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Abstract

Identification of new chemical compounds with desired structural diversity and biological properties plays an essential role in drug
discovery, yet the construction of such a potential space with elements of ‘near-drug’ properties is still a challenging task. In this work,
we proposed a multimodal chemical information reconstruction system to automatically process, extract and align heterogeneous
information from the text descriptions and structural images of chemical patents. Our key innovation lies in a heterogeneous data
generator that produces cross-modality training data in the form of text descriptions and Markush structure images, from which
a two-branch model with image- and text-processing units can then learn to both recognize heterogeneous chemical entities and
simultaneously capture their correspondence. In particular, we have collected chemical structures from ChEMBL database and chemical
patents from the European Patent Office and the US Patent and Trademark Office using keywords ‘A61P, compound, structure’ in the
years from 2010 to 2020, and generated heterogeneous chemical information datasets with 210K structural images and 7818 annotated
text snippets. Based on the reconstructed results and substituent replacement rules, structural libraries of a huge number of near-drug
compounds can be generated automatically. In quantitative evaluations, our model can correctly reconstruct 97% of the molecular
images into structured format and achieve an F1-score around 97–98% in the recognition of chemical entities, which demonstrated
the effectiveness of our model in automatic information extraction from chemical patents, and hopefully transforming them to a
user-friendly, structured molecular database enriching the near-drug space to realize the intelligent retrieval technology of chemical
knowledge.
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Introduction
The identification of new chemical compounds with desired
structural diversity and biological properties (e.g. drug metabolism
and pharmacokinetics) plays an essential role in drug discovery,
and so pharmaceutical chemists are committed to constantly
exploring the chemical space to identify useful drug candidates
[1, 2]. Considering the volume of the chemical space with a

combinatorial nature (1060 compounds obeying Lipinski’s rule-
of-five [3–5], Figure 1A), and the specificity of the drug space
with only 2712 small molecules approved so far [6], a natural
tradeoff is to study the drug-like space that lies in between the
two. A prominent example of the drug-like space is the generic
GDB-17 database, with around 1012 structures by enumerating
virtual molecules containing up to 17 atoms [7]. Unfortunately,
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Figure 1. Chemical space composition and workflows of constructing the near-drug space. (A) Comparison of the drug space, known virtual drug-
like space and novel near-drug space. (B) Workflows for information extraction from patents. Traditional workflow (left) involves significant manual
operations, whereas our CIRS-system is more automated (right).

many molecules encompassed in the drug-like space could be
difficult to synthesize or lacking desired drug-effects, and so
how to build a ‘near-drug’ space composed of compounds with
more synthesizable chemical structures and desired biological
properties has become one of the most central goals toward
improving the success rate and reducing the cost of the drug
discovery process [8, 9].

The exponential growth of scientific publications and chemi-
cal patents has ushered in new opportunities in expanding and
exploring the near-drug space [10]. In this work, we focus on
chemical patents because the results disclosed in the patents
could be more timely, reliable and comprehensive [11]. Moreover,
patent documents cover a huge number of molecules with syn-
thesizable structures and desired biological properties, which is
particularly advantageous to finding useful chemical compounds
[12].

The huge (and ever increasing) number of chemical patents
and their complex, heterogeneous data organizations have made
it a highly challenging endeavor to extract useful chemical struc-
tures from patents in an accurate and automatic way [13]. In
particular, note that the major output of chemical patents are a
mixture of text descriptions and image templates, a lot of efforts
have been devoted to the development of scalable and accurate
tools for recognizing named entities from the texts and chemical
structures from the images.

Named entity recognition (NER) has been widely applied to the
detection of chemical entities (compounds, proteins and diseases)
or their relationship in text [14–16]. For instance, Leroy et al. devel-
oped an extendable chemical execution program to achieve an
autonomous, ‘paper in, chemical product out’ workflow [17]. This
subversive research has caused a surge of interest in extracting
synthesis information from text, such as the paragraph2actions
[18] proposed later, which can convert experimental procedures
into action sequences. However, the outputs of these approaches
are typically labeled texts, which cannot be utilized directly by
pharmaceutical chemists but instead have to be further trans-
formed into structural data (e.g. molecular structural database)
[19–21]. Furthermore, annotated corpus for chemical structures
in the patents is particularly limited, which can directly affect the
training result of name entity recognition [22].

