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Abstract

Haplotype association studies based on family genotype data can provide more biological information than single marker
association studies. Difficulties arise, however, in the inference of haplotype phase determination and in haplotype
transmission/non-transmission status. Incorporation of the uncertainty associated with haplotype inference into regression
models requires special care. This task can get even more complicated when the genetic region contains a large number of
haplotypes. To avoid the curse of dimensionality, we employ a clustering algorithm based on the evolutionary relationship
among haplotypes and retain for regression analysis only the ancestral core haplotypes identified by it. To integrate the
three sources of variation, phase ambiguity, transmission status and ancestral uncertainty, we propose an uncertainty-
coding matrix which combines these three types of variability simultaneously. Next we evaluate haplotype risk with the use
of such a matrix in a Bayesian conditional logistic regression model. Simulation studies and one application, a schizophrenia
multiplex family study, are presented and the results are compared with those from other family based analysis tools such
as FBAT. Our proposed method (Bayesian regression using uncertainty-coding matrix, BRUCM) is shown to perform better
and the implementation in R is freely available.
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Introduction

Many genetic studies of complex diseases are interested in

detecting associations between genetic markers and disease status.

To evaluate the strength of such association, a regression approach

may be adopted and applied to family haplotype data. Advantages

of this regression framework include the ability to estimate and test

the association, and its flexibility in accommodating not only

individual information, but also gene-gene and gene-environment

interactions. In addition, as compared with single-point SNP

analysis, consideration of haplotypes as markers may provide

better biological interpretation, and the selection of a family study

design may lead to identification of susceptibility alleles inherited

among family members.

Difficulties arise, however, with family haplotype data in

regression models. One difficulty concerns the determination of

haplotype phase, which involves uncertainty in inferring haplo-

types from genotype data, and in differentiating between

transmitted and non-transmitted haplotypes inherited from

parents. Two groups of remedies have been suggested in previous

research. The first, originally used in case-control studies [1–3],

replaced the unknown phase with a maximum likelihood estimate

or an expectation from an EM algorithm. For family data,

Horvath and colleagues [4] considered weighted genotype scoring

in tests with FBAT, and Purcell et al. [5] used the EM estimate in

the free software WHAP. The second group of remedies, in

contrast, included the set of all possible haplotype configurations

compatible with the observed genotype, constructed the corre-

sponding likelihood for each haplotype explanation, and then put

weights on these likelihoods or log-likelihoods to establish a full

likelihood function for case-control studies [6,7]. Cordell et al. [8]

gave a detailed comparison and review of these methods in two-

stage analysis, under the assumption of a multiplicative model for

case-control studies. For the family data here, we preserve the

uncertainty in haplotype configurations with a rationale similar to

that of the second group of remedies.

The second complexity encountered in association analysis is

the large number of haplotypes available in the candidate region.

This can result in a large number of degrees of freedom in

statistical analysis and a phenomenon of sparsity in haplotype

distribution. Many statistical methods have been proposed for

dimension reduction, including dropping/grouping rare haplo-

types, and clustering haplotypes based on their spatial relation or

similarity in terms of an evolutionary relationship or length

measure. Igo et al. [9] have provided an excellent review with

many more references.

Because the analysis considered in this article is for family data,

a preferred clustering algorithm should be able to track and
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manage the unknown haplotype phase, frequency, and transmis-

sion status simultaneously. Tzeng’s [10] procedure accounted for

the first two types of uncertainty. It defined the ‘‘age’’ of haplotype

in terms of frequency, categorized the ‘‘generation’’ with the

number of different components between two haplotypes, and

weighted the clustering probability based on haplotype frequen-

cies. Lee et al. [11] extended this procedure to family data by

incorporating the transmission uncertainty in core haplotype

assignment, and then combined it with a likelihood ratio test. We

adopt this evolutionary-guided clustering idea and utilize a matrix

containing all three types of uncertainty, in terms of probability,

for haplotype compositions for each individual.

