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Abstract
To develop a deep learning system based on 3D convolutional neural networks 
(CNNs), and to automatically predict EGFR‐mutant pulmonary adenocarcinoma 
in CT images. A dataset of 579 nodules with EGFR mutation status labels of mu-
tant (Mut) or wild‐type (WT) was retrospectively analyzed. A deep learning sys-
tem, namely 3D DenseNets, was developed to process 3D patches of nodules from 
CT data, and learn strong representations with supervised end‐to‐end training. The 
3D DenseNets were trained with a training subset of 348 nodules and tuned with a 
development subset of 116 nodules. A strong data augmentation technique, mixup, 
was used for better generalization. We evaluated our model on a holdout subset of 
115 nodules. An independent public dataset of 37 nodules from the cancer imaging 
archive (TCIA) was also used to test the generalization of our method. Conventional 
radiomics analysis was also performed for comparison. Our method achieved prom-
ising performance on predicting EGFR mutation status, with AUCs of 75.8% and 
75.0% for our holdout test set and public test set, respectively. Moreover, strong 
relations were found between deep learning feature and conventional radiomics, 
while deep learning worked through an enhanced radiomics manner, that is, deep 
learned radiomics (DLR), in terms of robustness, compactness and expressiveness. 
The proposed deep learning system predicts EGFR‐mutant of lung adenocarcinomas 
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1 |  INTRODUCTION

Lung cancer is one of the leading causes of cancer‐related 
death.1 Non‐small cell lung cancer (NSCLC) accounts for 
more than 80% lung cancer cases, where adenocarcinoma is 
the most common histological subtype.2 With the advance-
ments of genomics, several genomic alternations, such as on-
cogenic ALK rearrangements,3 ROS1 rearrangement,4 KRAS 
mutations,5 and sensitizing EGFR mutations,6 have been 
identified as predictive and prognostic markers for NSCLC. 
Targeted therapy with these molecular markers has become 
an essential part of precision medicine for lung cancer.

Small molecule tyrosine kinase inhibitors (TKIs) that 
target specific EGFR mutations have resulted in improved 
progression‐free survival (PFS) and higher objective radio-
graphic response rate in patients with EGFR mutations than 
standard chemotherapy.7-9 Moreover, approximately 80% 
patients with EGFR‐mutant lung cancer respond to EGFR 
TKIs therapy (at initial treatment).10 However, the admin-
istration of EGFR TKIs (for example, gefitinib) on the pa-
tients without EGFR mutations, not just showed no effect but 
even resulted in worse PFS and unnecessary costs compared 
to platinum‐based chemotherapy,11 which highlights the im-
portance of identifying eligible patients for the first‐line TKI 
therapy.

Mutation profiling after biopsies or surgical resections 
has become a standard and informative medical procedure. 
However, the high cost and invasiveness of the approaches 
and repeating tumor sampling strongly limit the applica-
bility of molecular testing. Besides, the poor DNA quality, 
intratumoral heterogeneity and long turnaround time raise 
much concern on the balance of costs and benefits.12,13 
Notwithstanding re‐biopsy is feasible in clinical practice, it 
is an invasive operation and faces the same challenges voiced 
by previous studies.14,15 These defects enormously limit the 
practicability of precision medicine at scale.

Alternatively, noninvasive markers are promising for 
predicting EGFR mutation.16,17 Cancers with different gen-
otypes drive specific biological processes involved in the 
development and progression of tumors, thus ultimately 
leading to different phenotypes. In other words, it is poten-
tially feasible to predict the genotypes by identifying spe-
cific phenotypes. There have been studies investigating the 
phenotype‐genotype associations to identify associated 

genomic changes,18,19 based on tumor morphology on com-
puted tomography (CT)20,21 and magnetic resonance imaging 
(MRI).22 Radiomics,20 that encodes tumor phenotypes with 
innumerable quantitative features using predefined image 
analysis algorithms. In particular, previous studies have 
demonstrated that certain radiomic features are associated 
with EGFR mutations status, suggesting that those identified 
features may be driven by somatic mutations.16,23 Although 
these studies have achieved impressive performances, espe-
cially when combined with clinical information,17,23,24 con-
ventional radiomics‐based methods are born with three main 
challenges. Firstly, conventional radiomics methods require 
strict procedures, including detection, segmentation, feature 
extraction, selection etc,25 which is tedious and time‐consum-
ing. Secondly, radiomic features are susceptible to the man-
ual segmentation as well as CT scanning parameters, thus 
interobserver reproducibility analysis is necessary. Finally, 
hand‐craft radiomic features are expressive but may be not 
enough for high‐level tasks.