The molecular structure images in chemical patents, on the
other hand, contain rich structured information (compounds and
formulas) in visual forms, and image-processing algorithms have
been widely applied to extract such information, also known
as optical chemical structure recognition (OCSR). For example,
OSRA is a chemical structure recognition software based on rules
method with high accuracy [23]; DECIMER is dedicated to the

recognition of structures in the images with more valid SMILES for
conventional molecular structures [24]; Image2SMILES managed
to identify unconventional atoms in chemical structures through
data generator [25]. However, the accuracy of current approaches
is still limited in the recognition of molecular structure images
with special bonds and atoms. Furthermore, chemical patents are
usually downloaded as XML, HTML or PDF, in which the images’
quality is of low resolution and high noise, which makes it difficult
to accurately extract the molecular structures [22, 26, 27].

The chemical information from different modalities of the
patent, i.e. texts and images, should be exploited in coordina-
tion to deliver an accurate output. However, such a structural
fusion remains an open challenge for researchers from both
computational chemistry and artificial intelligence. Besides the
difficulties arising from the recognition tasks in each individual
domain, as noted above, the chemical information from language
descriptions and graphical templates are of highly distinct for-
mat and statistical properties, and how to find the correspon-
dence between the extremely huge number of chemical entities
across the two domains in an accurate and automatic manner
with minimal human intervention is the key challenge. In this
regard, multimodal learning techniques have been used to build
machine learning models that can process information from dif-
ferent modalities in such areas as image and voice recognition,
and it currently has also been developed in the field of drug dis-
covery [28, 29]. For example, ChemDataExtractor applied natural
language processing and rule-based grammars to processing both
chemical experiment texts and spectroscopic attributes tables
[19]. KV-PLM, a unified pre-trained language model processing
both molecule structures and biomedical text, assists drug dis-
covery and documentation for biomedical research [30]. However,
these methods are not suitable for identifying the implicit corre-
spondence between chemical structure images and text descrip-
tions for chemical information fusion.

The goal of this work is to build a multimodal chemical infor-
mation reconstruction system (CIRS) to automatically process,
extract and align heterogeneous information from patent texts
and images, so as to facilitate the construction of chemical struc-
ture database with minimal human intervention. This would
be a valuable tool from which pharmaceutical chemists could
benefit significantly in the exploration and expansion of the near-
drug space. Our key innovation lies in an advanced, heteroge-
neous data generator as the hub-module that produces cross-
modality, yet tightly coupled chemical entities in the form of text
descriptions and Markush structure images. On top of this data
generator, a two-branch model will not only learn to recognize
chemical entities accurately inside each domain, but will also
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naturally capture the cross-modality correspondence embedded
in the training data. By doing this, structural fusion of chemical
entities becomes evident in the form of images and texts. We also
make available a large structure database of chemical entity to
convert chemical entities text into molecular structures, which
can solve the difficulties arising from name entity recognition
tasks mentioned above, whereas it also can provide the source of
substituent structures for other researchers to furtherly explore
combinatorial chemistry realm. Once this is achieved, the gap
between the two domains can be filled to break the bottleneck
of chemical information fusion, so that the vast amount of struc-
tural information in the form of text and image from patents can
be effectively aligned with each other.

Materials and methods
Data collection and preprocessing
For Markush image recognition tasks, a set of chemical structures
in an SMILES format were downloaded from ChEMBL database
(version ChEMBL28). The RDKit software [31] was used to per-
form a washing procedure on the raw SMILES dataset containing
1 911 226 structures. Those structures that can’t be retrieved
by RDKit were removed; molecules with more than 50 heavy
atoms were also removed because the molecule images would be
too ‘crowded’ for processing. After the processing, the following
random data split were used: (1) a training set of 150K images; (2)
a validating set of 30K structure images and (3) a test set of 30K
structure images.