Another issue regarding the use of regression models for

haplotype data is the specification of the design matrix when

haplotype composition is considered as the covariate. Because

each individual has two haplotypes, the sum of possibilities in

haplotype assignment is a fixed constant, say 2. In other words,

there exists collinearity among columns of the regression design

matrix. Several researchers have suggested taking the most

common haplotype as the reference to combat collinearity, and

then focusing the inference on relative risks. Lin et al. [12]

described a flexible coding when there exists a target haplotype for

investigation, and demonstrated identifiability for regression

parameters. In Bayesian analysis, prior specification on correlated

covariates has attracted considerable attention, especially in the

setting of Bayesian variable selection. Moreover, Soofi [13]

showed that, when the prior variance is small relative to the

variability in response, the difference in information for posterior

inference is slight. Therefore, we employ only independent priors

in the analysis. Alternatively, one could use the powered

correlation prior or Zellner’s g-prior to handle problematic

collinearity [14].

In this study, under the regression framework with family data,

we first match the affected child carrying the transmitted

haplotypes to a pseudo-control child carrying the non-transmitted

haplotypes. Next we formulate a regression setting under a

Bayesian conditional logistic regression model with dichotomous

disease status as the response variable. We propose in this model

a design matrix whose entries represent the uncertainty in

haplotype phase configuration, transmission, and clustering.

Based on this Bayesian model, the haplotype specific risk can

be evaluated as a posterior probability which takes haplotype

uncertainty into account when only family genotype data are

available.

Methods

Haplotype Coding with no Uncertainty
Consider N families, each with ni (ni§3, i = 1, 2,…, N )

members, including an affected offspring, his/her parents, and

any siblings. All of these participants are genotyped in the region of

interest, where the number of available compositions of haplotypes

H1,H2,:::,HKf g in this region is K . Among the four haplotypes

from parents, two haplotypes are transmitted to the affected child

and the remaining two non-transmitted haplotypes are included via

a matched pseudo-control child. Let yij represent the dichotomous

disease status, yij~1 for case and 0 for normal. In such a matched

case-control study, we consider for convenience the index j = 1 for

the affected child, and j = 0 for the corresponding pseudo-control.

In addition, let pij be the conditional probability that yij equals 1,

pij~P yij~1jhij,1,:::,hij,K

� �
, where hij,k is the number of k-th

haplotypes Hk the child inherited from his or her parents. For

instance, hij,k~2 if this child inherited Hk from both parents,

hij,k~1 if Hk was inherited from either the paternal or maternal

side, and hij,k~0 if the k-th haplotype does not provide any

information regarding the transmission route; thus,
XK

k~1

hij,k~2. For

this matched case and pseudo-control design, a conditional logistic

regression model can be considered, and Li, the likelihood for the i-
th family, can be directly written as

Li~

exp
XK

k~1

bkhi1,k

" #

exp
XK

k~1

bkhi1,k

" #
zexp

XK

k~1

bkhi0,k

" #

~

exp
XK

k~1

bk hi1,k{hi0,kð Þ
" #

1zexp
XK

k~1

bk hi1,k{hi0,kð Þ
" #

ð1Þ

where hi1,k{hi0,kð Þ is, for the k-th haplotype, the difference in

haplotype number between the affected child and the correspond-

ing pseudo-control.

When there is no haplotype ambiguity, these hij,k can be placed

directly in a design matrix X, and then the inference of the

corresponding coefficients bk can be used to evaluate the strength

of association, in terms of the logarithm of the odds ratio. To assess

haplotype-specific risk when only genotype data are available, we

propose another design matrix with coding for phase, transmis-

sion, and ancestry uncertainty.

Haplotype Coding with Haplotype Phase Uncertainty
Uncertainty in Haplotype Explanation. When haplotype

phase cannot be uniquely determined based on genotypes,

particularly when parents’ genotypes are missing, all possible

configurations compatible with genotypes of parents and siblings

can be inferred. In that case, hij,k indicates the haplotype

likelihood and can take any value between 0 and 2 with the

same constraint that the summation of hij,k over k~1,:::,K is 2.

Based on the observed genotypes of family members, a set T
containing all possible combinations of transmitted and non-

transmitted haplotypes can be derived. For instance, the set for the

i-th family, consisting of three members in this example, is

Ti~f(TF ,NTF ,TM ,NTM ) : (TF ,NTF )jGF
i ,

(TM ,NTM )jGM
i , (TF ,TM )jGC

i g,

where (TF ,NTF )jGF
i indicates the set of paternal haplotypes

compatible with the observed paternal genotype GF
i , and

(TM ,NTM )jGM
i and (TF ,TM )jGC

i indicate the analogous

explanations for the mother and the affected child, respectively;