On the other hand, deep neural networks, or Deep 
Learning, have achieved remarkable success in several 
important problems of artificial intelligence (AI), for ex-
ample, natural image classification26 and human language 
translation.27 Deep convolutional neural networks (CNNs), 
a family of neural networks, have shown incredible effec-
tiveness in several tasks of natural image computer vision 
and medical image computing.28,29 As powerful algorithms 
of representation learning, CNNs largely reduce the neces-
sities of hand‐craft feature engineering. Our previous study 
has proven the effectiveness and efficacy of deep learn-
ing in predicting the invasiveness of lung adenocarcino-
mas from CT images.30 In this regard, we addressed the 
problem of CT‐based EGFR mutation prediction by deep 
neural networks, to make our system automatic, robust and 
accurate.

In this study, we aimed to develop a deep learning system 
to predict the EGFR mutation status of lung adenocarcinoma 
based on CT images by integrating recent advances in deep 
supervised learning, such as dense connections31 and mixup 
training,32 to significantly reduce the empirical risks of over-
fitting. Our method is a labor‐saving strategy without the re-
quirement of precise nodule segmentation, and also expected 
to obtain more stable performance due to the enhanced nature 
of the employed learning algorithms.

in CT images noninvasively and automatically, indicating its potential to help clinical 
decision‐making by identifying eligible patients of pulmonary adenocarcinoma for 
EGFR‐targeted therapy.

K E Y W O R D S
convolutional neural networks, deep learning, EGFR, mixup training technique, radiomics
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2 |  MATERIALS AND METHODS

We developed a novel analytic framework based on deep 
learning of the CT imaging phenotypes of lung adenocarci-
noma to predict EGFR mutation status (see Figure 1). This 
retrospective study was approved by the Institutional Review 
Board of our institution (NO.20170103), which waived the 
requirement for patients' informed consent referring to the 
CIOMS guideline.

2.1 | Data collection

This study used local data collected in Huadong Hospital (HdH 
Dataset) and publicly available data selected from TCIA (TCIA 
Dataset).33,34 In HdH Dataset, the inclusion criteria were (a) pa-
tient receiving thin‐slice chest CT (0.75‐1.5 mm) scan prior to 
biopsies or surgical treatment, (b) with pathology reports for the 
diagnosis of pulmonary adenocarcinoma, and (c) with detailed 
EGFR mutation testing reports. Only one malignant nodule 
was studied for each patient due to the availability of EGFR 
testing report. Among the 579 lung adenocarcinoma patients, 
308 were EGFR‐mutant (Mut) and 271 were EGFR wild‐type 
(WT). The detailed characteristics of patients and lesions in 

HdH Dataset are presented in Table 1. CT acquisition param-
eters are described in Appendix S1. In the TCIA Dataset, 37 
nodules were selected to validate the stability and generaliza-
tion of the analytic framework. The inclusion criteria were (a) 
CT with slice thickness ≤1.5 mm (to avoid data inconsistency), 
(b) with EGFR mutations testing reports, (c) with pathology 
reports for the diagnosis of lung adenocarcinoma, (d) and le-
sions that could be certainly identified as the resected or biop-
sied lesions. The detailed information of the TCIA Dataset is 
described in Table S1.

2.2 | EGFR mutation profiling

Drug target‐associated mutations on EGFR exons 18, 19, 
20, and 21 were examined using a PCR‐based amplifica-
tion‐refractory mutation system (ARMS) with Human EGFR 
Gene Mutations Fluorescence Polymerase Chain Reaction 
Diagnostic Kit (ADx‐EG01, AmoyDx). Wild‐type EGFR in 
this study referred to no mutation detected among those loci.