In generating the Markush-like structure images, a number of
commonly encountered functional group and R-group (see below)
labels were used to replace the atoms in the molecule. RDKit was
used to identify explicit hydrogen atoms and randomly replace
them with the labels above. If one structure had one or more rings,
R-groups and bonds crossing the ring bonds may be randomly
added onto one or more rings to reproduce such a case in real
chemical documents. Because RDKit can only generate aromatic
rings in Kekulized style, the generated molecules were saved in
the SVG format first. During the saving step, the image and atom
label padding size, the bond line width and offset, the atom label
font and the total rotation angles were randomly selected to
generate highly diversified training images. The SVG strings were
then parsed and aromatic rings in Kekulized style were randomly
picked and converted into their aromatic styles (a ring with a circle
in the middle). Finally, the SVG strings were rendered to generate
the output PNG images. The coordinates and other additional
basic primitive information of the atoms and bonds were also
extracted by RDKit and used to create labels required by the
semantic segmentation and object classification tasks.

The text data were collected from 2712 chemical patents in
English, which were downloaded from the European Patent Office
and the US Patent and Trademark Office under the keywords
search of A61P, compound, structure and year from 2010 to 2020.
The preprocessing mainly included intercepting the description
text of the substituents and converting the intercepted text to
editable text through the Optical Character Recognition (OCR)
program [32]. A total of 2712 snippets were obtained, with 20 798
words. Among them, 2400 snippets were chosen as the training
set and 312 snippets were chosen as the test set, which were
annotated with YEDDA [33] in the BIOSE format [34, 35]. Then
all snippets were annotated to two entities, including example
label (S-Entity), and substituent type (S-component, B-component, M-
component and E-component) (Table 1). Finally, we manually created
the substituent structure database, including the description,

chemical name and SMILES string of 7781 substituents covered in
the snippets, which is necessary to transform the text information
to actual molecular structures.

Functional groups: Me, OMe, NHMe, Et, OEt, NHEt, Pr, OPr,
NHPr, i-Pr, Bu, OBu, NHBu, i-Bu, s-Bu, t-Bu, Ph, OPh, NHPh, Tol,
Ts, OTs, NHTs, Bz, NHBz, CF3, CN, CHO, COOH, COOMe, COOEt,
NHOH, NMe2, NEt2, N3, NO2, COCl, SOOMe, SOOEt, SOOPh, Bn,
OBn, NHBn, Boc, OBoc, Cbz, OCbz, Tf, OTf, Piv, OPiv, Vin, All, TMS,
OTMS, TBS, OTBS, THP, OTHP, TBDPS, OTBDPS, OMOM, TES, OTES,
IPDMS, OIPDMS, DEIPS, ODEIPS, CIIS, OCIIS, TIPDS, TFA, OTFA,
Fmoc, OFmoc, Alloc, OAlloc, Troc, OTroc, Teoc, OTeoc, Tr, OTr,
DMTC, ODMTC, BPin, OLev, PMP, OPMP, PMB, OPMB, Bt, OMPA, Mes.

R-groups: R, R1 ∼ R10, Ra ∼ Re, R’, R”, A, M, W, X, Y, Z, Ar, Hal, ∗, #.

Image-processing unit
The image-processing unit is composed of the semantic segmen-
tation network and the classification network. The segmentation
network is used to categorize each pixel into one of the following:
the background, the atom or the bond, and store them in a
segmentation map with pixel locations. We have used the UNet
3+ [36] for the semantic segmentation. It takes images of size 512
× 512 and can compute feature maps with the same size as the
input image. The number of epochs is set to 15 with a batch of four
images. Considering the imbalanced foreground (molecule) and
background (empty pixel), the focal loss [37] was chosen as the
loss function. The parameter of the UNet3+ network (space com-
plexity) is 26.97M, and the time complexity is 798.68G in terms
of FLOPs (floating-point operations per forward-evaluation). The
classification network is chosen as the YOLO Object Detection
Network (https://github.com/Okery/YOLOv5-PyTorch), in which
atoms and bonds are detected and classified separately. The
atoms were first located by performing non-maximum suppres-
sion based on the atom feature map, and then the geometrical
centers of each atom point are calculated and recorded. The YOLO
network takes the raw image and the center coordinates as inputs
and predicts the types and charges of each primitive. The bond
primitives are processed in a similar way. The number of epochs
is chosen as 50 and the batch size is 16. The parameter and the
FLOPs values of the YOLO network are 47.05M and 55.41G, respec-
tively. Having identified the primitives in the input image, we
will then integrate all the information (primitive types, charges,
location and connectivity patterns) and transform the image into
a molecule with structured format (such as SMILES) using RDKit.