TF and TM are the haplotypes transmitted from the father and

mother, respectively; and NTF and NTM are the non-

transmitted ones. When there are Mi possible explanations for

the i-th family, the m-th (m~1,:::,Mi) explanation component in

Ti is denoted as a quadruple unit Tim~(TF
im,NTF

im,TM
im ,NTM

im ). Its

corresponding likelihood wim is proportional to the product of

frequencies P(TF
im), P(NTF

im), P(TM
im ) and P(NTM

im ), under the

constraint that all likelihoods in Ti sum to 1. Therefore, if there

are wi1, wi2, …, and wiMi
such likelihoods in Ti , then for

Bayesian Uncertainty-Coding Regression
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m~1,:::,Mi,

XMi

m~1

wim~1and wim~
P(TF

im)|P(NTF
im)|P(TM

im )|P(NTM
im )XMi

l~1

P(TF
il )|P(NTF

il )|P(TM
il )|P(NTM

il )

,

assuming independent sampling of haplotypes from the population.

For example, if the genotypes on two given loci are (1/2, 1/2)

for the father, (2/2, 1/2) for the mother with the first genotype

missing, and (1/1, 1/1) for the affected child, then the transmitted

haplotypes from the father and mother along with the non-

transmitted haplotypes (TF ,NTF ,TM ,NTM ) can be either (11, 22,

11, 12) or (11, 22, 11, 22). The uncertainty comes from the missing

maternal genotype (2/2) of the first locus whose genotype can be

either 1/1 or 1/2. Therefore, the haplotype phase of the pseudo-

control can be either (22, 12) or (22, 22). Let p1 be the haplotype

frequency for (12), and p2 for (22), then the conditional probability

for phase (22, 12) is wi1 (~p1p2=(p1p2zp2p2)~p1=(p1zp2)) and

wi2 (~p2p2=(p1p2zp2p2)~p2=(p1zp2)) for (22, 22).

Uncertainty in Haplotype Transmission. Once the

haplotype explanation set is defined and the uncertainty

associated with each explanation is established, the next step is

to determine the uncertainty regarding each transmitted

haplotype. Under the assumption of additive haplotype effects,

we construct for the case individual (j = 1) the haplotype weight

hij,k associated with Hk. This weight includes both haplotype

explanation uncertainty and haplotype transmission uncertainty:

hi1,k~
XMi

m~1

wim
: I

TF
im

(Hk)zI
TM

im
(Hk)

� �

for k~1,:::,K . The above IB(A) is an indicator function taking the

value 1 if A equals B and 0 otherwise. This calculation is based on

transmitted haplotypes only, and is evaluated across all haplotype

explanations wim. For the pseudo-control, the haplotype weight is

derived similarly, based on non-transmitted haplotypes:

hi0,k~
XMi

m~1

wim
: I

NTF
im

(Hk)zI
NTM

im
(Hk)

� �
:

At this stage, the row vector (hij,1,hij,2,:::,hij,K ) can serve as the

individual’s haplotype coding if all K haplotypes are included for

analysis.

For the example in the previous section, the haplotype coding

for the pseudo-control is wi1 for (12), wi1zwi2zwi2 for (22), and

zero for the remaining haplotypes. While for the affected child,

there is no uncertainty in phase and thus the coding is 2 ( = 1+1)

for haplotype (11) and zero for the rest. Again, it can be seen thatXK

k~1

hij,k~2, as in the case when phase is known.

Haplotype Coding with Ancestry Uncertainty –
Dimension Reduction

In the likelihood function under the conditional logistic

regression model in equation (1), the design matrix X containing

haplotype likelihoods hij,k can be sparse due to the large number K
of haplotypes available, and some hij,k may be extremely small or

zero. Instead of trimming those rare haplotypes, we adopt an

evolutionary-guided procedure to merge ‘‘young’’ haplotypes with

their ‘‘ancestors’’. This clustering concept has been considered for

case-control studies [10], for TDT-type tests [15,16], and for

likelihood ratio tests conducted in family studies [11]. Because rare

haplotypes have a lower expected age, common haplotypes are

therefore considered more ancient, and ancestral haplotypes will

be defined as core haplotypes.