2.3 | Data annotation and pretreatment
Volumes of interest (VOIs) of the enrolled nodules in both data-
sets were manually delineated at voxel level by a radiologist 

F I G U R E  1  Overall pipeline for this study. A local CT dataset (HdH Dataset) and a public dataset selected from TCIA database (TCIA 
Dataset) of lung adenocarcinoma patients with EGFR mutation testing were used. Nodules were manually localized, segmented, and labelled 
as EGFR mutant (Mut)/wild‐type (WT). For deep learning, 3D DenseNets were trained using the training subset. A strong data augmentation 
technique, mixup, was used for better regularization. Expressive representations, that is, deep learned radiomics (DLR), for the nodules were 
end‐to‐end learned during the training procedure. Meanwhile, conventional radiomics analysis following the common practice was carried out 
for performance comparison, and association study between the 3D deep leaning and conventional radiomics was performed by calculating the 
pairwise correlation coefficients
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with 4‐year experience in chest CT interpretation using medi-
cal image processing and navigation software 3D Slicer (ver-
sion 4.8.0, Brigham and Women's Hospital), and subsequently 
confirmed (modified or re‐delineated) by another radiologist 
with 12‐year experience in chest CT interpretation. DICOM‐
format images were imported into the software, subsequently 
the images with VOI information were exported into NII for-
mat for further analysis. Each segmented nodule was assigned 
a specific EGFR mutation label (Mut or WT) according to the 
corresponding EGFR mutation testing report.

Deep learning is known to require heavy tuning. Thus, we 
randomized the HdH Dataset into training, development, and 
test subsets, containing 60%, 20%, and 20% (only once) of 
each EGFR categories (Mut or WT), respectively. The train-
ing set was used for training the neural networks. The devel-
opment set was used for tuning the hyperparameters, such 
as determining early stopping, discovering the most suitable 
neural architectures, and choosing the best model snapshots. 
Once we chose the best model using the development set, 
the holdout test set was used for fairly evaluating the perfor-
mance of our method. To further validate the stability and 
generalization of our method, we evaluate our model on the 
independent TCIA Dataset, without any fine tuning.

2.4 | EGFR mutation status prediction with 
conventional radiomics
We investigated the performance of the conventional radi-
omics method using the two datasets. Following the com-
mon practice of radiomics method,23 the radiomic features 
were extracted with numbers of image analysis algorithms. 
Specifically, 475 radiomics features, including 50 histogram 
features, 325 co‐occurrence matrix features, and 100 run 
lengths matrix features, were automatically extracted using 
MATLAB 2016b for all delineated nodules in the two data-
sets. The detailed radiomics extraction methodology is de-
scribed in Appendix S1.

Radiomic features require refined manual segmentation 
of nodules. Even so, many radiomic features are not stable 
due to different segmentation manners. To ensure the re-
producibility of radiomics, 50 nodules in the HdH Dataset 
were randomly selected for independent segmentation by two 
radiologists. The 475 radiomics features of the 50 nodules 
were evaluated with interclass correlation coefficient (ICC) 
analysis using the “irr” package in R software (version 3.4.3). 
Features with an ICC > 0.8 were considered reliable. Finally, 
a total of 401 features were selected.

Logistic regression was used to model the relation be-
tween the radiomic features and EGFR status with the widely 
used scikit‐learn library in Python.17,35 Due to the simple hy-
perparameter setting of logistic regression, the training and 
development sets were merged into a “train‐dev” set. Ten‐
fold cross validation search was performed on the train‐dev 
set with 1000 randomly sampled values of regularization 
term C. The trained model was used for scoring the HdH test 
Dataset and TCIA Dataset. We also tried heavy search for 
models and hypermeters with an automated machine learning 
tool (AutoML),36 built upon widely used scikit‐learn Python 
package37; however it did not yield better performance. Note 
that the feature selection procedure to reduce the redundancy 
between the features had been included in the AutoML search 
procedure. Although there may exist a better model theoret-
ically, the heavy search process implied conventional radio-
mic features are not strong enough representations.

2.5 | EGFR status prediction with 
3D DenseNets
To take the advantage of deep representation learning, we 
designed a deep learning‐based framework for analyzing the 
EGFR mutation status of nodules. Taking into account the 
characteristics of the used data, we have adopted the follow-
ing principle to design the models:

• 3D: CT images were presented in 3D, and the 3D views 
provided critical visual information from a practical point 
of radiology;

T A B L E  1  Characteristics of patients and lesions in HdH dataset

Characteristics Number Percentage

Gender

Male 245 42.3

Female 334 57.6

Mean age (range) (y)

Male 61.8 ± 11.6 (29‐85) ‐

Female 58.4 ± 11.9 (22‐85) ‐

Total 59.8 ± 11.9 (22‐85) ‐

Mean size (range) (cm) 1.8 (0.3‐8.6) ‐

Location

Right lobe 342 59.1

Left lobe 237 40.9

Pathology

Adenocarcinoma in situ 31 5.4

Minimally invasive 
adenocarcinoma

157 27.1

Invasive adenocarcinoma 391 67.5

TMN classification (eighth edition)

0 31 5.4

I A‐B 356 61.5

II A‐B 7 1.2

III A‐C 10 1.7

IV A‐B 175 30.2

EGFR Mut 308 53.2
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• Parameter‐efficient: the model should be compact and 
easy to train with limited data;

• Data‐efficient: our training method should lead to less 
overfitting;

• Automatic: at inference stage, our model should be easy to 
use, given approximate locations of nodules, rather than 
the manual segmentation.

