. Pro-
inflammatory markers such as TNF-αwere found to be significantly decreased with the
administration of butyrate [12]. In another study, Yan et al. investigated the effects of
butyrate on tight junction proteins on an LPS-induced inflammation model. They found
that butyrate increased concentrations of claudins-3 and 4 and their mRNA expression
in a dose-dependent manner, as well as prevented downregulation of Akt by LPS [57].
These studies suggest that butyrate may enhance tight junction expression through the
Akt/mTOR pathway.

7. Niacin

PD patients are found to have significantly decreased niacin levels compared to age-
matched healthy controls [52]. This has been attributed to both the disease itself and
the medication used to attenuate motor symptoms [58]. Sinemet, the most commonly
used PD medication, includes carbidopa, which prevents the conversion from L-dopa
to dopamine within the peripheral nervous system. This allows more dopamine to be
taken up by the central nervous system and used where it is scarce after dopaminergic cell
loss. Unfortunately, a consequence of carbidopa is reduced conversion of tryptophan to
niacin. Sinemet dose and frequency are increased over time as PD symptoms worsen, but
concurrently side-effects also worsen.

There are multiple forms of Vitamin B3, including nicotinic acid, nicotinamide, and
nicotinamide riboside. Although all three forms provide a natural source of nicotinamide
adenine dinucleotide (NAD) to the body, only nicotinic acid (niacin) binds to the anti-
inflammatory GPR109A receptor [59]. In a clinical trial, it was found that the GPR109A
receptor is upregulated in the white blood cells (WBCs) of PD patients [52]. After taking
daily niacin supplements, the levels of the GPR109A receptor were reduced to a similar
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level of age-matched healthy controls. Subsequent anti-inflammatory effects have also been
found in patients taking niacin. A shift in macrophages from a pro-inflammatory phenotype
to an anti-inflammatory phenotype has been found after niacin supplementation, as shown
in Figure 2 [60]. In LPS-activated mouse microglial cells, niacin was able to reduce IL-6 and
IL-1β production [17]. Moreover, when GPR109A was downregulated with siRNA, niacin
was not able to produce this effect.

Figure 2. Niacin shifts macrophage polarization from pro-inflammatory to an anti-inflammatory
profile in Parkinson’s disease patients. Naïve (M0ϕ) pro-inflammatory (M1ϕ) and anti-inflammatory
(M2 ϕ) macrophages.

A case report of a PD patient taking a high-dose niacin supplement for high triglyc-
eride levels serendipitously found a reduction in motor symptoms, such as tremor and
rigidity [61]. Unfortunately, large doses of niacin can result in flushing, secondary to the
action on Langerhan’s skin cells, which have high levels of the GPR109A receptor. The PD
patient taking a large dose of niacin daily had to quickly discontinue due to flushing and
uncontrollable nightmares [61]. Fortunately, niacin doses of 500 mg or less, when taken
with food and water, typically have little to no flushing effect. Moreover, flushing typically
decreases with the continuation of niacin supplements. Other benefits to PD with niacin
supplementation include an increase in quality of life [60,62] and motor symptoms [61,62];
fatigue and depression in PD may also benefit. Effects of niacin supplementation on
mechanistic changes in pathophysiology, such as changes in pathologic α-synuclein levels,
mitochondrial dysfunction, and leaky gut, should be investigated further.

8. Reactive Oxygen Species (ROS)

Oxidative stress, resulting from an imbalance in oxidants and antioxidants, and mito-
chondrial dysfunction are highlighted as a central feature of neurodegenerative diseases
including PD, Alzheimer’s disease (AD), and Huntington’s disease (HD). Reactive oxygen
species (ROS)-mediated oxidative DNA damage is one of the prominent features in PD.
Multiple ROS biomarkers have been used to investigate the severity of these diseases [63,64].
Forsyth et al. showed that E. coli penetration into the intestinal mucosa was more frequent
in PD patients compared to controls and the amount of entericαSyn translocation correlated
with increases in intestinal permeability and oxidative stress [65]. β-Hydroxybutyric acid
(BHBA) acts on microglia to suppress LPS-induced inflammation through GPR109A to in-
hibit pro-inflammatory enzyme (iNOS and COX-2) and pro-inflammatory cytokine (TNF-α,
IL-1β, and IL-6) production via the NF-κB signaling pathway in PD model rats [66]. An-
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other study found that butyrate activated the AMPK signaling pathway through GPR109A
to promote NRF2 nuclear accumulation and H3K9/14 acetylation, subsequently exerting
antioxidant effects [67]. Above experiments show that butyrate and related compounds
have important antioxidant function and can ease oxidative stress with synergistic effect
on GPR109A signaling pathways, which may represent potential targets for therapeutic
intervention to prevent or slow the progression of PD.