Text-processing unit
The text-processing unit is composed of a sequence labeling
network in order to recognize the chemical entities in patent.
Here we have used BiLSTM combined CRF model, which not only
captures bi-directional correlations as in BiLSTM but also inherits
the capacity of CRF in extracting highly contextualized features,
which has attracted extensive attention in this filed [38]. At the
beginning of model input, each word token wi in an input text
sequence w1, w2, . . . , wn is represented by a word-vector vi using
Word2Vec-based word embedding [39] that captures the semantic
information of the input text and then fed into a BiLSTM encoder
to convert it into a latent feature vectors hi; the latent feature
vector hi is then transformed to a new representation pi before
being fed into a linear-chain CRF layer for NER label prediction
[40], which is a task for detecting mentions of real-world entities
from text and classifying them into predefined types. A cross-
entropy loss is used and 10-fold cross validation is applied during
training while the Viterbi algorithm is used for decoding. We have
used a batch size of 64 sequences each with 256 tokens. Overall,

https://github.com/Okery/YOLOv5-PyTorch
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Table 1. Entity types for information extraction in the text-processing unit

Type Description Examples

S-Entity Single R-group name R1, Ra, X
S-component Single substituent name Methyl, benzyl, carbonyl
B-component The beginning word of multi-word substituent name ‘Branched’ in term ‘branched C1–C6 alkyl’
M-component The middle word of multi-word substituent name ‘C1–C6’ in term ‘branched C1–C6 alkyl’
E-component The end word of multi-word substituent name ‘alkyl’ in term ‘branched C1–C6 alkyl’

the number of parameters is 0.51M, and the time complexity is
3.07M in terms of FLOPs. The Adam optimizer is employed to
optimize network weights [41].

Evaluation metrics
The metrics used to evaluate the models are precision (the ratio
between correctly predicted mentions over the total set of pre-
dicted mentions for a specific entity), recall (the ratio of correctly
predicted mentions over the actual number of mentions) and
F1-score (the harmonic mean between precision and recall), as
defined in Equations (1)–(3):

precision = TP
TP + FP

(1)

recall = TP
TP + FN

(2)

F1 = 2 • precision • recall
precision + recal

(3)

Here TP is the true positive rate, FP is the false positive rate and
FN is the false negative rate.

Results and discussion
Overview of CIRS
We propose CIRS, a multimodal chemical information recon-
struction system for processing both chemical structure images
and texts in patents to extract the structure of molecules. The
whole architecture has three main branches, namely the image-
processing unit (left), heterogeneous data generator (middle) and
text-processing unit (right), as illustrated in Figure 2. The two
branches on the left and right sides are models taking in images
and texts from chemical patents, respectively; these two branches
are implicitly connected through the heterogeneous data genera-
tor as the hub module in the middle, whose role is to generate
paired training data across domains. As a result, during the train-
ing process, the two models will automatically learn to coordinate
with each other in terms of both recognizing the chemical entities
across domains, and aligning them together.

The training process proceeds as follows. First, the hetero-
geneous data generator will generate tightly coupled chemical
entity pairs in the form of a Markush structure images and
the (pixel-wise) atom/bond labels. This then serves as the train-
ing data to feed into the image-processing unit, where we have
used a segmentation module (U-Net+++) in conjunction with a
classification module (YOLO) in order to segment the pixels in
into atoms and bonds and assign the correct label to them. In
the right branch, the text-processing unit adopted a BiLSTM-CRF
model is to perform name entity recognition to identify chemical
entities (R-group and substituent) in texts. Then the outputs of
the two branches, in particular the atom/bond labels from the left

and the chemical entities from the right, are aligned with each
other to reconstruct their chemical information. Finally, in order
to practically convert chemical entities identified through the
left model into visible chemical structures, we build a structure
database including the substituent descriptions (chemical names)
and SMILES strings of 7781 substituent structures.