Following these principles, we adopted 3D DenseNets, 
which were derived from the powerful deep convolutional 
neural networks 2D DenseNets.31 DenseNets have achieved 
great success in 2D natural images and medical images,38 
which elegantly reuse the features from lower layers, thus ex-
ploring high‐level representations in an efficient way. Our 3D 
DenseNets used same notations but 3D convolutions, with a 
growth rate k = 16, a compression rate θ = 2, and a bottleneck 
B  =  4. Batch Normalization39 and Leaky ReLU40 (α  =  0.1) 
were used together as activation functions. The resulting neural 
networks contained only 0.55 M parameters, making the train-
ing compatible with limited data. We implemented the neural 
networks with Keras 2.1.541 and TensorFlow 1.4.0.42 The de-
tailed structure of the 3D DenseNets is depicted in Table 2.

The inputs of the proposed 3D DenseNets were cubic 
patches of 48 × 48 × 48 mm, generated by (pre‐processed) 
chest CT scans and the coordinates c= [z,y,x] of the approxi-
mate mass centers of nodule. In practice, the coordinates can 
be marked by radiologists manually, or by automatic nodule 
detection systems.43 Our method did not require the man-
ually refined segmentation, which were usually done by the 
users (radiologists) manually. The preprocessing followed a 

“standard” procedure: the input patches were converted into 
Hounsfield units, followed by resizing the volumetric data into 
spacing of 1 × 1 × 1 mm by trilinear interpolation, clipping the 
voxel intensity into IHU ∈ [−1024,400], quantifying the den-
sity into grayscale, and transforming the values to I ∈[−1,1) by 
the mapping I =

[

((IHU+1024)∕(400+1024))×255
]

∕128−1

. We further applied multiple data augmentation techniques to 
represent nodules in different views:

• Moving the centers by small amounts in [−m, m] pixels in 
the three axes

• Reordering the axes and rotation by 90° increments
• Left‐right flipping.

2.6 | Training for the deep learning models
During training, we applied the above data augmentation 
techniques with m = 8. These conventional techniques could 
effectively increase the training data size, yet not enough for 
a good training convergence. We further used a novel data 
augmentation technique: mixup32 to stabilize the training. 
mixup showed remarkable improvements in state‐of‐the‐art 
natural image classification neural networks. To our knowl-
edge, this is the first comprehensive study introducing mixup 
into medical image computing.

The mixup produces extra informative training samples by 
the following easy‐to‐implement data augmentation routine. 
Given � Beta(�,�)∈[0,1], α is a predefined hyperparame-
ter, and (xi, yi) and (xj, yj) are two input‐label pairs from the 

Layer Tensor size Building blocks

Input 48 × 48 × 48 × 1  
Convolution 48 × 48 × 48 × 32 3 × 3 × 3 conv
Pooling 24 × 24 × 24 × 32 2 × 2 × 2 average pool
Dense Block (1) 24 × 24 × 24 × 80

[

bn− leaky relu−1×1×1 conv

bn− leaky relu−3×3×3 conv

]

×3

Compression and Pooling 
(1)

12 × 12 × 12 × 40
[

bn− leaky relu−1×1×1 conv

2×2×2 average pool

]

Dense Block (2) 12 × 12 × 12 × 136
[

bn− leaky relu−1×1×1 conv

bn− leaky relu−3×3×3 conv

]

×6

Compression and Pooling 
(2)

6 × 6 × 6 × 68
[

bn− leaky relu−1×1×1 conv

2×2×2 average pool

]

Dense Block (3) 6 × 6 × 6 × 132
[

bn− leaky relu−1×1×1 conv

bn− leaky relu−3×3×3 conv

]

×4

Compression and Pooling 
(3)

3 × 3 × 3 × 66
[

bn− leaky relu−1×1×1 conv

2×2×2 average pool

]

Dense Block (4) 3 × 3 × 3 × 114
[

bn− leaky relu−1×1×1 conv

bn− leaky relu−3×3×3 conv

]

×3

Global Pooling (DLR) 114 3 × 3 × 3 average pool
Output 1 sigmoid

T A B L E  2  3D DenseNet architectures 
for EGFR mutation classification
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training distribution, then extra training samples are obtained 
by the following equations:

α defines the strength of mixup by controlling the beta 
distribution; when α  =  0, mixup ceases to be effective. In 
our experiments, we set α = 0.9 for modest usage of mixup. 
As shown later in the Results section, mixup was critical for 
enabling the training of deep neural networks with limited 
data on this task.

