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Thalamus-driven functional populations in 
frontal cortex support decision-making

Weiguo Yang, Sri Laasya Tipparaju, Guang Chen and Nuo Li     

Neurons in frontal cortex exhibit diverse selectivity representing sensory, 
motor and cognitive variables during decision-making. The neural circuit 
basis for this complex selectivity remains unclear. We examined activity 
mediating a tactile decision in mouse anterior lateral motor cortex in 
relation to the underlying circuits. Contrary to the notion of randomly 
mixed selectivity, an analysis of 20,000 neurons revealed organized activity 
coding behavior. Individual neurons exhibited prototypical response 
profiles that were repeatable across mice. Stimulus, choice and action 
were coded nonrandomly by distinct neuronal populations that could 
be delineated by their response profiles. We related distinct selectivity 
to long-range inputs from somatosensory cortex, contralateral anterior 
lateral motor cortex and thalamus. Each input connects to all functional 
populations but with differing strength. Task selectivity was more strongly 
dependent on thalamic inputs than cortico-cortical inputs. Our results 
suggest that the thalamus drives subnetworks within frontal cortex coding 
distinct features of decision-making.

During perceptual decision-making, frontal cortical neurons exhibit 
diverse selectivity representing sensory, motor and cognitive variables1–3. 
The circuit underpinning this diverse selectivity remains poorly under-
stood. One view posits that a shared neuronal population multiplexes 
multiple computations4–8. This view is supported by neurophysiology 
recordings that show individual neurons exhibit a seeming continuum of 
time-varying responses and random combinations of task selectivity1,7,9,10. 
Randomly mixed selectivity produces high-dimensional representa-
tions and greater computational capacity10,11. Mixed selectivity could 
arise in recurrent neural networks with little circuit structure1,6,11. In this 
scheme, single neuron responses cannot be readily interpreted in terms 
of anatomical circuit organization. On the other hand, anatomically 
defined neurons in frontal cortex are found to encode specific aspects of 
behavior12–16. Cell-type-specific coding implies a structured underlying 
circuit, whereby segregated populations carry out specific computa-
tions. A class of recurrent network models rely on segregated functional 
populations coding specific features of behavior17,18. It remains poorly 
understood if and how neural coding of behavioral information is related 
to the anatomical organization of frontal cortical circuits.

We set out to address two related questions: (1) how informa-
tion supporting a perceptual decision is encoded by frontal cortical 

neurons; (2) how the encoding is related to the anatomical circuit 
organization. Frontal cortical circuits have highly organized anatomi-
cal structure19,20. For example, in mouse vibrissal motor cortex, inputs 
from somatosensory cortex preferentially innervate superficial layers 
whereas thalamic inputs target deep layer neurons20,21. Superficial 
layer neurons preferentially project back to somatosensory cortex and 
deep layer neurons project back to the thalamus21, forming distinct 
long-range loops22. Frontal cortex also forms reciprocal loops with the 
thalamus and other cortical regions to maintain persistent activity23–25. 
Previous studies found distinct frontal cortex projection neurons car-
rying specific information to different brain regions12–16. However, no 
study has related neural coding in frontal cortex to long-range input 
connectivity. A key question is how inputs from different brain regions 
produce the complex selectivity in frontal cortex.

The mouse anterior lateral motor cortex (ALM) is necessary for 
perceptual decisions24,26–31. We analyzed activity of 20,000 ALM neu-
rons during tactile decision-making. Individual neurons conformed to a 
collection of prototypical response profiles that were repeatable across 
mice. Contrary to the notion of randomly mixed selectivity, activity 
signaling stimulus, choice and action were supported by distinct but 
partially overlapping functional populations that could be delineated 
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neurons exhibiting each prototypical response profile was consistent 
across mouse groups (Fig. 1g), indicating that the response profiles in 
different mice followed a consistent distribution. Remarkably, the same 
collection of response profiles was also observed in the second dataset 
(Fig. 1e,f and Extended Data Fig. 1g, 1.7-s delay), even though t-SNE and 
clustering were performed independently. Importantly, for matched 
clusters, the fraction of neurons exhibiting each prototypical response 
profile was also consistent across datasets (Fig. 1g). Notably, neurons 
with similar response profiles exhibited significant trial-to-trial correla-
tion in activity compared with neurons with distinct response profiles 
(Fig. 1h). Activity was correlated even before the trial started (Extended 
Data Fig. 1i). This suggests that neurons with similar response profiles 
belong to subnetworks.

Thus, ALM neurons exhibited a repeatable collection of prototypi-
cal responses. The repeatable response profiles made circuit analysis 
possible. Sampling neurons from different mice could recover the same 
collection of responses. This permitted us to examine how behavioral 
information was encoded by defined neuronal populations and relate 
the neural coding to anatomical circuit organization.

Stimulus, choice and action are encoded by distinct activity 
modes
We first examined how task and behavioral information was encoded 
by ALM population activity. We considered four trial types: correct 
trials in which mice licked as instructed by object location (anterior, 
lick left; posterior, lick right) and were rewarded; and error trials in 
which mice licked the other lickport (anterior, lick right; posterior, lick 
left) and were not rewarded. Trial types thus differed in object location 
(‘stimulus’, anterior versus posterior), lick direction (‘choice’, left versus 
right) and reward (‘outcome’, rewarded versus unrewarded).

Information about stimulus, choice and outcome was readily 
available for ALM population activity32. We trained linear decoders on 
single-trial population activity to differentiate stimulus, choice or out-
come (Methods). Stimulus information increased rapidly at the onset 
of the sample epoch and persisted through the delay epoch (Fig. 2a).  
The persistent stimulus information might represent a memory of 
object location. Choice information increased gradually during the 
sample epoch and reached the maximum just before the response 
epoch (Fig. 2a). Outcome information was mostly available during 
the response epoch (Fig. 2a). In addition, the trial temporal structure 
(that is, epoch identity) could be read out from ALM activity (Fig. 2a). 
In correct trials, reaction time of the first lick could be predicted from 
activity well before the motor response (Fig. 2a, fast versus slow reac-
tion time; 85 ± 24 and 172 ± 103 ms, respectively, mean ± s.e.m.). Activity 
also predicted trials in which mice did not lick after the ‘go’ cue (ignore 
trials, Fig. 2a). Because ALM activity is strongly influenced by ongoing 
movements33,34, a portion of the decoded information may also reflect 
differences in uninstructed movements between trial types.

To understand how information was encoded by ALM popula-
tions, we analyzed ALM activity in an activity space where individual 
dimensions corresponded to the activity of individual neurons. We 
decomposed ALM activity into several activity modes, correspond-
ing to distinct directions in activity space along which activity was 
selective for stimulus, choice or action (Fig. 2b and Methods)8,24,35. 
We calculated the selective directions at different times of the trial  
(Fig. 2b). Stimulus information before the motor response was strong-
est during the sample epoch (Fig. 2a) and stimulus selective direction 
was similar during this epoch (Fig. 2b, green bounding box), and we 
therefore defined this direction as the stimulus mode. Its activity 
projection exhibited persistent trial-type information during both 
the sample and delay epochs (Fig. 2c). Based on the choice selective 
direction during the delay epoch, we determined a choice mode  
(Fig. 2b). This activity projection exhibited ramping selectivity for 
upcoming lick direction (Fig. 2c). The choice mode collapsed during 
the response epoch and a new choice selective direction developed 

by their response profiles. We related the functional populations to 
long-range inputs from somatosensory cortex, contralateral hemi-
sphere (contralateral ALM (cALM)) and thalamus. Each input targeted 
all functional populations and contributed to task selectivity, but with 
differing strengths. Task selectivity was more strongly dependent on 
thalamic inputs than cortico-cortical transmission. Our results suggest 
that the thalamus drives subnetworks within frontal cortex coding 
specific features of perceptual decision-making.