Suppose the number of core haplotypes H�1 ,H�2 ,:::,H�C is C, and

the K|C matrix V with entries vij representing the probability

that haplotype Hi is clustered to the core H�j . For instance, the

(i,j)-th entry is 1 if the original haplotype Hi is clustered to the core

haplotype H�j , and zero otherwise. If Hi is grouped to H�j with

probability p, then vij~p. Note that every row in V sums to 1, i.e.XC

j~1

vij~1. Then, the original design matrix X of haplotype

likelihoods hij,k can be represented as X� (X�~X|V) with h�ij,c
denoting the corresponding entries. This new matrix is now

equipped with the uncertainty in haplotype phase, in haplotype

transmission, and in ancestry clustering, and it can be shown with

simple algebra that
XC

c~1

h�ij,c~2.We will use this uncertainty-coding

matrix in conditional logistic regression analysis later.

Following the formulation, the model becomes

yij jpij*Bernoulli(pij)

logit(pij)~(b1,b2,:::,bC)|(h�ij,1,h�ij,2,:::,h�ij,c)t~
XC

c~1

bch�ij,c

where the likelihood for the i-th family can be written as

L�i ~

exp
XC

c~1

bch�i1,c

" #

exp
XC

c~1

bkh�i1,c

" #
zexp

XC

c~1

bch�i0,c

" #

~

exp
XC

c~1

bc h�i1,c{h�i0,c

� �" #

1zexp
XC

c~1

bc h�i1,c{h�i0,c

� �" # :

The prior distribution for the C-dimensional random vector

(b1,b2,:::,bC)t is a multivariate normal distribution with the mean

vector mb and variance covariance matrix s2R,

(b1,b2,:::,bC)t*N(mb,s2R):

Note that the covariance matrix can be non-diagonal to account

for the fact that summation of (h�ij,1,h�ij,2,:::h�ij,C) is constrained.

Each component in the C|1 vector mb (mb~(m,:::,m)t) is the logit

transform of prevalence of the disease under investigation. For s2,

a hyper-prior inverse gamma distribution (IG) is assumed and R is

the identity matrix if the bi’s are independent. The statistical

inference will be made based on posterior samples generated from

Markov chain Monte Carlo (MCMC) methods via the package

BRugs in R.

Computational Notes
The whole procedure discussed above involves (1) estimation of

the haplotype frequency, (2) development of the clustering matrix

V, (3) evaluation of the likelihoods for haplotype explanation wim,

(4) construction of the matrix X, (5) computation of the final

Bayesian Uncertainty-Coding Regression
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uncertainty-coding matrix X�, and (6) computation of the

posterior sample for statistical inference. Steps (1) and (3) can be

conducted in FAMHAP [17,18], steps (2), (4) and (5) are carried

out with R codes, and the final step (6) can be performed in

BRugs. To complete these steps, we integrate BRugs and

FAMHAP, along with our codes written in R. The whole package

(called BRUCM for Bayesian Regression with Uncertainty-

Coding Matrix) has been tested in the R environment and is

freely available at the webpage http://homepage.ntu.edu.tw/

,ckhsiao/download(en).html. In the Bayesian model specifica-

tion, the prior distribution can be either user-defined or selected

from the reference priors provided in the code.

Results

Sampling Scheme and Computation for Simulations
Simulation studies were conducted to evaluate the performance

of the proposed approach and to compare it with FBAT, a

procedure commonly applied in family association studies. We

selected from the HapMap homepage (http://www.hapmap.org) a

haplotype region containing 8 SNPs (rs2301756, rs12423190,

rs11066322, rs7975439, rs7313360, rs7958372, rs3741983, and

rs7953150) on 12q24 linked to metabolic syndrome. The

frequencies of each SNP and phased haplotype are listed in

Table 1. Note that the haplotype 11111211 with frequency 0.10

was taken as the risk haplotype. Family data were generated based

on different modes of inheritance (additive, dominant, or

recessive), relative risk (r = 1.2, 1.5, or 2.0), and prevalence

(0.01). The haplotypes of the affected child were first generated,

then the two other haplotypes were generated to set up the

parents’ four haplotypes. Based on these, we could construct the

haplotypes of other siblings. Each family had at least one affected

child. The number of families was fixed at 200, where the number

of family members in each family was 3 plus a Poisson distribution

with mean at 2. Therefore, each family was guaranteed to have at

least three members. About 81% of the 200 families, the number

Table 1. Frequencies (in percentages) of the simulated
haplotypes and the distribution of SNPs.