We trained the 3D DenseNets with binary cross‐entropy loss:

where y is the ground truth of the input, and ŷ is the predic-
tion given by the models. “Kaiming uniform” method44 was 
used for initializing the neural networks. During training, we 
sampled 20 positive and 20 negative samples (with a batch 
size of 40) for balanced optimization. A Nesterov‐momen-
tum SGD45 with momentum = 0.9 was used as neural opti-
mizer. The initial learning rate was 3 × 10−2, and decayed by 
a factor of 1/3 at the end of epoch = 30, 60, 100, and 150. 
No weight decay nor dropout46 was used. All hyperparam-
eters were manually tuned on the HdH development set. A 
model snapshot was saved at the end of each epoch. Finally, 

the best model of a single run was selected by the following 
heuristics:

• initially, select five candidates with the highest AUCs on 
the development set;

• then, choose one of the candidates with the lowest absolute 
difference of training and development AUCs.

Two hundred epochs were usually enough for a good conver-
gence. In our experiments, the best model snapshot was gener-
ated at the end of epoch 131.

2.7 | Inference for the deep learning models
Representing nodules in multiple views not only increases 
the training data size, but also effectively reduces empirical 
variance of inference by the ensemble trick. In practice, given 
an input, we forwarded the well‐trained neural network using 
the mentioned conventional data augmentation (m = 3) with 
100 runs. Then, probability scores of EGFR Mut were ob-
tained by averaging the multiple runs:

We used the last‐layer (the DLR layer in Table 1) 114‐d out-
puts of the trained 3D DenseNet as the learned representations 

x̄=𝜆xi+ (1−𝜆)xj

ȳ=𝜆yi+ (1−𝜆)yj

�(y,ŷ)=
1

n

∑

y log ŷ+ (1−y) log (1− ŷ),

ypred =
1

100

100
∑

i=1

y
(i)

pred

Method
Training 
#Patients

Test 
#Patients #EGFR muta AUC (%)

Radiomics23 353 352 183 (24.0%)b 69

+ clinical information 75

Radiomics17 298 NAc 137 (46.0%) 64.7

+ clinical information 70.9

Radiomics18 47 NAc 19 (40.4%) 67.0

Radiomics (This 
study)

464 (HdH train‐
dev Dataset)

115 (HdH 
test 
Dataset)

62 (53.9%) 64.5

3D DenseNets 
w/mixup, ensemble 
(This study)

348 (HdH training 
Dataset)

115 (HdH 
test 
Dataset)

62 (53.9%) 75.8

Radiomics (this study) 464 (HdH train‐
dev Dataset)

37 (TCIA 
Dataset)

9 (24.3%) 68.7

3D DenseNets 
w/mixup, ensemble 
(this study)

348 (HdH training 
Dataset)

37 (TCIA 
Dataset)

9 (24.3%) 75.0

aShown as the number of cases (percentage). 
bEstimated using the proportion of EGFR Mut on the entire data set, rather than the test set. 
cThe evaluation results are based on multivariate statistical analysis, rather than the practice of training – 
validation (development) – test in machine learning. Since the prior studies listed in the above table used 
nonshared datasets independently, the results are for reference only. 

T A B L E  3  Presentation of our 
method and several previous studies in 
terms of methods, datasets, and resulting 
classification AUCs
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given nodules, that is, the deep learned radiomics (DLR). More 
robust DLR was obtained by averaging the feature outputs of 
multiple runs. Note the DLR and the probability scores could 
be obtained within a single neural network forward pass.