Results
Analysis of 20,000 neurons reveals repeatable response 
profiles in ALM
Do frontal cortical neurons exhibit a continuum of responses during 
perceptual decision-making or conform to a fixed set of prototypical 
response profiles? A continuum of responses could imply little under-
lying circuit structure1,6. To answer this question, we recorded activity 
from ALM neurons during a tactile decision task (Fig. 1a and Methods). 
Mice discriminated the location of an object (anterior or posterior) 
using their whiskers and reported choice using directional licking (‘lick 
left’ or ‘lick right’) to obtain a water reward. A delay epoch separated 
the sensory stimulus and behavioral response, and an auditory ‘go’ 
cue signaled the onset of response. We used silicon probes to record 
23–43 neurons at a time (Methods, all recordings were from left ALM). 
Across numerous recordings, we obtained responses from 9,626 ALM 
neurons (347 sessions, 73 mice). In most experiments, the delay epoch 
was 1.3 s. In parallel, we analyzed an independent dataset in which mice 
performed the same task with a longer delay (1.7 s; 10,420 neurons, 110 
sessions, 29 mice; datasets from ref. 24 and ref. 31).

Individual ALM neurons exhibited diverse response profiles1,7,9,14, 
including activity during the tactile stimulus, persistent or ramp-
ing activity during the delay epoch, and activity during the response 
epoch (Fig. 1b). However, we observed that many neurons fre-
quently exhibited the same peri-stimulus time histograms (PSTHs)  
(Fig. 1c,d and Extended Data Fig. 1a). To examine the distribution of ALM 
responses, we assembled the PSTHs into a population response matrix 
(neurons × time steps, ‘lick right’ and ‘lick left’ trials concatenated, cor-
rect trials only). We performed principal component analysis (PCA) on 
the response matrix and characterized individual neuron PSTH shapes 
as 26-dimensional vectors using the top 26 principal components 
(capturing 98% of activity variance). We then used a nonparametric 
statistical test to examine if the 26-dimensional vectors were uniformly 
distributed, that is, a continuum of response profiles9,12 (elliptical pro-
jection angle index of response similarity (ePAIRS) test, Methods). The 
distribution was highly nonuniform (P < 0.001; Extended Data Fig. 1b), 
which indicated that groups of ALM neurons exhibited similar response 
profiles (Fig. 1c,d and Extended Data Fig. 1a).

To visualize the repertoire of response profiles, we embedded 
the activity of ALM neurons into a two-dimensional representation 
based on the similarity of PSTHs (Fig. 1c and Extended Data Fig. 1a; 
t-distributed stochastic neighbor embedding (t-SNE)). We divided 
the neurons into 94 putative clusters that corresponded to distinct 
response profiles (Fig. 1e,f, Extended Data Fig. 1c–e and Methods). 
Examination of individual clusters confirmed that the same PSTH was 
frequently repeated in individual neurons (Fig. 1d and Extended Data 
Fig. 1a). The majority of the clusters (59 of 94 clusters, containing 74.2% 
of neurons) were reproducible across clustering methods, while the 
smaller clusters were not always recovered (Extended Data Fig. 1c–e). 
Robust clusters thus defined a set of prototypical response profiles in 
ALM. Defined clusters provided a way to compare response profiles 
across datasets by examining matched clusters (Extended Data Fig. 1f).

The prototypical response profiles were highly repeatable across 
mice. We divided the dataset into four subsets with different groups 
of mice (Extended Data Fig. 1g,h). We treated groups of mice because 
a large number of neurons was needed to sufficiently cover the full 
collection of response profiles (Extended Data Fig. 1e). The fraction of 
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Fig. 1 | Diverse yet repeatable response profiles in ALM. a, Mice reporting 
the location of a pole by directional licking after a delay epoch. b, Silicon probe 
recording and example neurons. Left ALM. Top: spike raster. Bottom: PSTH. Blue, 
‘lick right’ trials; red, ‘lick left’. Dashed lines, behavioral epochs as in a. c, Analysis 
of diverse response profiles. Individual neuron PSTHs of ‘lick right’ (blue) and 
‘lick red’ trials (red) are concatenated. The population response is reduced to the 
top 50 principal components and embedded into a two-dimensional t-SNE. Dots, 
individual neurons. Only neurons showing consistent modulation during the task 
are included (n = 7,340 neurons, 73 mice). Neurons are divided into 94 clusters. 
Colors show two clusters. PC, principal component. d, PSTHs of individual 
neurons in the example clusters in c. e, Rows 1–2: PSTHs (mean ± s.e.m. across 
neurons) of eight example clusters in the primary dataset. Rows 3–4: PSTHs of 
matching clusters from a second dataset (n = 8,736 neurons, 29 mice). t-SNE and 
clustering are performed independently on the second dataset, resulting in 86 

clusters. f, Left: response profiles of all clusters from the primary dataset. Each 
row shows activity of one cluster. Right: response profiles of the second dataset. 
g, Fraction of neurons falling into each cluster in the primary dataset (thick line). 
Clusters are ranked based on size. Gray lines, fraction of neurons in four distinct 
mouse groups (18 mice each; n = 1,628, 2,095, 1,547, 1,984 neurons, respectively). 
Dots, fraction of neurons in matched clusters from the second dataset. The 
position of the dots on the x axis is based on the matching cluster from the 
primary dataset. h, Noise correlation for simultaneously recorded neuron 
pairs. n = 1,060 pairs from the same cluster (filled symbols); n = 1,598 pairs from 
different clusters (open symbols) (Methods). Noise correlation is trial-to-trial 
cofluctuations in the mean-subtracted spike rate. See Extended Data Fig. 1i for 
noise correlation during specific task epochs. Mean ± s.e.m. across neuron pairs. 
***P = 1.82 × 10−49, two-sided Wilcoxon rank sum test, within-cluster pairs versus 
across-cluster pairs. ‘Lick right’ and ‘lick left’ trials are combined for the test.
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(Fig. 2b)24,35,36. ALM activity is necessary for licking response14,35,37. We 
therefore defined the choice selective direction in the response epoch 
as an action mode (Fig. 2c). Finally, we determined an outcome mode 
that differentiated rewarded and unrewarded trials during the response 
epoch (Fig. 2c). The activity modes were near orthogonal to each other 

(Extended Data Fig. 2a). Thus, ALM signaled stimulus, choice and action 
along near orthogonal directions in activity space.

We additionally determined three non-trial-type-selective activ-
ity modes based on previous studies (Methods). One activity mode 
captured nonselective ramping activity during the delay epoch 
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(ramping mode, Fig. 2c), which might reflect an urgency signal or pas-
sage of time24,30,38–40. Another activity mode with phasic activity after 
the ‘go’ cue was important for triggering the motor response (go mode,  
Fig. 2c)35. We defined ramping and cue modes as in refs. 30,35, which by 
construction captured activity showing a ramp during the delay, and 
a phasic response after the go cue. Finally, the activity mode explain-
ing the most variance showed nonselective modulation during the 
motor response (response mode, Fig. 2c), consistent with previous 
decompositions of frontal cortex dynamics7,41. Together, the seven 
activity modes captured 69% of variance in ALM population activity 
(Extended Data Fig. 2b), including most of the stimulus and choice 
selectivity (71% and 92%; Extended Data Fig. 2b).

Importantly, distinct activity modes predicted different features of 
behavior. In error trials, the stimulus mode signaled trial type irrespec-
tive of lick direction whereas the choice and action modes tracked mice’s 
lick directions (Fig. 2d). The choice and ramping modes also correlated 
with ignore and early lick behaviors even though the activity modes 
were defined without considering these conditions. In ignore trials, 
activity increased less along the choice and ramping modes (Fig. 2e). 
When mice licked before the ‘go’ cue, ramping activity preceded licking 
and the choice mode predicted lick direction (Fig. 2f and Extended Data  
Fig. 3a). This suggests that the choice and ramping modes were related 
to upcoming licks. Further supporting this interpretation, the choice 
and ramping modes predicted mice’s reaction times in correct trials  
(Fig. 2g). In contrast, activity along the stimulus mode did not predict 
early lick or reaction time (Fig. 2f,g and Extended Data Fig. 3b).

The same set of activity modes were reliably obtained in differ-
ent mice and datasets (Extended Data Fig. 2c). Although our analyses 
used neurons combined from different recordings, decomposition 
of simultaneously recorded populations obtained the same activity 
modes (Extended Data Fig. 2c). Importantly, a different dimensional-
ity reduction method, demixed PCA7, also discovered the same set of 
activity modes (Extended Data Fig. 2c,d). These analyses suggest that 
the activity modes captured prominent components of ALM activity 
encoding specific behavioral features.