SNP composition of the haplotype

Haplotype S1 S2 S3 S4 S5 S6 S7 S8 Freq.(%)

11111111 1 1 1 1 1 1 1 1 49.44

12111111 1 2 1 1 1 1 1 1 27.78

11111211 1 1 1 1 1 2 1 1 10.00

21212121 2 1 2 1 2 1 2 1 7.22

21212122 2 1 2 1 2 1 2 2 3.89

12111211 1 2 1 1 1 2 1 1 1.11

11222122 1 1 2 2 2 1 2 2 0.56

MAFa (%) 11.11 28.89 11.67 0.56 11.67 11.11 11.67 4.45

a MAF for minor allele frequency.
doi:10.1371/journal.pone.0021890.t001

Figure 1. Boxplots of haplotype effects under additive models. Boxplots of 1000 replications for additive model under r = 1.2 (1st column),
1.5 (2nd column) and 2.0 (3rd column). The first row contains posterior mean effects of bi , the second is for its bias, and the last is for the posterior
probability of susceptibility Pr(bi{b1w0jy). Red plots correspond to the risk haplotypes.
doi:10.1371/journal.pone.0021890.g001
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of family members was greater than 3. In total, there were nine

simulation settings, and under each setting the number of

replications was 1000.

In each replication, family genotypes were first constructed

based on simulated haplotypes, then the frequencies of haplotypes

were estimated and the clustering step was conducted. Following

Shannon’s information criterion, the original seven haplotypes

were clustered to five core haplotypes. Four of the five cores were

recovered in every replication, while one was recovered in 92% of

the simulations. In less than 7% of all replications, this procedure

identified more than seven haplotypes from the genotype data.

Those were, however, rare haplotypes and did not affect the set of

core haplotypes. Next, the uncertainty-coding matrix X� was

derived based on both the clustering matrix V and the original

design matrix X. Finally, the BRugs package was called in R to

generate posterior samples for Bayesian inference under the same

model specified in previous sections with m~logit(0:01) and s2

from IG(1,1). For each parameter, we disregarded the initial 5,000

iterations for burn-in, and we collected every tenth value in the

following 10,000 runs to reduce the correlation between samples in

each of three chains. This led to 3,000 posterior samples.

Performance Evaluation
To evaluate the performance of this procedure, we examined

the posterior mean effect bi, the risk relative to the most common

haplotype bi{b1, and the posterior probability of susceptibility

Pr(bi{b1w0jy). Figure 1 displays the boxplots of 1000

replications for the additive model under r = 1.2, 1.5 and 2.0.

The first row shows that the haplotype H2 is predominantly

identified as the higher risk haplotype. The second row shows the

bias of the estimated effects, and the bottom row shows that the

posterior probability of susceptibility can be as high as 0.71 for

r = 1.2, and 0.96 for r = 2.0. Plots for other modes of inheritance

are provided in Figures S1 and S2.

As a comparison with FBAT, we calculated sensitivity,

specificity, overall accuracy, and area under the ROC curve

(AUC) for each simulation setting with the Bayesian procedure

and FBAT, respectively. In each replication, the haplotype was

identified as a risk factor if its posterior probability of positive

relative risk Pr(bi{b1w0jy) was greater than 50%. In addition,

the sensitivity and specificity for determination of risk and non-risk

haplotypes were computed. The overall accuracy was calculated as

the percentage of correct classification of the haplotypes as risk or

non-risk, while the AUC was derived by varying the threshold

value T in the posterior probability Pr(biwTjy). Figure 2 shows

the sensitivity, specificity and the corresponding overall accuracy

on the ROC curve under the Bayesian model, along with the

significance tests from FBAT. FBAT tended to have high

specificity, leading to high overall accuracy. However, when

looking at the AUC and sensitivity, Bayesian analysis provided

Figure 2. Performance evaluation under different genetic models and relative risk ratios. The performance evaluation based on AUC,
overall accuracy, sensitivity, and specificity. The three columns are results under r = 1.2, 1.5, and 2.0, respectively. The three rows are simulations from
additive (top), dominance (middle), and recessive models (bottom), respectively. The shaded bars in the left are under the hierarchical model with
independent priors on regression coefficients, and the right bars contain results from FBAT.
doi:10.1371/journal.pone.0021890.g002

Bayesian Uncertainty-Coding Regression
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better and more stable results, except under the recessive model

where all procedures failed to perform satisfactorily. Detailed

results and numbers are listed in Table 2.