3 |  RESULTS
3.1 | Performance of deep learning on 
EGFR mutation status prediction
We compared the performance between deep learning and 
conventional radiomics on predicting EGFR mutation status 
of lung adenocarcinoma, which implied the associations of 
EGFR genotype and radiomic phenotype. The AUC, which 

is insensitive of class skews, was used for evaluation. As de-
picted in Table 3 and Figure 2C, the 3D DenseNets (with 
mixup, ensemble) outperformed our conventional radiom-
ics‐based method (P = 0.021, DeLong test47). Several prior 
studies were also listed in Table 3. Since they used nonshared 
datasets independently, their results were only for reference 
only. On our holdout test set (HdH test Dataset) contain-
ing 115 patients and the TCIA Dataset of 37 patients, 3D 
DenseNets achieved AUCs of 75.8% and 75.0%, respec-
tively. Considering the class‐imbalance and threshold bias, 
we believed the threshold‐free AUROC was the most ap-
propriate metric. For reference, we applied a threshold that 
maximizes the accuracy to obtain the sensitivity, specificity, 

F I G U R E  2  Visualization of conventional radiomics, deep learned radiomics (DLR) and their associations. A, Cluster map of conventional 
radiomics, with 115 nodules on the x‐axis and 401 radiomic features on the y‐axis. Each feature was normalized into zero mean and unit standard 
variance. The nodules of a same cluster (adjacent columns) shared similar radiomic features in Euclidean space. The semantic label EGFR Mut/WT 
of each nodule was shown on the black‐grey bar below the x‐axis. B, Correlation coefficient matrix for conventional radiomics and DLR. Note the 
radiomic features (y‐axis in A) and the DLR features (x‐axis in D) were both aligned with the correlation coefficient matrix. C, The classification 
ROC curves of our radiomics‐based and DLR‐based methods. The brighter (red or blue) blocks show the higher correlation. The black denotes no 
correlation. D, Cluster map of DRL with 115 nodules on the y‐axis and 114 radiomic features on the x‐axis. Each feature was normalized into zero 
mean and unit standard variance. The nodules of a same cluster (adjacent rows) shared similar DLR in Euclidean space. The semantic label EGFR 
Mut/WT of each nodule was shown on the black‐grey bar on the left of the y‐axis
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accuracy, and precision (or positive predictive value). These 
results were depicted in Table S2. Notably, the data distribu-
tion of the TCIA Dataset differed much from that of the HdH 
Dataset in terms of patients and imaging; the comparable per-
formances on the two datasets indicated the robustness of our 
method. More importantly, unlike conventional radiomics 
methods that require labor‐intensive manual segmentation 
masks, our deep learning method was compatible with ap-
proximate locations of the nodules instead.

3.2 | Potential association 
between the conventional radiomics and deep 
learned radiomics
Radiomics analysis provides important medical insights. 
However, conventional radiomics requires manual segmenta-
tion, which is a tedious process in practice. Instead, our method 
based on 3D deep learning predicts the labels automatically with 
even better performance. To our knowledge, few prior studies 
compare these two methods together. Assumed that deep learn-
ing networks particularly learn the representation of radiomics 
with end‐to‐end training, we investigated the relation between 
the both, and discuss the reason why deep learning provided 
better discriminative performance on this problem.

To this end, we analyzed 401 conventional radiomic fea-
tures (ICC > 0.8), against 114 deep learned radiomics (DLR) 
features extracted from 3D DenseNets (see the “Inference for 
the deep learning models” section). As illustrated in Figure 
2A,D, the unsupervised clusters of both the conventional ra-
diomics and DLR matched much with the semantic labels 
(Mut/WT); in other words, the continuous regions on the 
black‐grey bars shared numbers of similar features respec-
tively. However, the cluster map of DLR had obviously shaper 
contrast than that of conventional radiomics, which indicated 
the DLR features are more representative and compact than 
the hand‐craft features. It well explained the higher classi-
fication performance of DLR than conventional radiomics.

Moreover, we associated DLR and conventional ra-
diomics, by visualizing the pairwise Pearson correlation 

coefficients on the HdH test Dataset with a cluster map in 
Figure 2B. Though the radiomic features and DLR features 
do not highly correlate (correlation coefficients range from 
−0.5 to +0.5), the cluster map indicated relatively high cor-
relation (bright red or blue) between DLR and radiomics. It is 
worth noting that, most of the radiomic features were poten-
tially correlated with at least one DLR feature, while certain 
DLR features showed low correlation with all the radiomic 
features, which potentially corresponded to the extra high‐
level information with more hints on modeling the EGFR 
status. Considering that our DLR‐based method showed 
better performance, it is reasonable to assume that the DLR 
features encoded automatically not only almost all informa-
tion of the (highly correlated) conventional radiomics with 
even more compact representation (more informative with 
lower feature dimension), but also critical discriminative in-
formation not in the conventional radiomics.