Stimulus, choice and action are coded by largely segregated 
neuronal populations
Do shared neuronal populations support different activity modes? 
Recordings in frontal and parietal cortex previously found that selectiv-
ity for stimulus, choice and action is randomly mixed across shared neu-
ronal populations1,7,9. Randomly mixed neural coding implies a shared 
network multiplexes multiple computations. Taking advantage of the 
large number of neurons in our dataset and the repeatable response 
profiles, we examined how distinct activity modes were distributed 
across defined ALM populations.

Each activity mode is a weighted sum of individual neuron activi-
ties. The weights show the contribution of individual neurons (Fig. 3a). 
We visualized the neuron weights for each activity mode in the t-SNE 
representation. Neurons supporting stimulus, choice and action modes 
were clustered to different locations in the t-SNE (Fig. 3b), suggesting 
that stimulus, choice and action activity may be signaled by neuronal 

Fig. 2 | Task and behavioral information is represented by distinct activity 
modes. a, Decoding accuracy for stimulus (trial type instructed by object 
location), choice (lick direction), outcome (rewarded versus unrewarded), trial 
epoch (baseline, sample, delay, response), reaction time (fast versus slow trials) 
and ignore trials. Decoding is performed independently at each time point on 
population responses generated from different combinations of single neuron 
trial data (mean ± s.d. across runs, Methods). Only neurons with more than ten 
error trials of each trial type are included (n = 2,039). b, Left: neural trajectories 
and selectivity directions in activity space. Error trial trajectories distinguish 
stimulus versus choice selectivity. Right: correlation of stimulus and choice 
selective directions across time. Bounding boxes, activity modes are selective 
directions in specific epochs. Green, stimulus mode. Magenta, choice and 
action modes. Only neurons with more than five error trials of each trial type are 
included (n = 3,966). c, ALM population activity along specific activity modes 
in correct trials. Mean ± s.e.m. (bootstrap, Methods). Blue, ‘lick right’ trials 
instructed by object location; red, ‘lick left’ trials. Percentage of activity variance 
captured is shown at top. d, Activity projection in error trials. Mean ± s.e.m. 
(bootstrap, Methods). Light blue, ‘lick right’ trials instructed by object location, 

but mice licked left; light red, ‘lick left’ trials in which mice licked right. e, Activity 
projection in ignore trials. Mean ± s.e.m. (bootstrap, Methods). Activity modes 
are computed separately from c and d using neurons with more than two ignore 
trials of each trial type (n = 546). Dashed lines, activity in correct trials. Dark blue, 
‘lick right’ trials instructed by object location; dark red, ‘lick left’ trials. f, Activity 
projection in trials in which mice licked before the go cue. Activity is aligned to 
the first lick. Mean ± s.e.m. (bootstrap, Methods). Only neurons with more than 
three early lick trials of each trial type are included (n = 1,994). Also see Extended 
Data Fig. 3. g, Left: activity projection separately by fast or slow reaction time. 
Top and bottom 1/3 of trials sorted by reaction time. Correct trials only. The x 
axis is the same as in panels c and d. Mean ± s.e.m. (bootstrap, Methods). Right: 
activity projection during the last 200 ms of the delay epoch. Trials with the 
fastest (top 1/3), intermediate (middle 1/3) and slowest reaction times (bottom 
1/3). Mean ± s.e.m. (bootstrap, Methods). Only neurons with more than five 
error trials and more than two trials of each reaction time condition are included 
(n = 3,918). *P = 0.002; ***P = 5.06 × 10−14, two-tailed t-test. a.u., arbitrary units; RT, 
reaction time.

Fig. 3 | Activity modes coding stimulus, choice and action are supported by 
distinct neuronal populations. a, Activity modes correspond to weighted sums 
of individual neuron activities. The weights show contribution of individual 
neurons. b, Neuron weights in the t-SNE. Dots, individual neurons. Dot size 
shows weight magnitude and colors indicate positive (red) or negative (blue) 
weights. Only neurons with more than five error trials of each trial type are 
included (n = 3,966). c, Top: a seven-dimensional vector represents each neuron’s 
contributions to the activity modes. For neuronal populations with random 
mixtures of selectivity, coding vectors are uniformly distributed around the 
origin, which can be quantified by angles between nearest neighbors (ePAIRS 
test). Bottom: the distribution of angles deviates significantly from random 
distribution of coding vectors and from a synthetic population coding random 
mixtures of activity modes, indicating that distinct task selectivity is not 
randomly mixed within ALM populations. P < 1 × 10−4, one-sided test (Methods). 
d, A two-dimensional vector represents each neuron’s contributions to a pair of 
activity modes. If neurons encode random mixtures of each activity mode, rather 
than encoding one mode or another, these vectors are uniformly distributed. 
Neuronal populations coding single activity modes are located around 0° and 

90°. Neural coding of stimulus, choice and action exhibits significant peaks at 
0° and 90°. In contrast, coding of choice and ramping shares the same neuronal 
population. Dashed line, synthetic population coding mixtures of activity modes. 
Stimulus and choice, P = 0.0018; choice and action, P = 4.40 × 10−6; stimulus  
and action, P = 2.27 × 10−9; ramping and choice, P = 0.19, Kolmogorov–Smirnov 
test, observed distribution versus synthetic population, one-sided test.  
e, Left: k-means clustering on activity mode weights delineates neurons into 
six clusters (Methods). Right: clusters shown in the t-SNE. Clusters carrying the 
most variance for the stimulus, choice and action modes are termed stimulus, 
choice and action coding (Extended Data Fig. 5a). f, Classification of stimulus, 
choice and action coding neurons using a nearest-neighbor classifier in the t-SNE 
(Methods). Mean ± s.e.m. (bootstrap across neurons). Only neurons with more 
than five error trials of each trial type are included (n = 3,966). g, Distribution 
of stimulus, choice and action coding neurons across depth. Fraction is relative 
to all neurons from each functional population (stimulus coding, n = 583 
neurons/73 mice; choice coding, n = 694 neurons/73 mice; action coding, n = 491 
neurons/73 mice). Mean ± s.e.m. across mice (dots). K-S, Kolmogorov–Smirnov 
test; W, weight.
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populations with different response profiles. Interestingly, neurons 
supporting the ramping mode co-localized to the same location in the 
t-SNE as the choice coding neurons (Fig. 3b), suggesting that a shared 
neuronal population signals choice and ramping activity. The same 
pattern of weight distribution was reproduced in the second dataset 
(Extended Data Fig. 4a).

We took two different approaches to quantitatively test whether 
activity modes were supported by shared or distinct neuronal 

populations. First, we examined individual neuron weights for 
all seven activity modes. Each neuron is thus characterized by a 
seven-dimensional coding vector. If activity modes are randomly 
mixed across ALM populations, coding vectors are uniformly distrib-
uted around the origin (Fig. 3c and Extended Data Fig. 4b)7,9. Instead, 
ALM coding vectors were highly nonrandom and exhibited significant 
clustering (Fig. 3c and Extended Data Fig. 4b; P < 0.001 ePAIRS test, 
Methods)12. To examine how specific activity modes were supported 

c d

0° 50°
0

200

400

600

800

Weights of top 7 activity modes

Data

Random distribution
(mixed selectivity)

Synthetic population
(mixed selectivity)

Angle of the nearest neighbor

Activity mode 1

Activity mode 2

Neuron 1

Neuron 2
nearest

neighbor

Neuron 3Neuron 4

Neuron n

ePAIRS test
P < 0.001

N
um

be
r 

of
 n

eu
ro

ns

Choice versus action Stimulus versus action Ramping versus choice

a Stimulus mode Choice mode Action mode

Outcome mode Ramping mode Go mode Response mode

W1Neuron 1

Neuron 2

Neuron 3

Neuron n

Stimulus
mode

Weights

W2

Choice
mode

Individual
neuron

responses
Activity
modes

Weight
+
–

Large Small

b

Stimulus versus choice

Stimulus
coding

Choice
coding

Action
coding

ge

Layer

F
ra

ct
io

n 
of

 n
eu

ro
ns

Stimulus mode

Action mode

Neuron 1, coding
stimulus only

Neuron 2, coding
action only

Neuron 3, coding
stimulus and action

0°

90°

K-S test, P = 0.0018

0° 45° 90°
0

20

40

60

0° 45° 90°
0

20

40

60

80

0° 45° 90°
0

20

40

60

80

0° 45° 90°
0

20

40

60

Angle StimulusChoice Action RampingAction

ChoiceStimulus

Choice

80

80P < 0.001 P = 0.19P < 0.001

N
um

be
r 

of
 n

eu
ro

ns

Data
Synthetic population
(mixed selectivity)