It is worth mentioning that heterogeneous data generator as
the hub-module produces the key correspondence between the
chemical entities across modalities. A particular advantage of
the generator is that there is not a strict limit on the amount
and diversity of training samples, as it can modify the numera-
tor randomly according to user requirements. This can then be
translated to the good generalization performance of the image-
processing and text-processing unit, which is the key to the appli-
cability of our model in extracting chemical information from the
huge amount of chemical patents. Therefore, the extracted struc-
ture from two-branch model can be automatically aligned and
generalize to diverse molecular structures and their combinations
in chemical patents.

To comprehensively investigate the performance of the pro-
posed framework, we conduct a number of experiments to eval-
uate the recognition accuracies of the chemical entities by the
text- and image-processing units in our model. Additionally, we
perform a case study to demonstrate the potential of our frame-
work in assisting automatic information extraction in real-world
scenarios.

Markush chemical image recognition
Recognition of chemical structure images is crucial to information
extraction from chemical patents. When considering the con-
struction and exploration of the near-drug space, Markush objects
with R-groups, placeholders or dummy atoms and labels that
can be added to ordinary backbone structures are particularly
useful and have been commonly used in chemical documents.
Unfortunately, public datasets and related methods mostly target
common structure images (complete molecules with no uncertain
labels), which limits their applications. Raw molecule structure
data were collected from the ChEMBL database and used to
generate molecule images of Markush-typed structures (see the
‘Materials and Methods’ section). The datasets were then used
to train the image-processing unit to convert the given images
into their machine-processable molecule formats and validate
its performance. Figure 3 shows several examples of the gen-
erated molecule images, the images mainly contain R-groups,
functional groups, ring R bonds and random salt and pepper
noise.

The image-processing unit is composed of a semantic seg-
mentation module that groups the pixels in molecular images
into meaningful primitives such as atoms and bonds, and a
classification module that identifies the necessary information of
the atoms and bonds. In the classification module, the targeted
prediction can include the auxiliary information (such as atom
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Figure 2. Workflow of CIRS. CIRS includes the image-processing unit (left branch), the cross-modal data generator (middle) and the text-processing unit
(right branch). The two processing units take in the image and the text, respectively, from chemical patents; chemical entities are recognized in each
modality and then aligned automatically to extract highly integrated information from patents, so as to build a highly expandable, structured molecular
database to enrich the near-drug space.

Figure 3. Examples of the Markush molecule image data. (A) Image containing several different functional-groups. (B) Ring R-bonds and common
R-groups were added. (C) Salt-and-pepper noise applied in the training process.

types, atom charges, bond types, etc.) of the basic primitives. The
coordinates of each estimated primitive are calculated and saved
so they can be used to match the positions of the atoms with the
positions of the bonds’ endpoints. Then the connections between
the atoms can be built, and the data are used to reconstruct the
molecule structure and make the final output. The workflow of

the model is shown in Figure 4A, and more details can be found
in the ‘Materials and Methods’ section.

The performance of the image-processing unit is evaluated
using two sources of datasets: (1) the artificial molecular images
generated from our cross-modal data generator (by replacing
implicit hydrogen atoms in the molecules to functional groups
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Figure 4. The image-processing unit of CIRS for semantic segmentation and classification. (A) Illustration of the image-processing unit architecture. (B)
Performance of the image-processing unit in terms of precision, recall and F1-score.

and R-groups), with overall 30 000 images and (2) an external,
MolrecUOB dataset [42] with 5740 real-world (noisy) images from
real chemical documents with functional groups, and R-groups
included. In both cases, the goal is to identify chemical primitives
and predict their labels (atom/bond types, charges, etc.), and
reconstruct the structure of the molecule in SMILES format based
on the connectivity patterns of identified primitives.