To verify our assumption further, we used the 114 DLR 
features together with the 401 radiomics features to fit a cross 
validation searched logistic regression model as in our con-
ventional radiomics analysis. An automatic machine learning 
tool (AutoML)36 was also applied for searching a best‐per-
forming model. The resulting model achieved AUCs of 
71.2% and 74.2% on the HdH test Dataset and TCIA Dataset, 
respectively, which performs poorer than using DLR alone. It 
implied that, combining the conventional radiomics and DLR 
naïvely could not boost the performance, due to the high cor-
relation between the both. Note that the feature selection pro-
cedure to reduce the redundancy between the features had 
been included in the AutoML search procedure.

3.3 | Ensemble vs vanilla (no ensemble)
The inference‐stage data augmentation by representing a nod-
ule in multiple views, was not only reasonable from a medical 
perspective, but also made sense in our empirical results. As 
depicted in Table 4, this simple ensemble technique was benefi-
cial to reducing the inference variance. The vanilla term referred 
to inference with a single forward. The ensemble inference 

T A B L E  4  Dataset summary and prediction performance of deep learning systems on HdH Dataset (training, development and test) and TCIA 
Dataset

Dataset #Patients EGFR+a 
AUC (w/mixup, 
ensemble) (%)

AUC (w/mixup, 
vanilla) (%)

AUC (w/o mixup, 
ensemble) (%)

AUC (w/o mixup, 
vanilla) (%)

HdH training 
dataset

348 185 (53.2%) 76.7 76.0 71.0 70.1

HdH develop-
ment dataset

116 61 (52.6%) 74.1 74.6 69.2 70.4

HdH test 
dataset

115 62 (53.9%) 75.8 76.8 67.9 67.9

TCIA dataset 37 9 (24.3%) 75.0 68.3 70.6 71.4
aShown as the number of cases (percentage). 
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produced a more stable performance, on the HdH Dataset (train-
ing, development, test) and TCIA Dataset, though the vanilla 
inference might produce even better results in some cases.

3.4 | Mixup vs no mixup
The mixup technique was critical for training our 3D 
DenseNets. As shown in Table 4, the models with mixup 
training significantly outperformed those without in all of our 
experiments. The models without mixup training follows the 
same model selection procedure.

We explained the reason for these remarkable differences 
with the surprisingly strong regularization effects of mixup 
training. As demonstrated in Figure 3, the learning curves with 
mixup training were much smoother, and no severe overfitting 
was observed. On the contrary, the training without mixup was 
not stable; besides, there existed typical overfitting, making 
the model selection impractical. Considering the unreasonable 
effectiveness of mixup training, it could potentially be a stan-
dard technique in medical image computing in the future.

3.5 | The t‐SNE visualization of the deep 
learned radiomics
To explore the manifold structure of the DLR intuitively, 
we visualized the DLR features on the HdH test Dataset 
using t‐Distributed Stochastic Neighbor Embedding (t‐
SNE)48 as illustrated in Figure 4. No distinct pattern was 
shown on the t‐SNE visualization, which was reasonable 
considering the difficulty of using the phenotype infor-
mation to predict the genotype expression. Even so, two 
clusters of EGFR Mut and EGFR WT could be found, 
see Figure 4. Most of the DLR features outside of the 
contours of the two clusters were assigned a score with 
high uncertainty by the 3D DenseNets. Nevertheless, 
the DLR features were shown to be meaningful and rep-
resentative despite the difficulty of the task.

4 |  DISCUSSION

This study developed a deep supervised learning approach 
to predict EGFR‐mutant lung adenocarcinoma in CT im-
ages. Compared with conventional radiomics, the models 
are less prone to overfitting on the limited training data 
and show better prediction performance. The deep learning 
method is also labor‐saving since it does not require precise 
segmentation of nodules. More importantly, we empirically 
find that the deep learning models learn more representative 
features than conventional radiomics, named deep learned 
radiomics (DLR), which are the keys to better analytic 
performances.

Our method outperformed previous studies and estab-
lished a new methodology on this task. Using imaging in-
formation only, our deep 3D DenseNets achieved AUCs of 
75.8% and 75.0% on the HdH test Dataset and independent 
public TCIA Dataset, respectively, which were better than the 
best of previous radiomics method (69%), and on par with 
their model combining additional clinical information (75%). 
We analyzed the associations between DLR and conventional 
radiomics, and empirically showed that DLR features were 
more representative and learned extra imaging information 
compared to conventional radiomics. Furthermore, we intro-
duced the mixup training to our deep learning method, which 
suggested “unreasonable effectiveness” in regularizing the 
training of the deep neural networks with limited data.