Weights of activity mode pairs

Clustering neurons based on
activity mode weights

Cluster 1
stimulus coding

Cluster 2
choice coding

Cluster 3
action coding

Cluster 4 Cluster 5 Cluster 6

2/3 5 6

80

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

60

40

20

0

Chance

f

Cluster

Classification of
function population

using t-SNE location

Distribution of function population
across depth

1 2 3

1

3,966

Stim
ulu

s

Cho
ice

Acti
on

Out
co

m
e

Ram
pin

g Go

Res
po

ns
e

N
eu

ro
ns

1

2

3

4

6

5

0

0.08
∣Weight∣

0

0.2

0.4

0.6

0.8

1

http://www.nature.com/nature neuroscience


Nature Neuroscience | Volume 25 | October 2022 | 1339–1352  1345

Article https://doi.org/10.1038/s41593-022-01171-w

by ALM populations, we examined neuron weights for pairs of activity 
modes: stimulus versus choice, choice versus action or stimulus versus 
action (Fig. 3d). The angles of the two-dimensional coding vectors were 
clustered near 0° and 90°, which correspond to separate populations 
coding one of the activity modes but not the other (Fig. 3d). A portion 
of the coding vectors were near 45°, which corresponds to neurons 
carrying mixtures of selectivity. However, the binomial distribution 
indicates that ALM neurons encoding one task variable were less likely 
to contribute to another. In contrast, the coding vectors for choice and 
ramping modes were uniformly distributed (Fig. 3d). This confirms 
that the choice and ramping modes were coded by shared neuronal 
populations (Fig. 3b).

To contrast with the actual ALM population, we generated a syn-
thetic neuronal population which encoded random mixtures of activity 
modes by construction. We synthesized individual neuron responses 
from random linear combinations of the activity modes (Extended 
Data Fig. 4e and Methods). Thus, the activity modes were preserved 
at the level of the population, but the contribution of individual neu-
rons was scrambled. The synthetic neurons exhibited heterogeneous 
responses similar to the actual ALM neurons (Extended Data Fig. 4f). 
We performed t-SNE of the synthetic responses. In contrast to the data, 
activity modes were more scattered across the t-SNE (Extended Data 
Fig. 4g). Individual neuron coding vectors were uniformly distributed 
around the origin, deviating significantly from the data (Fig. 3c,d and 
Extended Data Fig. 4b; P < 0.001).

These analyses show that distinct task selectivity was not randomly 
mixed across ALM populations. We used k-means clustering to divide 
neurons into functional populations based on their contribution to 
distinct activity modes (Fig. 3e, Extended Data Fig. 5a and Methods). 

Each functional population carried a majority of variance for specific 
activity modes while carrying little variance for other activity modes 
(Extended Data Fig. 5a). The choice coding population carried some 
variance for the stimulus and action modes, indicating partial over-
laps with stimulus and action coding populations (Extended Data  
Fig. 5a,b). Nevertheless, the degree of un-mixing was substantial 
compared with the synthetic population coding random mixtures of 
selectivity (Extended Data Fig. 5c). The choice coding population also 
carried most of the variance for the ramping mode, further confirming 
their shared neural coding (Extended Data Fig. 5a,b). Stimulus, choice 
and action coding populations occupied distinct but partially overlap-
ping locations in the t-SNE (Fig. 3e). A nearest-neighbor classifier could 
reliably classify stimulus, choice and action coding neurons based on 
their t-SNE locations (Fig. 3f). Thus, the functional populations can be 
delineated by their response profiles. The same pattern of clustering 
was also observed in the second dataset (Extended Data Fig. 5b). These 
data imply the progression from stimulus to choice and action activity 
unfolded across distinct but partially overlapping circuits instead of a 
single multiplexed circuit.

We did not find obvious anatomical separations between func-
tional populations in their layer distributions (Fig. 3g and Extended 
Data Fig. 5d) or putative pyramidal neuron versus interneuron cell types 
(Extended Data Fig. 5e). We thus sought to relate different functional 
populations to specific long-range inputs to ALM.

ALM receives long-range inputs from S1/S2, cALM and ThalALM

Activity supporting the tactile decision is orchestrated by reciprocal 
interactions between ALM and connected brains regions23,42. Retro-
grade tracer injections (wheat germ agglutinin (WGA)) in ALM labeled 
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Fig. 4 | ALM receives long-range inputs from S1/S2, cALM and ThalALM which 
are required for behavior. a, Retrograde and anterograde tracing from ALM. 
Left: labeling in ipsilateral S1/S2, cALM and ipsilateral ThalALM. Right: magnified 
images. Red, retrograde labeling (WGA-Alexa594); green, anterograde labeling 
(GFP); blue, Nissl stain. Retrograde and anterograde tracings were performed in 
the same brain. This experiment was repeated in five mice with similar results. 

b, Behavioral performance in the tactile decision task with photoinhibition of 
left S1/S2 (top), right ALM (middle) or left ThalALM (bottom) during different 
trial epochs. Thick lines, mean; thin lines, individual mice (S1/S2, n = 6; cALM 
n = 4; ThalALM, n = 5). S1/S2, *P = 0.012; cALM, **P = 0.0016; ThalALM, *P = 0.015, 
***P = 0.0001; P values obtained by nested bootstrap across mice, sessions and 
trials, one-sided test (Methods). Ctrl, control.
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ipsilateral somatosensory cortex, including parts of the primary and 
secondary somatosensory cortex (here collectively referred to as S1/S2); 
cALM; and ipsilateral thalamus, including parts of the ventral-medial 
nucleus, ventral-anterior-lateral nucleus (VAL), medial-dorsal nucleus 
and intralaminar nuclei (here collectively referred to as ThalALM;  
Fig. 4a)25. Anterograde tracing shows that these regions were also tar-
gets of ALM projections (Fig. 4a). Thus, ALM formed reciprocal loops 
with ipsilateral S1/S2, cALM and ipsilateral ThalALM.

We confirmed the involvement of S1/S2, cALM and ThalALM in the 
tactile decision behavior by optogenetically silencing these regions 
(Methods)14,25,26. Photoinhibition of the left S1/S2 (contralateral to 
the tactile stimulus) impaired task performance primarily during the 
sample epoch (Fig. 4b). Photoinhibition of cALM and ThalALM during 
the delay epoch biased upcoming lick direction to the ipsilateral direc-
tion (Fig. 4b). Photoinhibition of ThalALM during the sample epoch 
also impaired task performance (Fig. 4b). These results defined three 
input regions to ALM that causally contributed to the tactile decision 
behavior. We next examined the relative contributions of these inputs 
to task-related activity in ALM.

Each long-range input connects to all response profiles
We examined whether S1/S2, cALM and ThalALM preferentially inner-
vated ALM neurons with certain response profiles by recording selec-
tively from neurons postsynaptic to specific long-range inputs. We 
expressed ChR2 in ipsilateral S1/S2, cALM or ipsilateral ThalALM in 
separate groups of mice (Fig. 5a). During silicon probe recordings, 
we photoactivated ChR2-expressing axon terminals in ALM to acti-
vate postsynaptic neurons (‘ChR2-tagging’). Photostimulation (1-ms 
pulses) elicited time-locked responses in a small subset of neurons 
with short latency (Fig. 5b,c). The light-evoked response increased 
with photostimulus intensity while the response latency decreased 
(Fig. 5c). These neurons were deemed putative postsynaptic neurons 
to specific long-range inputs (Methods).