Application: Taiwan Schizophrenia Linkage Study
Schizophrenia is a disabling mental disorder with a lifetime risk

of 0.72% worldwide [19], and many studies have identified the

association between schizophrenia and genetic/environmental

factors [20,21]. Two studies, the Taiwan Schizophrenia Linkage

Study [22] and the Multidimensional Psychopathological Study on

Schizophrenia [23], have collected multiplex family data for

analysis. The first study recruited schizophrenic patients and their

first-degree relatives, whereas the second study recruited sib-pairs

who were both affected and their first-degree relatives [22–24].

This data set contains the genotyping information on chromosome

6p of 1016 individuals from 218 multiplex families. Among them,

ninety-three families had two offspring, 108 families had three,

and 17 families had four or five offspring. Twenty-eight SNPs were

genotyped, which cover 4 genes: MRDS1, DTNBP1, TNFa, and

NOTCH4. After performing haplotype block construction with

linkage disequilibrium (LD), the largest block, the third one, was

selected for analysis (Figure 3). This block belongs to DTNBP1

gene, and contains, in order, the 8 SNPs rs909706 (P1583),

rs1018381 (P1578), rs2619522 (P1763), rs2005976 (P1757),

rs2619528 (P1765), rs1011313 (P1325), rs2619539 (P1655), and

rs3829893 with corresponding common/minor alleles T/C, C/T,

A/C, G/A, G/A, C/T, C/G, and G/A. There were 12

haplotypes in total, 8 of which were rare with frequency less than

5% (Table S1). The number of resulting core haplotypes was 5

based on Shannon’s criterion (see cladogram in Figure S3), and

the corresponding revised frequencies are listed in Table S1, along

with the original haplotype composition and estimated frequencies

derived by FAMHAP. The summation of frequencies of these 5

core haplotypes is 98.95%. Next, the matrices V and X were

constructed to form the design matrix X� for further Bayesian

analysis.

The complete model specification is

yij jpij*Bernoulli(pij), i~1,:::,218, j~1,:::,ni

where logit(pij)~(b1,b2,:::,b5)|(h�ij,1,h�ij,2,:::h�ij,5)t~
X5

c~1

bc|h�ij,c

(b1,b2,:::,b5)t*N(mb,s2R)

where mb~(m,:::,m)t

s2*IG(1,1)

Note that each component m in the 5|1 mean vector mb was fixed

at logit(0.72%) and IG stands for the inverse Gamma distribution.

The MCMC computational method in BRugs was applied, and

Table 2. Performance comparison between BRUCM and
FBAT.

BRUCM FBAT

r~1.2 r~1.5 r~2.0 r~1.2 r~1.5 r~2.0

AUC

Additive 0.804 0.943 0.992 0.618 0.813 0.766

Dominant 0.778 0.933 0.990 0.604 0.810 0.818

Recessive 0.549 0.593 0.662 0.525 0.591 0.713

Overall Accuracy

Additive 0.652 0.887 0.970 0.811 0.857 0.858

Dominant 0.635 0.881 0.934 0.804 0.851 0.891

Recessive 0.510 0.534 0.568 0.900 0.892 0.866

Sensitivity

Additive 0.852 0.859 0.931 0.160 0.455 0.700

Dominant 0.826 0.837 0.982 0.135 0.412 0.734

Recessive 0.573 0.618 0.712 0.055 0.152 0.266

Specificity

Additive 0.601 0.895 0.980 0.954 0.945 0.893

Dominant 0.585 0.894 0.922 0.952 0.947 0.925

Recessive 0.492 0.511 0.529 0.945 0.950 0.946

Performance comparison between Bayesian regression with uncertainty-coding
matrix (BRUCM) and FBAT under independent prior distributions on b’s,
genotype relative risks r, and modes of inheritance.
doi:10.1371/journal.pone.0021890.t002

Figure 3. LD information for the schizophrenia study. LD blocks of the 28 SNPs on chromosome 6p for the schizophrenia multiplex family
study. The genotype data from the largest block (3rd block) were selected for analysis.
doi:10.1371/journal.pone.0021890.g003
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the trace plot was inspected. The sampler mixed well and the

resulting Gelman-Rubin convergence diagnosis measure was 1.

The initial 30000 iterations were burn-in and every 60th value was

kept as a sample. A total of 1500 samples were used for posterior

analysis and the effective sample size for key parameters ranged

from 982 to 1500.