The performance on the artificial dataset is reported in
Figure 4B, where the semantic segmentation module can
accurately identify the atoms and bonds, even with the presence
of salt-and-pepper noises. The module achieves a pixel-wise
precision of 0.982, which indicates that it can efficiently detect
the positions of the atoms and bonds in the images. For the
atom classification module, the precision of finding the correct
atom types exceeds 0.996 on average, whereas the precision of
the R-group detections is slightly lower (0.976), as the R-group
styles and formats are commonly changeable: the corner marks
attached to the ‘R’ labels (such as number 5 in label R5) can be
numbers, symbols or characters. As for the chemical bonds, the
performance of the classification module is also high (0.996). The
most frequent failure is the confusion of the wedge, dash and
ring R-bonds, as the wedge and ring R-bonds may look similar to
single bonds. The dash bonds are sometimes ignored by the model
because of its lower visibility than common bonds, especially in
case of a high level of background noise. The prediction accuracy
of the atom charges is about 0.989. Charge symbols with small
font sizes may get slightly lower precisions. The good performance
of the model was mainly attributed to the high-quality training

image generation. Our data generator can provide high-quality
images containing various functional groups, R-groups and other
structure styles, which enables the model to learn from highly
diversified training images to perform segmentation and object
detection. Besides, we also perturbed the training data to enhance
the robustness of the model against noisy images. These two
factors, in combination with state-of-the-art model UNet3+
and YOLO networks, have finally generated promising results
in chemical information extraction and reconstruction from
molecular images.

For the artificially generated image dataset and MolrecUOB
dataset, the ‘Ratio of Properly Reconstructed Images’ is defined
as the portion of molecular images for which our model can accu-
rately reconstruct the SMILES representation; we also adopted the
Tanimoto similarity, a commonly used metric to estimate the sim-
ilarity between molecule structures. The performance is reported
in Table 2. As can be seen, our model can correctly reconstruct
the structures of 79% of the input MolrecUOB images, with a
nice Tanimoto similarity score of 0.90, indicating that the model
has acceptable generalization ability on real data. Note that the
accuracy and the Tanimoto similarity metric were much higher
on our generated dataset, which was 0.972 and 0.982, respectively.
This is because the MolrecUOB dataset included some style of
representations that were not covered in our data generator,
examples including (1) the number of atoms in the carbon chains
or on the rings might be unknown (e.g. ‘–(CH2)n–’ indicating n
chain-linked carbons); (2) nested super-atom labels with numbers
(e.g. ‘(CH3CH2)2N–’ indicating two ethyl groups on atom N) and (3)
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Table 2. Performance of the image-processing unit on the generated Markush images and a real (external) molecular image dataset

Ratio of properly reconstructed imagesa Tanimotob

Generated Images (30,000 samples) 0.972 0.982
MolrecUOB Images (5740 samples) 0.791 0.904

aThe ratio of correctly reconstructed images (all the atoms, bonds and charges in the image are correctly recognized). bThe average Tanimoto similarity metric.

Figure 5. The text-processing unit and model evaluation in chemical entity recognition. (A) Annotated snippets for NER with some substituent types
(S-Entity, S-component, B-component, M-component and E-component). (B) Data enhancement protocol, which converted 2400 raw snippets into 7506 snippets.
(C) Distribution of the chemical entities in the training, validation and test set. (D) Illustration of the test-processing unit, the BiLSTM-CRF architecture.
(E) The confusion matrix of entity prediction; the (ij)th entry of the matrix signifies the portion of ith-type entities that are predicted as the jth-type
entity. Dominant diagonal entities indicate an accurate prediction.

wavy bonds. It is worthwhile to note that those uncovered type of
representations can be easily incorporated in our data generator,
which would lead to a training dataset with wider coverage and
so an improved reconstruction can be expected.