Activation of ALM neurons could cause activity in locally con-
nected neurons (Fig. 5d). We additionally applied ChR2-assisted circuit 
mapping43 in vivo to complement ChR2-tagging. During whole-cell 
recordings, we photoactivated ChR2-expressing axons from specific 
brain regions and we used short-latency excitatory postsynaptic 
potentials (EPSPs) to identify functional synapses. We performed 
calibration recordings in the vibrissa motor cortex (vM1) where the 
circuit connectivity has been well-mapped (Extended Data Fig. 6). 
Application of tetrodotoxin (TTX) abolished EPSPs in some neurons 
while leaving EPSPs intact in other neurons (Extended Data Fig. 6a,b). 
Blocking AMPA receptors and NMDA receptors with NBQX (6-nitro-
2,3-dioxo-1,4-dihydrobenzo[f]quinoxaline-7-sulfonamide) and AP5 
(2-amino-5-phosphonovalerate) abolished the remaining EPSPs, con-
firming that the response resulted from functional synapses (Extended 
Data Fig. 6b). At high photostimulation power (20 mW), EPSP latency 

could reliably distinguish connected neurons from unconnected 
neurons (Extended Data Fig. 6c). Using ChR2-assisted circuit map-
ping in vivo, we detected prevalent vibrissal somatosensory cortex 
(vS1) connections to the superficial layers of vM1 but not deep layers 
(Extended Data Fig. 6d), replicating the connectivity pattern meas-
ured in slices20,21. Calibration recordings and TTX pharmacology in 
ALM found that an EPSP latency threshold could also resolve S1/S2, 
cALM and ThalALM input connectivity (Fig. 5e,f). We thus used the 
latency threshold to distinguish postsynaptic neurons to specific long- 
range inputs.

S1/S2, cALM and ThalALM inputs indiscriminately targeted ALM 
neurons regardless of their response profiles (Fig. 5g and Extended 
Data Fig. 7a,b). Functional populations coding stimulus, choice and 
action were coupled to all three inputs (Fig. 5g; P > 0.05, chi-squared 
test, pair-wise comparisons across all functional populations). Con-
nected neurons also exhibited similar intrinsic and synaptic proper-
ties (Extended Data Fig. 7c–e). Inputs from S1/S2, cALM and ThalALM 
differed in connection strength. Connection probability was higher 
for ThalALM inputs compared with S1/S2 inputs (Fig. 5h and Extended 
Data Fig. 8a; P < 0.05, chi-squared test, connection probability across 
all layers). Photostimulation of ThalALM axons also elicited stronger 
EPSPs than S1/S2 and cALM (Fig. 5h and Extended Data Fig. 8b; P < 0.001 
for inputs, two-way analysis of variance (ANOVA) across inputs and 
photostimulation power).

These results show that S1/S2, cALM and ThalALM inputs targeted 
all response profiles in ALM. Long-range inputs mainly differed in 
strength: thalamic inputs provided the strongest excitatory drive to 
ALM compared with cortico-cortical inputs.

Thalamus strongly influences all functional populations in ALM
To assess the contributions of S1/S2, cALM and ThalALM inputs to ALM 
activity, we silenced each brain region while recording from ALM. In 
VGAT-ChR2-EYFP mice, we placed an optical fiber above S1/S2, cALM 
or ThalALM (Methods). In S1/S2 and cALM, photostimulation excited 
ChR2 in local interneurons and inhibited nearby pyramidal neurons44, 
including neurons projecting to ALM. In ThalALM, photostimulation 
excited the reticular nucleus axon terminals in ThalALM and silenced 
thalamic output25,45.

Photoinhibition of S1/S2 and cALM produced varied effects across 
cortical layers: most neurons in the superficial layers were silenced by 
S1/S2 and cALM photoinhibition, but the activity in the deep layers was 
less affected (Fig. 6a; P < 0.001 for both S1/S2 and cALM photoinhibi-
tion, one-way ANOVA). In contrast, ThalALM photoinhibition reduced 
ALM activity across all layers, with the strongest effect in the deep 
layers (Fig. 6a; P < 0.001, one-way ANOVA).

Silencing each input region impacted all response profiles. Pho-
toinhibiting S1/S2, cALM or ThalALM depressed ALM neurons coding 
stimulus and choice (Fig. 6b). Neurons coding the action mode have 

Fig. 5 | S1/S2, cALM and ThalALM inputs connect to all response profiles in 
ALM. a, Measuring long-range input connectivity using ChR2-tagging. b, Top: 
example neurons with short-latency responses to photostimulation of S1/S2 
axons (tagged). Bottom: example ALM neurons unresponsive or suppressed 
by photostimulation (nontagged). Photostimulus, 1-ms pulses, 30 mW. c, Top: 
average response of tagged (n = 172) and nontagged neurons (n = 1,487). S1/S2,  
cALM and ThalALM axonal photostimulation data are combined. Bottom: response 
magnitude and latency of tagged neurons. Box and whisker plot shows median, 
25/75th percentiles and most extreme data points not considered as outliers. 
d, ChR2-assisted circuit mapping. e, Calibration recordings from ALM. Left: 
example EPSPs. S1/S2 axonal photostimulation. Application of TTX left EPSP 
intact in a connected neuron (top). TTX abolished EPSP in an unconnected 
neuron (bottom). Right: mean EPSP before and after TTX for all tested neurons. 
Photostimulation power, 20 mW. f, EPSP latency of neurons verified to be 
connected or unconnected using TTX. Mean ± s.d. across neurons (S1/S2, n = 17; 
cALM, n = 17; ThalALM, n = 13). A latency threshold (5 ms) could differentiate 

connected and unconnected neurons. Dots, individual neurons. Unconnected 
neurons with no EPSPs are shown on top. g, Left: ALM neurons connected to S1/S2  
(top), cALM (middle) and ThalALM inputs (bottom) shown in the t-SNE. Colored 
dots, connected neurons measured from ChR2-tagging (red) and ChR2-assisted 
circuit mapping (black); gray dots, all neurons in the dataset. Only a subset of the 
neurons are tested for input connectivity. Right: fraction of connected neurons 
relative to all tested neurons within each functional population (Fig. 3e). Box and 
whisker plot shows median, 25/75th percentiles and most extreme data points 
not considered as outliers (bootstrap, Methods). h, S1/S2, cALM and ThalALM 
inputs differed in strength. Left: connection probability from ChR2-assisted 
circuit mapping. Numbers on each bar indicate the number of tested neurons. 
Right: light-induced EPSP in the connected neurons. Mean ± s.e.m. across 
neurons (dots). S1/S2, n = 43; cALM, n = 53; ThalALM, n = 45. Only a subset of the 
neurons in panel h are tested in behavior, shown in panel g. See Extended Data 
Fig. 8. VM, ventral-medial nucleus.

http://www.nature.com/nature neuroscience


Nature Neuroscience | Volume 25 | October 2022 | 1339–1352  1347

Article https://doi.org/10.1038/s41593-022-01171-w

low spike rates during the sample and delay epochs. In these experi-
ments, photoinhibition was during the sample or delay epoch, and thus 
produced limited spike rate decrease in this population. Nevertheless, 

silencing each input region also reduced spike rate in action coding 
neurons (Fig. 6b). The broad effect of photoinhibition mirrored the 
connectivity of the long-range inputs, which contacted all functional 
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populations (Fig. 5g). The effect of photoinhibition only differed in 
strength: silencing ThalALM inhibited a larger fraction of ALM neurons 
than silencing S1/S2 or cALM (Fig. 6b; ThalALM versus S1/S2 photoinhi-
bition, P < 0.01 for stimulus and choice coding neurons, P = 0.88 for 
action coding neurons; ThalALM versus cALM photoinhibition, P < 0.01 
for stimulus and choice coding neurons, P = 0.61 for action coding 
neurons, chi-squared test).

ThalALM photostimulation in VGAT-ChR2-EYFP mice may activate 
GABAergic axons of the thalamic reticular nucleus or substantia nigra 
pars reticulata, which may inhibit other thalamic nuclei. We directly 
inhibited ThalALM using a light-dependent chloride channel (GtACR1, 
Methods)46. GtACR1 was expressed around thalamic ventral-medial 
nucleus by injecting AAV Cre in a Cre-dependent GtACR1 reporter 
mouse44 (Extended Data Fig. 9a and Methods). Silicon probe recordings 
in thalamus and cortex confirmed that photoinhibition was limited 
to ThalALM (Extended Data Fig. 9a,b). Direct ThalALM photoinhibition 
strongly inhibited ALM activity, primarily in the deep layers (Extended 
Data Fig. 9b). We inhibited ThalALM during all task epochs, including the 
response epoch when action coding neurons were active (Extended 

Data Fig. 9c). When activity level was accounted for, ThalALM photoinhi-
bition equally suppressed stimulus, choice and action coding neurons 
(Extended Data Fig. 9d; P > 0.05, chi-squared test, pair-wise test across 
all populations).