Figure 4 shows the boxplots and posterior density plots of the

haplotype-specific effects bi,i~1,:::,5, and the relative effects

bi{b1,i~2,:::,5, respectively. Note that, except for the fifth

haplotype, the other four (TCAGGCCG, CCAGGCGA,

TCAGGTCG, and CTCAACGG) seem to share similar risk.

The density corresponding to the fifth haplotype locates the

farthest left in Figure 4 (in the upper right panel), indicating a

comparatively high protective effect with a posterior probability of

only 0.15 P(b2{b1w0jy) (Table 3). This implies a smaller relative

risk associated with this haplotype, as compared with that of the

other four, which all show similar values close to 0.5. In FBAT,

however, rare haplotypes, i.e. those present in less than 10% of all

families included, cannot be tested and thus no conclusion can be

made about the marginal or relative risks of the last haplotype (last

column in Table 3).

Discussion

In family studies with collected genotype data, the inference of

haplotype risk requires the determination of haplotype phase and

corresponding transmission and non-transmission status. This task

becomes even more complicated when the number of haplotypes

is large and when some of them are of small frequencies. In this

paper, we first constructed clusters of haplotypes based on their

evolutionary relationship to reduce dimension of parameters, and

then combined this cluster structure with the haplotype phase and

transmission uncertainty to derive an uncertainty-coding matrix.

This matrix was next used in a Bayesian conditional logistic

regression model to examine the existence of haplotype risk. This

proposed approach not only provides a probabilistic risk

evaluation for haplotypes under study, it also integrates into the

analysis the variability from various sources and reduces

successfully the number of haplotypes involved in the genomic

region.

The proposed approach has several strengths. First, this

clustering design is good for the case where several evolutionary-

related variants contribute similarly to the disease association. For

instance, when one core haplotype is estimated with a high

posterior probability of risk, it may imply that the rare haplotypes

being clustered with it share similar and possibly minor risk as well.

In other words, this ‘‘core cluster’’ may represent a homogeneous

group worthy of further investigation in association studies. The

proposed methodology may be applied under the assumption of

common disease rare variants (CDRV), especially when these rare

variants are related in the evolutionary sense. That is, the core set

of such clustered haplotypes may explain better the association

between disease and markers. It should be kept in mind, however,

that this current approach cannot identify the risk of each rare

haplotype in the same group, unless more subjects with such

haplotypes can be collected.

Figure 4. Boxplots and posterior density plots for the schizophrenia study. Boxplots and density plots of the posterior distributions of b’s
(top two plots) and bi{b1 (bottom two plots) for schizophrenia study.
doi:10.1371/journal.pone.0021890.g004
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A second strength is that such a regression model can be easily

extended to include other clinical information or environmental

covariates for examination of genetic and environmental

interaction. Taking the schizophrenia study for example, other

research has reported the importance of negative symptoms [25].

The inclusion of scores from questionnaires about negative

symptoms or other clinical features of schizophrenia may clarify

the role DTNBP1 plays in brain function in schizophrenic

patients. A third strength is the ability to incorporate haplotypes

from other genomic regions so that the joint effect and

interactions of haplotypes locating in different genes can be

assessed simultaneously. Suppose K1 and K2 are numbers of

haplotypes in two different regions, then the number of

parameters can be reduced from (K1{1)|(K2{1) to

(C1{1)|(C2{1) for the evaluation of joint effects, where C1

and C2 are numbers of corresponding core haplotypes in each

region, respectively.

The debate of association between DTNBP1 and schizophrenia

has not been settled and as of yet no global significance has been

identified [26,27]. Although the last haplotype (CCCAACCG)

shows effects different from the remaining core haplotypes, their

effect sizes are all too similar to reach a definitive conclusion. In

addition to the possible explanations listed in previous studies, here

we suggest focusing on the fourth and fifth haplotypes, because

their descendant haplotypes overlap. Our current approach

assumes all haplotypes in the same core set contribute equally to

the disease association. This assumption, however, may fail in the

case where disease susceptibility exhibits etiological heterogeneity.

In other words, the original haplotype construction based on

‘‘haplotype blocks’’ may need further examination. This method-

ological issue and development will be incorporated in future

studies.

The schizophrenia multiplex family study originally consid-

ered 12 haplotypes, which were then clustered into 5 core

haplotypes. This reduction (from 12 to 5) may not be impressive

in terms of number of parameters and computational burden.