Chemical entity recognition
Recognition of meaningful chemical entities in the patent text and
transforming them to predefined labels is the key to alignment
of the chemical entities across the text and image modalities.
As shown in Figure 5D, the BiLSTM-CRF model was chosen to
detect substituent entities, which can learn the feature of entity
processed by word embedding through LSTM and consider the
correlation between the front and back of the sequence by CRF,
more details can be found in the ‘Materials and Methods’ section.
We note that the annotated corpus for chemical structure texts
in the patents is particularly limited, which can directly affect
the generalization capacity of the trained model. To address this

question, we have downloaded a wide spectrum of 2712 chemi-
cal patents from the European Patent Office and the US Patent
and Trademark Office, and collected entity texts and annotated
training (2400 snippets) and test (312 snippets) sets for a total of
20 798 words (Figure 5A, see the ‘Materials and Methods’ section).
During the training phase, we expanded the training set from
2400 to 7506 snippets by replacing the substituent entity with
other substituent entity through the same label (Figure 5B), which
can better tune hyper parameters of our models, respectively.
The data set was split into train and test sets, and as a result of
this new setting, 6755 snippets were available in train set, 751 in
the validation set and 312 in test set. Figure 5C shows the entity
distribution in appears similar for different datasets. The majority
of the annotations are rom S-component, covering 57% of entities in
the development phase. In contrast, M-component represent 7.0%
of entities in the development phase.

We compared our BiLSTM-CRF model with other baseline
methods for chemical name entity recognition, including LSTM
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Table 3. Entity recognition performance of our model and two competing methods in terms of precision, recall and F1-score

Model Type Precision Recall F1-score

LSTM Entity 0.79 0.90 0.84
Component 0.90 0.94 0.92

LIME Entity 0.90 0.91 0.91
Component 0.85 0.90 0.88

BiLSTM-CRF Entity 0.97 0.96 0.97
Component 0.98 0.98 0.98

The metrics are evaluated on the test set, and the best values are indicated in bold.

Figure 6. Automatic structure extraction from a chemical patent using CIRS. Our system generated a structural library with 2 082 500 molecules by
finding the chemical entities in the patent and enforcing the replacement/combination rules as stated in its formula; in comparison, there were only
11 compound examples in the original patent.

[43], LIME [44]. Table 3 shows the performance of different
approaches in terms of the precision, recall and F1-score. Note
that the BiLSTM-CRF model trained on the enhanced dataset
(through vocabulary replacement) achieves 97% of F1-score in
the ‘entity’ type, and 98% of F1-score in the ‘component’ type,
yielding more than six-point improvement over LIME and LSTM
models in term of the F1-score. The superior performance of
our model should be attributed its capacity of combing the
bi-directional correlations captured in BiLSTM, as well as the
highly contextualized temporal features extracted by the CRF
model. Besides, the data augmentation or enhancement can also
generally improve the performance of learning-based algorithms.
See ‘Materials and Methods’ for details of the enhancement
protocols.

Figure 5E shows the confusion matrix to illustrate the percent-
age of entities predicted by the BiLSTM-CRF model against the
ground truth. As can be observed, the confusion matrix has a
dominant diagonal, indicating that the correctly predicted entity
types dominate. The top 2 best-performing entities identified by
our models are S-compound and S-Entity. Most of the misclas-
sification is associated with the B-component and M-component,
which may be attributed to the insufficient training instances
of such entities in the dataset (Figure 5C). Other than that, E-
component is sometimes classified as S-component. Moreover, many
predicted entities were shorter in length, for example, aromatic
structure instead of homo-, di, or tricyclic aromatic structure and alkyl
instead of linear alkyl. Indeed, the multi-word entities are a major
challenge for NER [45]. We believe it could be also related to sub-
word tokenization. Lastly, our model can be further improved
by introducing more features, such as part-of-speech, lemma,
Roman numerals, names of the Greek letters [46], which could

better characterize chemical entities in more complex patent
texts.