9. Other Nutrients

Other nutrients have been shown to be neuroprotective or beneficial for PD (Table 2).
Omega-3 and vitamin E supplementation, taken together, were found to improve PD
symptoms and decrease serum C-reactive protein (CRP) levels [13]. Vitamin D deficiency
is also common in PD patients, although whether it is a primary deficiency or secondary
has yet to be determined [68]. Vitamin D supplementation in vitro and animal models has
demonstrated a decline in PD disease progression [69,70]; however, human studies have
been controversial [71–73]. Anderson et al. investigated high consumption of vitamin D in
humans, finding an increase in PD risk [73], while another human study showed vitamin
D3 supplements to prevent progression of PD based on Hoehn and Yahr staging [72]. Inter-
estingly, the vitamin D receptor is highly expressed in the substantia nigra, the area of the
brain most affected in PD [74]. While vitamin C is neuroprotective [75], supplementation
has been correlated with increased PD risk [76]. However, one study with supplementation
of both vitamins C and E demonstrated a decrease in disease progression [77]. Clinical
trials have also shown protective effects of vitamin E for PD patients [78], substantiated by
animal studies showing protective effects of dopaminergic cells [79].

Table 2. List of nutrients that were tested in clinical trials with outcomes for PD.

Nutrient Dose n * Function Outcome Ref.

Niacin 250 mg 46
support and stabilize

mitochondrial
function

improvement in Unified Parkinson’s Disease
Rating Scale (UPDRS) III scores, improvement

in cognition
[62]

100 mg, 250 mg 46
changes in macrophage polarization, improved

Quality of Life (QoL, reduction in rigidity
and bradykinesia

[17,60,61]

Glutathione 1400 mg 21 Antioxidant,
neuroprotection

UPDRS—Activities of Daily Living (ADL) +
motor scores did not significantly change.

Possibility of a mild symptomatic effect. The
high-dose group showed improvement in total

UPDRS and motor subscore over baseline

[80]300, 600 mg 30
100, 200 mg 41

N-acetyl Cysteine 150 mg/Kg 6 Antioxidant,
neuroprotection

Significantly increased dopamine transporter
(DAT) binding in the caudate and putamen.
UPDRS scores were significantly improved.
Peripheral anti-oxidant measures increased

significantly, but indicators of oxidative damage
were unchanged

[81–83]6000 mg 8

Hydrogen water 1000 mL 17 Significant improvement in total UPDRS scores.
This study will confirm whether H2 water can

improve PD symptoms

[80]1000 mL 178

Creatinine
minocycline

10 g/d
200 mg/d

67
66

support and stabilize
mitochondrial

function Antioxidant

creatinine group showed improvement in
UPDRS3 scores after 18 months

[84]

Co-enzyme Q10 300 mg/d Antioxidant,
neuroprotection no benefits at mid-stage PD [85,86]

Lipoic Acid
Antioxidant,

Anti-inflammatory,
neuroprotection

[87]

Vitamin E and
Omega-3 fatty acids

400 IU and
1000 mg

flaxseed oil

30 treated
30 placebo

Antioxidant
Antioxidant,

Anti-inflammatory,
neuroprotection

[88]

dephrenyl/
Vitamin E

10 mg/d
2000 IU

Antioxidant,
Anti-inflammatory,

neuroprotection
no benefits reported [89,90]

Vitamin D3 NA NA Antioxidant,
neuroprotection

Lowered serum levels of Vita D3 in PD patients.
High Vit D levels are protective against PD [91]

* n: number of subjects recruited into the study.
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Many other nutrition-rich foods may be beneficial in PD, including fresh fruits, veg-
etables, coffee, and tea, which were all found to improve outcomes or decrease the risk
of PD [92,93]. Further studies need to be performed to investigate which nutrients are
the most important in PD, given that vitamin supplementation and dietary changes are
safe, cheap, and easily accessible [94]. Finding benefits of vitamins and lifestyle changes in
multifactorial diseases, such as PD, can lessen the need for increased dosage of dopaminer-
gic medications and decrease disease progression. Such alternative treatment is needed
as current medications only treat motor symptoms and lead to adverse effects, such as
hallucinations and dyskinesias.

10. Conclusions

Microbiome studies in Parkinson’s disease, like other conditions, suffer from method-
ological variation and confounding factors and, therefore, specific bacteria involved in the
pathogenesis of PD are difficult to characterize. However, an overall pattern corresponding
to decreases in SCFA-producing bacteria and increases in endotoxin-producing bacteria
have been observed in PD subjects. Fecal microbiome transplantation (FMT) and pre- and
probiotics offer potential options for restoring the microbiome to PD patients. There are no
robust data to adequately support FMT efficacy on motor and/or non-motor symptoms
improvement or slowing the progression of PD or which route of administration and what
content/volume of FMT is optimal. Therefore, we need more rigorous and well designed
clinical trials to support FMT or the use of pro- and prebiotics in selected subgroups of
PD patients in the future. GPR109A, a G-protein coupled receptor found on the surface of
intestinal epithelium and macrophages, closely interacts with the microbiome to permit
immune tolerance or trigger an inflammatory cascade. Loss of GPR109A is associated with
decreased concentration of tight junction proteins and increased intestinal permeability.
In inflammatory states, butyrate acts via GPR109A to increase concentrations of tight
junction proteins and improve intestinal permeability. Niacin deficiency is exacerbated
in PD by dopaminergic medications. Furthermore, niacin shifts macrophage polarization
from pro-inflammatory to an anti-inflammatory profile. Future studies should study the
effects of long-term supplementation of promising nutrients, such as butyrate and niacin,
on their abilities to halt or reverse disease progression in PD. A deeper understanding
of the GPR109A pathway in modulating intestinal permeability and its interplay in the
microbiome–gut–brain axis may provide therapeutic options for multiple inflammatory
and other neurodegenerative conditions.
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