These results show that S1/S2, cALM and ThalALM inputs each influ-
enced all functional populations in ALM. Cortico-cortical projections 
affected superficial layers more than deep layers. Thalamic inputs 
affected deep layers more than superficial layers, and thalamic inputs 
affected more total neurons in ALM than cortico-cortical inputs.

Activity coding stimulus, choice and action requires thalamic 
inputs
Finally, we examined the contributions of S1/S2, cALM and ThalALM 
inputs to distinct activity modes coding behavior.

Photoinhibiting S1/S2 during the sample epoch depressed ALM 
stimulus mode, consistent with S1/S2 providing stimulus information 
to ALM. However, trial-type selectivity recovered after S1/S2 photoinhi-
bition (Fig. 7a), and thus the stimulus information was not completely 
lost despite blocking S1/S2 transmission. These observations are in line 
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with the relatively mild effect of S1/S2 photoinhibition on behavioral 
performance (Fig. 4b). This suggests that stimulus information could 
reach ALM through other pathways that were not blocked by the pho-
toinhibition. Photoinhibiting S1/S2 during the delay epoch minimally 
affected ALM stimulus mode (Fig. 7a), further indicating that ALM 
could maintain stimulus information in absence of S1/S2 inputs.

Photoinhibiting ThalALM during the sample epoch also collapsed 
ALM stimulus mode. In contrast to S1/S2 photoinhibition, trial-type 
selectivity did not recover after ThalALM photoinhibition (Fig. 7a). 
Thus, blocking thalamic transmission permanently abolished stimulus 

information in ALM. Photoinhibiting ThalALM during the delay epoch 
also collapsed ALM stimulus mode. These data show that ALM stimulus 
selectivity required thalamic inputs.

ALM choice mode was also affected by S1/S2 and cALM photoin-
hibition (Fig. 7b). However, ThalALM photoinhibition totally collapsed 
ALM choice selectivity. ThalALM photoinhibition during the sample 
epoch persistently depressed choice selectivity during the delay epoch 
(Fig. 7b). This is consistent with the reduction in task performance 
induced by sample epoch ThalALM photoinhibition (Fig. 4b), which 
suggests that thalamic inputs during the sample epoch were required 
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for generating correct choice. ThalALM photoinhibition during the 
delay epoch collapsed choice selectivity (Fig. 7b), confirming previous 
reports that thalamic inputs are required to maintain choice selective 
delay activity25.

The nonselective ramping activity was resistant to S1/S2 and cALM 
photoinhibition (Fig. 7c). Thus, ALM ramping activity could reflect sig-
nals generated outside of the neocortex. ThalALM photoinhibition dur-
ing either the sample or delay epoch suppressed ALM ramping activity 
(Fig. 7c). Interestingly, after ThalALM photoinhibition during the sample 
epoch, ramping activity recovered to the trajectory of unperturbed 
trials and continued uninterrupted (Fig. 7c). This further indicates that 
the ramping signal was generated outside of the frontal thalamocorti-
cal loop and was transmitted through the thalamus to ALM.

Across all activity modes, silencing ThalALM produced a greater effect 
than silencing S1/S2 and cALM (Fig. 7d). We examined whether thalamic 
inputs drove stimulus and choice selectivity or simply provided excita-
tory drive to maintain spike rates in ALM without conveying task-related 
information. First, we noted that ThalALM photoinhibition in our experi-
ments induced only moderate reduction in ALM spike rate: 37.8% of 
ALM neurons showed a spike rate reduction of 50% or more while 9% of 
ALM neurons showed a significant increase in spike rate (Extended Data  
Fig. 10a; P < 0.01, two-tailed t-test, photoinhibition versus control). Even 
among the neurons that did not show a decrease in spike rate, ThalALM 
photoinhibition still resulted in collapsed activity modes (Extended Data 
Fig. 10b–d). Finally, selectivity was abolished in individual neurons even 
when spike rates were little affected (Extended Data Fig. 10e). These data 
suggest that thalamic inputs drive ALM task selectivity.

Silencing ThalALM also affected the action mode (Fig. 7d). However, 
the early experiment only tested photoinhibition during the sample 
and delay epochs. In a separate experiment, we directly silenced ThalALM 
during the response epoch using GtACR1 (Fig. 8a and Extended Data 
Fig. 9). ALM action mode was abolished by ThalALM photoinhibition  
(Fig. 8b). With ThalALM photoinhibition, mice frequently did not initiate 
licking after the ‘go’ cue (Fig. 8c). These findings are consistent with pre-
vious reports that ALM activity is necessary for initiating licking14,35,37, 
and they further reveal an indispensable role of thalamic inputs.

In sum, these data show that both cortico-cortical and thalamic 
inputs contributed to ALM task selectivity during decision-making, but 
thalamic inputs had the strongest impact. Thus, ALM task selectivity 
required thalamic inputs.

Discussion
Our analysis in mouse ALM uncovers highly organized activity dur-
ing tactile decision-making. Individual neurons exhibit a collection 
of prototypical response profiles that are repeatable across mice  
(Fig. 1), which implies a structured underlying circuit. Contrary to a 
shared circuit that multiplexes different task selectivity, activity cod-
ing stimulus, choice and action unfolds across distinct but partially 
overlapping functional populations that can be delineated by their 
response profiles (Fig. 3). Each functional population receives inputs 
from somatosensory cortex (S1/S2), cALM and thalamus (Fig. 5). Both 
cortico-cortical and thalamic inputs contribute to task selectivity, but 
thalamic inputs have the strongest impact (Figs. 6 and 7). Our results 
suggest a model in which thalamic inputs drive distinct subnetworks 
within frontal cortex coding different features of behavior.

Despite direct cortico-cortical connections between S1/S2 and 
ALM, stimulus selectivity in ALM is dependent on thalamic inputs. S1/
S2 inputs provide only weak excitation to ALM and do not preferentially 
target stimulus coding neurons (Figs. 5g and 6). Blocking S1/S2 trans-
mission only transiently reduced stimulus information in ALM, while 
leaving stimulus information intact during the delay epoch (Fig. 7a). In 
contrast, blocking thalamic transmission completely and persistently 
abolished stimulus information in ALM (Fig. 7a). Together, these data 
suggest redundant subcortical pathways signal stimulus information 
to ALM via the thalamus.

Previous studies found that thalamic inputs are required to 
maintain choice selective persistent activity in frontal cortex during 
the delay epoch25,47,48. Thalamus relays information from subcorti-
cal loops to frontal cortex49–51. Our study extends these findings by 
revealing distinct sources of selectivity supporting different aspects 
of decision-making. Transiently blocking thalamic transmission during 
the sample epoch persistently disrupted choice selectivity (Fig. 7) and 
impaired task performance (Fig. 4b), suggesting that choice formation 
depends on thalamocortical transmission. Our side-by-side compari-
sons with cortico-cortical projections further uncover that thalamus 
drives ramping activity coding an urgency signal (Fig. 7). Ramping 
remained intact after transiently blocking thalamic transmission, and 
thus ramping activity appears to originate outside of the thalamocorti-
cal loop49,52,53. Finally, activity related to licking action requires thalamic 
inputs (Fig. 8), consistent with recent reports that thalamic inputs to 
frontal cortex are required for movement initiation35,54,55.

Our thalamus photoinhibition only partially reduced ALM activity. 
Yet selectivity was abolished, even in neurons showing no change or 
increased spike rates (Extended Data Fig. 10). These data suggest the 
thalamus directly drives selectivity in ALM. Silencing S1/S2 and cALM 
induced non-negligible effects on the stimulus and choice modes. 
More work is needed to resolve the interaction of thalamic inputs with 
cortical inputs48.

Previous recordings in rodent frontal and parietal cortex found 
randomly mixed selectivity for stimulus, choice and action within shared 
neuronal populations1,7,9. Our analyses show that segregations exist: 
stimulus coding neurons are less likely to encode choice or action and 
vice versa, with some overlap (Fig. 3d). These results are potentially 
consistent with findings in learned recurrent neural networks showing 
neurons with similar selectivity tend to form functional subnetworks56. 
In the tactile decision task, the addition of a delay epoch may have facili-
tated the separation of different neural coding. Differences in brain areas 
may also explain some differences. Finally, it is possible that structures 
in population activity only become apparent with sufficiently large neu-
ronal samples. Our power analysis shows that at least 400 neurons are 
needed to detect structures in neural coding (Extended Data Fig. 4c,d),  
and some ALM neurons did exhibit mixtures of selectivity (Fig. 3d).