Case study of chemical information
reconstruction
In this subsection, we demonstrate the practicability of CIRS
through a case study, in which we have chosen a specific patent
[47], extract the chemical entities from its images and text
descriptions, align the entities together and finally transform the
reconstructed information into a structured molecular database.
The patent contains around 4 formulas and 11 molecular images
to present their compounds invention. We selected a formula
(Ia) for chemical information extraction to demonstrate the
practicality of CIRS. As shown in Figure 6, formula (Ia) consists of
two parts: Markush molecule image and substituent entity text.
Through CIRS, a Markush structure and eight chemical entities
with 123 substituent structures were extracted from images and
texts, separately, and, as a result, 2 082 500 molecules were
obtained by the aligning the chemical entities across the text and
image modalities, and enforcing the replacement/combination
rules as stated in the patent formula. This is a significant
enrichment as compared to the 11 molecular examples reported
in the original patent. As can be seen, our system can extract
the chemical findings in the patent and transform them into
a highly comprehensive collection of molecules with desired
replacement rules to reconstruct their chemical information. This
can serve as a useful molecular database for drug screening. As
can be anticipated, by applying our system to the vast number
of chemical patents, we can then obtain a significant number of
structures to facilitate the generation of near-drug molecules, and
hopefully construct a useful near-drug space for pharmaceutical
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chemists to work with. Furthermore, automatic information
extraction from chemical patents can make it much easier
to define the scope of patent coverage, so as to better avoid
chemical intellectual property conflicts in drug discovery in the
future.

Conclusions
In summary, we explored a multi-modal chemical information
reconstruction system, named CIRS, by identifying chemical enti-
ties from the texts and images of chemical patents, aligning them
automatically, so as to facilitate the exploration and construction
of the near-drug space. This is achieved through the parallel
image and text-processing units that explore the two modalities,
respectively, and in the meantime being connected with each
other via the use of a cross-modal data generator, so that their
predicted primitives can be naturally aligned for chemical infor-
mation reconstruction. In quantitative evaluations, our accuracy
(F1-score) in terms of correctly identifying chemical entities from
Markush structure images and texts approaches 96% and 97%,
respectively, meaning that the accuracy of aligning chemical enti-
ties from the two modalities will be around 96–97%, under vari-
ous distributions of the chemical entities. This demonstrates the
value of the proposed model in automatic information processing,
extraction and reconstruction. Furthermore, our work showed
that CIRS is a promising system in facilitating automatic infor-
mation extraction, which could generate structures from images
and texts in scientific literature to enrich near-drug space and
boost drug discovery. Also, our automatic information extraction
system may help to establishing a knowledge base (e.g. knowledge
atlas) to realize the intelligent retrieval technology of chemical
knowledge.

In our future research, we will consider more diversified fea-
tures in chemical documents, such as part-of-speech, lemma,
Roman numerals, names of the Greek letters; pursue more elastic
solutions-based OCSR to process various types of R and functional
groups, instead of using pre-defined fixed class/type lists; in addi-
tion, we are studying how to effectively incorporate chemistry or
bioinformatics information from knowledge resources with more
flexible formats and organization than patents (such as scientific
papers) in the information reconstruction process. Also, we may
explore how to directly obtain SMILES strings based on natural
language descriptions, and further improve the generalization
ability of the model by considering more types of chemical data
to enrich the near-drug space.

Key Points

• We proposed a multimodal chemical information recon-
struction system (CIRS) to automatically process, extract
and align heterogeneous information from text descrip-
tions and structural images of chemical patents, so
that useful and expandable molecular structures toward
drug discovery can be constructed efficiently to populate
the near-drug space.

• A heterogeneous data generator can produce cross-
modality training data, from which parallel processing
units can learn to both recognize chemical entities from
different modalities and simultaneously capture their
correspondence; such an automatic information fusion

framework and data-generative mechanism can be valu-
able for a great variety of chemical information mining
and reconstruction applications.

• Comprehensive experiments demonstrate the effective-
ness of our model in automatic information extraction
from chemical patents and enriched structural library
with a significantly larger number of candidate com-
pounds can be generated from the patents.

Data availability
The chemical structures in SMILES format from ChEMBL database
are available at https://www.ebi.ac.uk/chembl/. The chemical
entity recognition datasets were collected from the European
Patent Office (EPO) and United States Patent and Trademark
Office (USPTO) under the keywords search of A61P, compound
and structure.
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