Decoding image phenotypes using radiomics to pre-
dict tumor genotypes, called radio‐genomics as well, shows 
promising performances and outcomes in precision medicine 
research. A few recent studies have investigated radiomics 
analysis to noninvasively predict EGFR mutation status.16,23 
For example, Rios et al23 discriminate EGFR Mut and WT 
cases with an AUC of 69%, with an improvement on AUC 
(75%) when combining clinical information. Despite these 
impressive results, radiomics‐based methods are limited with 

F I G U R E  3  The learning curves of the best models with mixup training and those without, in terms of binary cross‐entropy loss. The losses 
on the HdH training, development (val) set and test Dataset were shown on the figures. “epochs” on the x‐axis means the training consumes once 
the entire training set
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expressiveness of the hand‐craft features; besides, the re-
quirement of manual segmentation makes it difficult to apply 
in practical clinical contexts.

In contrast, our deep learning method is automatic in 
predicting the EGFR mutation status, which only requires 
an approximate location of nodule instead of labor‐inten-
sive voxel‐wise segmentation. More importantly, the result-
ing DLR features are learned automatically with end‐to‐end 
training. In our association analysis, we found that some DLR 
features were not correlated with any radiomic features in our 
experiments, implying extra information extracted by our 3D 
DenseNets. Powered by dense connections31 and mixup train-
ing,32 our method achieved a state‐of‐the‐art performance. 
Considering that sensitizing EGFR mutations are more likely 
found in Asian patients,2 a selected subset from TCIA da-
tabase33 was used for testing the generality of our system. 
Our deep learning system showed robust performance on the 
public data set.

Radiomic features, defined by image analysis algorithms 
on numbers of visual characteristics, such as shape, volume, 
and intensity, are low‐level features without high‐level se-
mantic information. However, these features are naturally 
“grey‐box” interpretable. On the other hand, DLR features 
are semantically high‐level thanks to the end‐to‐end learning, 
yet deep learning models are known to be black‐box artificial 
intelligence lack of the desirable interpretability, especially in 
the medical contexts. Our association analysis not only pro-
vides insight on understanding the DLR features, but also ap-
proaches opening the black‐box of deep learning in medical 
image computing by a grey‐box model. However, it is hardly 
possible to identify the specific correlation between radiom-
ics and DLR, we leave this for further exploration.

There were limitations in our study. Due to resource lim-
itation, EGFR mutations were detected with ARMS‐PCR 
covering specific loci, thus EGFR mutations were narrowly 
defined in this study. Further studies with mutations detected 
by second‐generation sequencing are needed. Besides, infor-
mation within the CT images is relative limited; integrating 

more available information of patients, such as clinicopatho-
logical facets, blood testing result, proteomics, and even the 
lifestyles, into the models can be beneficial to inferring the 
genotypes in multiple views. Recently, liquid biopsy, using 
blood as opposed to tumor samples for molecular analysis, 
was developed to identify EGFR mutations with promising 
results.49,50 Taking advantage of these valuable information 
or integrating different promising approaches may improve 
the performance of predicting the EGFR mutation status. We 
consider it as a future direction. Moreover, the sample size 
of the independent validation was still small, and our deep 
leaning approach should be tested in larger cohorts. Also, 
this was a single‐center study, our deep learning systems de-
sire larger datasets with more diversity. Further improvement 
can be made to practically help scalable precision medicine; 
however, the methodology established by this study, could 
serve as a paradigm for future studies. Lastly, only thin‐slice 
CT images were included in the current study to mitigate 
the radiomic feature variabilities. However, whether the deep 
learning method could perform better with different slice 
thickness CT images is worth further investigating. Actually, 
this is one of our ongoing research.

In conclusion, the proposed deep learning system pre-
dicts EGFR‐mutant lung adenocarcinoma in CT images au-
tomatically and noninvasively with promising performance, 
indicating the potential to help clinical decision‐making by 
identifying eligible patients of pulmonary adenocarcinoma 
for EGFR‐targeted therapy. The association study between 
conventional radiomics and deep learned radiomics discusses 
the relation between the both, and approaches toward a grey‐
box explanation methodology of black‐box model.
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