We find that choice and ramping signals are coded by a shared 
neuronal population (Fig. 3d). Previous modeling suggests that ramping 
signal plays a permissive role for choice selectivity to develop27,30. Mul-
tiplexed choice and ramping signals in a shared population may enable 
such interactions to occur. Our results do not rule out mixed selectivity 
across modalities within the stimulus and choice coding populations. 
For example, during multi-sensory decision-making, the same popula-
tion could multiplex information from multiple sensory modalities9. It 
will be of interest to determine if the same stimulus and choice coding 
populations encode stimulus and choice across tasks and modalities.

We find that the majority of ALM neurons conform to a fixed reper-
toire of prototypical response profiles under similar task conditions, and 
defined neuronal populations contribute to specific neural coding. A small 
proportion of ALM neurons could not be reliably assigned to a response 
profile cluster (Extended Data Fig. 1d,e). This could be due to insufficient 
number of neurons to define small clusters or poor estimates of response 
profiles from limited number of spikes. Idiosyncratic differences between 
mouse behaviors may also contribute to irregular response profiles. It 
remains to be determined if ALM responses fully conform to a finite set 
of discrete clusters. A related question is whether ALM functional popu-
lations receive like-to-like versus nonspecific thalamic connections57,58. 
Finding organized activity in frontal cortex paves the way for linking 
behavior-related signals to detailed thalamocortical connectivity22.
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Methods
Mice
This study was based on data from 186 mice (age > postnatal day 60, both 
male and female mice). Sixteen VGAT-ChR2-EYFP mice ( JAX 014548), 
four PV-ires-cre ( JAX 008069)59 crossed with a red-shifted channel-
rhodopsin (ReaChR) reporter mice (Rosa26-LSL-ReaChR-mCitrine, 
JAX 026294)60 and one PV-ires-cre mouse crossed with Ai32 
(Rosa26-LSL-ChR2-EYFP, JAX 012569) were used for electrophysiol-
ogy and photoinhibition during behavior experiments. Seven GtACR1 
reporter mice (R26-LNL-GtACR1-Fred-Kv2.1, JAX 033089) were used for 
ThalALM photoinhibition44. Seventeen Ai32 mice were used for in vivo 
whole-cell recording to characterize connectivity from vS1 and sec-
ondary motor cortex (M2) to vM1. Twenty-eight ReaChR mice were 
used for in vivo whole-cell recording to characterize S1/S2, cALM and 
ThalALM connectivity to ALM in untrained passive mice. Sixteen ReaChR 
and 11 Ai32 mice were used for in vivo whole-cell recording of S1/S2, 
cALM and ThalALM connectivity to ALM during tactile decision-making 
behavior. Ten ReaChR mice were used for silicon probe recording and 
ChR2-tagging to characterize S1/S2, cALM and ThalALM connectivity 
to ALM during behavior experiments. Finally, five wildtype mice were 
used for anatomical tracing.

We analyzed three silicon probe recording datasets previously 
collected in the same task conditions (from refs. 14,24,31). Combined, the 
primary extracellular recording dataset (1.3-s delay epoch) included 
new data from 31 mice (described above, 4,967 units) and reused 
data from 42 mice (4,659 units)14,24. The second extracellular record-
ing dataset (1.7-s delay epoch) included reused data from refs. 24,31  
(29 mice, 10,420 neurons).

All procedures were in accordance with protocols approved by 
the Institutional Animal Care and Use Committees at Baylor College of 
Medicine. Mice were housed at a constant temperature (22 ± 1 °C) and 
humidity (30–55%) under a 12:12 reversed light/dark cycle and tested 
during the dark phase. On days not tested, mice received 0.5–1 ml of 
water. On other days, mice were tested in experimental sessions last-
ing 1–2 h where they received all their water (0.3–1 ml). If mice did not 
maintain a stable body weight, they received supplementary water61. All 
surgical procedures were carried out aseptically under 1–2% isoflurane 
anesthesia. Buprenorphine Sustained Release (1 mg kg−1) and Meloxicam 
Sustained Release (4 mg kg−1) were used for preoperative and postopera-
tive analgesia. A mixture of bupivacaine and lidocaine was administered 
topically before scalp removal. After surgery, mice were allowed to 
recover for at least 3 d with free access to water before water restriction.

Surgery
Mice were prepared with a clear skull-cap and a headpost26,61. The 
scalp and periosteum over the dorsal skull were removed. A layer of 
cyanoacrylate adhesive (Krazy glue, Elmer) was directly applied to 
the intact skull. A custom headpost was placed on the skull over the 
visual cortex and cemented in place with clear dental acrylic (Lang 
Dental Jet Repair Acrylic; Part no. 1223-clear). A thin layer of clear dental 
acrylic was applied over the cyanoacrylate adhesive covering the entire 
exposed skull, followed by a thin layer of clear nail polish (Electron 
Microscopy Sciences, Part no. 72180). For ThalALM photoinhibition, 
a 5-mm optic fiber (Thorlabs, Part no. CFMLC12L05) was implanted 
above the left ThalALM

25. For cALM or S1/S2 photoinhibition, a plastic 
fitting was glued onto the clear skull implant above the right ALM or 
left S1/S2 for attachment of the optic fiber.

Behavior
The behavioral task and training have been described61,62. The stimulus 
was a metal pin (0.9 mm in diameter), presented at one of two possible 
positions (Fig. 1a). The two pole positions were 5 mm apart along the 
anterior–posterior axis. The posterior pole position was 5 mm from 
the whisker pad. A two-spout lickport (4.5 mm between spouts) was 
used to deliver water rewards and record licks.

At the beginning of each trial, the vertical pole moved into reach of 
the whiskers (0.2-s travel time), where it remained for 1 s, after which it 
was retracted (retraction time 0.2 s). The sample epoch was defined as 
the time between the pole movement onset to 0.1 s after the pole retrac-
tion onset (sample epoch, 1.3 s; Fig. 1a). Mice touched the object at 
both pole positions, typically with a different set of whiskers. The delay 
epoch (1.3 s for primary dataset, 1.7 s for second datasets) followed the 
sample epoch. An auditory ‘go’ cue indicated the end of the delay epoch 
(pure tone, 3.4 kHz, 0.1 s). Licking early during the trial was punished 
by a loud alarm sound (0.05 s) and a brief timeout (1–1.2 s). Licking the 
correct lickport after the ‘go’ cue led to a water reward (2–3 µl). Licking 
the incorrect lickport triggered a timeout (2–6 s). Trials in which mice 
did not lick within a 1.5-s window after the ‘go’ cue (‘ignore’) were rare 
and typically occurred at the end of a session. Reaction time was from 
the ‘go’ cue onset to the first lickport contact.

Viral injection and histology
Glass pipettes (20–30-µm-diameter tip and beveled) were back-filled 
with mineral oil and front-loaded with viral suspension immediately 
before injection.

For anatomical tracing, AAV2.CAG.GFP (Addgene, 37825) was 
injected in the left ALM (anterior 2.5 mm from lambda, lateral 1.5 mm, 
depth 0.5 and 0.8 mm, 100 nl at each depth). At 14 d post injection, 
WGA (Thermo Fisher Scientific, WGA-Alexa594, 2% in PBS, 200 nl) 
was injected in the same location and incubated for 24 h. Mice were 
perfused transcardially with PBS followed by 4% paraformaldehyde 
(PFA)/0.1 M PBS. The brains were fixed overnight in 4% PFA and trans-
ferred to 30% sucrose before sectioning on a cryostat (Thermo Sci-
entific, Cryostar NX70). Coronal 30-µm free-floating sections were 
mounted with mounting medium with DAPI (Vector Laboratories, 
H-1500-10), imaged on a fluorescence macroscope (Olympus MVX10) 
and processed in ImageJ.