Therefore we have included another study about Crohn’s

disease in Supporting Information Text S1 where 27 haplotypes

are clustered to 6 core haplotypes. The reduction in this case is

much more substantial, and our proposed methodology also

offers an evolutionary interpretation and provides a solution to

collinearity. Without this reduction, the large number of

parameters could lead to failure of convergence in estimation

procedures in regression models.

One issue with regard to the Bayesian approach concerns the

choice of prior distributions. Analysis of the sensitivity of the

posterior inference to the prior specification can help evaluate

the influence of this choice. We have considered both

independent and correlated priors, and both conjugate beta

and non-informative truncated normal distributions in the

analysis. Their AUC, overall accuracy, sensitivity, and speci-

ficity are similar and the general conclusions do not differ (data

not shown). These findings indicate that the posterior inference

is not sensitive to the prior considered. Special care needs to be

taken, however, in the choice of prior mean for the regression

coefficient b for the haplotypes. The mean should reflect

properly current knowledge of the disease and we recommend

using the logit transform of disease prevalence for the prior

mean m to expedite convergence in computations. The

proposed approach may look complicated at first. Fortunately,

several steps can be done with help from currently available

algorithms. In addition to the code we have developed,

our proposal integrates the clustering algorithms in Tzeng

[10] and Lee et al. [11], the likelihoods of haplotype

configurations from FAMHAP [17,18], and Bayesian analysis

with the BRugs function in R. The proposed procedure, as well

as the computation of the uncertainty-coding matrix, has

been implemented, and the codes are freely available for

download.

Alternatively, after the uncertainty-coding matrix is construct-

ed, one may pursue non-Bayesian analysis, such as LASSO and

ridge regularized regression to handle the collinearity problem in

the design matrix X� [28]. Such regularized regression models

impose a penalty l on regression coefficients bk (
XK

k~1

jbkjrvl,

where r = 1 or 2) and obtain biased estimates with reduced

variance. This regularized technique has been applied to high-

throughput microarray data for quantitative disease phenotypes,

and the inclusion of the uncertainty-coding matrix should not

give rise to any further difficulty. When binary disease status

is of interest, however, extra care needs to be taken and this

warrants further study.

Web Resources
The URL for the program (called BRUCM) written in R is

http://homepage.ntu.edu.tw/,ckhsiao/download(en).html

Supporting Information

Figure S1 Boxplots of haplotype effects under domi-
nance models. Boxplots of 1000 replications for dominance model

under r = 1.2 (first column), 1.5 (second column) and 2.0 (third

column). The first row contains posterior mean effects of bi, the

second row is for its bias, and the last row is for the posterior

probability of susceptibility Pr(bi{b1w0jy). Red plots correspond

to the risk haplotypes.

(TIF)

Figure S2 Boxplots of haplotype effects under recessive
models. Boxplots of 1000 replications for recessive model under

r = 1.2 (first column), 1.5 (second column) and 2.0 (third column).

The first row contains posterior mean effects of bi, the second row

is for its bias, and the last row is for the posterior probability of

susceptibility Pr(bi{b1w0jy). Red plots correspond to the risk

haplotypes.

(TIF)

Figure S3 The cladogram of 12 haplotypes in the third
block for the schizophrenia study.

(TIF)

Table 3. Summary statistics for the schizophrenia study.

Core haplotype Posterior FBAT

No. Configuration Mean(sd) Postr. RR Score P-value

1 TCAGGCCG 24.77(0.31) - 22.08 0.80

2 CCAGGCGA 24.83(0.31) 0.34 22.12 0.78

3 TCAGGTCG 24.87(0.31) 0.30 5.39 0.39

4 CTCAACGG 24.81(0.34) 0.44 1.81 0.69

5 CCCAACCG 25.25(0.47) 0.15 - -

Posterior means (Mean) and standard deviations (sd) are for the core haplotype
effects, while posterior probability P(bi{b1w0jy) is relative to the most
common haplotype b1 (under Postr. RR). The last two columns contain results
(Score and P-value) from FBAT.
doi:10.1371/journal.pone.0021890.t003
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Table S1 Summary statistics for the schizophrenia
study. Frequencies are for the original haplotypes (Before) and

haplotypes after grouping (After).

(DOC)

Text S1 Analysis of Crohn’s Disease data based on 6
core haplotypes.
(PDF)
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