To characterize long-range input connectivity in ALM, we injected 
AAV9.CamKII.HI.eGFP-Cre.WPRE.SV40 in ReaChR or Ai32 mice in the 
right ALM (anterior 2.5 mm from bregma, lateral 1.5 mm, depth 0.5 and 
0.8 mm, 100 nl at each depth), left ThalALM (posterior 1.5 mm, lateral 
0.8 mm, depth 4.1 mm, 150 nl) or left S1/S2. To target a region span-
ning vS1 and S2, the left hemisphere was tilted down by 5° from the 
horizontal plane and the injection pipettes entered the brain vertically 
at posterior 1.5 mm and lateral 4 mm from bregma. Virus was injected 
at depths 0.8, 1.2 and 2 mm (100 nl at each depth). To characterize 
long-range input connectivity in vM1 (Extended Data Fig. 6), we injected 
AAV9.CamKII.HI.eGFP-Cre.WPRE.SV40 (Penn Vector Core, University of 
Pennsylvania) in Ai32 mice in vS1 (posterior 1.0 mm from bregma, lat-
eral 3.1 mm, depth 0.5 and 0.8 mm, 100 nl at each depth) or M2 (anterior 
2.7 mm, lateral 0.9 mm, depth 0.5 and 0.8 mm, 100 nl at each depth).

To quantify the fraction of anterogradely labeled neurons in ALM 
due to potential tropism of the Cre viruses (Extended Data Fig. 6e), we 
collected 30-µm free-floating coronal sections around ALM (three mice 
each for S1/S2, cALM and ThalALM injections). Sections were stained 
with NeuN. Regions covering ALM layers 2/3 and 5 were imaged with 
an LSM710 (Zeiss) and processed with ImageJ. Cell counting was per-
formed manually (Extended Data Fig. 6e).

Photostimulation
ChR2-tagging and ChR2-assisted circuit mapping. Photostimula-
tion and electrophysiology recordings were performed in the left 
ALM to photostimulate ChR2- or ReaChR-expressing axons from left 
S1/S2, right ALM or left ThalALM. Light from a 473-nm (UltraLasers, 
MBL-FN-473-300 mW) or 593-nm laser (UltraLasers, MGL-N-593.5-
200 mW) was controlled by an acousto-optical modulator (Quanta 
Tech, MTS110-A3-VIS), and focused onto the brain surface through a 
craniotomy (beam diameter: 400 µm at 4σ). For whole-cell recordings, 
photostimulation consisted of four powers (1, 5, 10, 20 mW) and four 
pulse conditions (1, 3, 5, 10 pulses; 2-ms pulses at 5-ms interval). For 
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silicon probe recordings, photostimulation consisted of three powers 
(10, 20, 30 mW) and three light pulses (1-ms pulses at 200-ms interval). 
Photostimulation was tested outside of the behavioral task.

Photoinhibition of S1/S2, cALM and ThalALM. For photoinhibi-
tion of S1/S2 and cALM, we photostimulated GABAergic neurons in 
VGAT-ChR2-EYFP, PV-ires-cre × Ai32 or PV-ires-cre × ReaChR mice. 
These methods resulted in similar photoinhibition44. Light was deliv-
ered through an optic fiber placed on the clear skull implant (S1/S2, 
bregma posterior 1.5 mm, lateral 4 mm; cALM, anterior 2.5 mm, lateral 
1.5 mm). We used 40-Hz photostimulation with a sinusoidal temporal 
profile. The duration was 1.3 s including a linear ramp during laser 
offset (100 or 200 ms). The average power was 4 mW. In a subset of  
S1/S2 photoinhibition, 8 mW was used. At this power, the photoinhi-
bition silenced activity in a cortical area of 2-mm radius (at half-max) 
through all cortical layers44. For photoinhibition of ThalALM, we photo-
stimulated the thalamic reticular nucleus axons in VGAT-ChR2-EYFP 
mice25. Photostimulation was through an optic fiber (Thorlabs, Part no. 
CFMLC22L05) implanted above ventral-medial nucleus/VAL (bregma 
posterior 1.5 mm, lateral 0.8 mm, depth 4.1 mm). The average power 
was 3 mW measured at the tip of the optic fiber. In these experiments, 
photostimulation occurred during either the sample or delay epoch 
randomly in 25% of trials.

We also directly photoinhibited ThalALM using soma-targeted 
GtACR1 (ref. 46). AAV9.CamKII.HI.eGFP-Cre.WPRE.SV40 (University 
of Pennsylvania Vector Core) was injected in ventral-medial nucleus/
VAL (posterior 1.5 mm from bregma, lateral 0.8 mm, depth 4.1 mm, 
120 nl) of R26-LNL-GtACR1-Fred-Kv2.1 mice44. In these experiments, 
photostimulation occurred during the sample, delay or response epoch 
randomly in 25% of trials. The average power was 1–3 mW.

To prevent mice from distinguishing photostimulation trials from 
control trials using visual cues, a masking flash (1-ms pulses at 10 Hz) 
was delivered using 470-nm or 590.6-nm light-emitting diodes (Luxeon 
Star) near the eyes of the mice. The masking flash began as the pole 
started to move and continued through the end of the epoch in which 
photostimulation could occur.

Electrophysiology
Silicon probe recordings. A craniotomy (diameter < 1 mm) was made 
over the left ALM. A silicon probe was acutely inserted 0.9–1.11 mm 
below the brain surface. To minimize brain movement, a drop of silicone 
gel (3-4680, Dow Corning) was applied over the craniotomy after the 
electrode was in the tissue. The tissue was allowed to settle for 15 min 
before the recording started. Extracellular spikes were recorded using 
64-channel Cambridge NeuroTech silicon probes (H2 acute probe, 
25-µm spacing, 2 shanks). The voltage signals were amplified and 
digitized on an Intan RHD2164 64-Channel Amplifier Board (Intan 
Technology) at 16 bits, recorded on an Intan RHD2000-Series Ampli-
fier Evaluation System (sampling at 20,000 Hz) and stored for offline 
analysis. Two to eight recordings were made from each craniotomy. 
DiI was applied to the tip of the silicon probe in the last session to label 
the recording tracks.

Whole-cell recording. A craniotomy (diameter, 100–200 µm) was 
made in vM1 or ALM. Recordings were obtained using a glass pipette 
(tip resistance, 7–11 MΩ) and MultiClamp 700B amplifier (Molecular 
Devices). The signal was sampled at 20 kHz using Wavesurfer (http://
wavesurfer.janelia.org/). Membrane potential was not corrected for 
liquid junction potential. The intracellular solution contained (in mM): 
128 potassium gluconate, 4 MgCl2, 10 HEPES, 1 EGTA, 4 Na2ATP, 0.4 
Na2GTP, 10 sodium phosphocreatine (pH 7.23; 283 mOsm). Aliquoted 
ATP/GTP was added to the internal solution on the day of recording. 
Positive pressure (200 mBar) was applied before insertion to reduce 
pipette tip contamination. Then, 1.5% agar (Sigma, A1296) in artifi-
cial cerebrospinal fluid (aCSF) was applied over the craniotomy after 

the pipette tip reached pia surface. Recording depth was based on 
manipulator reading. The series resistance was monitored through a 
current pulse (100 ms, −0.2 nA) injection. Only neurons with GΩ-seal 
were included for analysis. Once a GΩ-seal was achieved, an increasing 
negative pressure was applied slowly until break-in was established. A 
family of step currents (500 ms or 750 ms, in 40-pA steps) were injected 
in current-clamp mode (Extended Data Fig. 7). Each craniotomy was 
used for 1–2 recording sessions.

In calibration recordings, 1 mM TTX (Tocris Bioscience) and 
100 µM 4-AP (Acros Organics) were applied topically over the record-
ing craniotomy to verify synaptic connection with long-range input 
axons. TTX was a sodium channel blocker that prevented local action 
potential transmission and excitation in unconnected neurons  
(Fig. 5e,f and Extended Data Fig. 6a,b). Unlike ChR2-assisted cir-
cuit mapping in vitro, we found that 4-AP was not required to elicit 
light-induced EPSPs in connected neurons during application of TTX. 
To confirm the EPSPs arose from glutamatergic transmission, 20 mM 
NBQX (Tocris Bioscience) and 30 mM AP5 (Tocris Bioscience) were 
applied topically to block glutamate receptors. This abolished the 
EPSPs (Extended Data Fig. 6b).

Behavioral data analysis
We separately computed performance for ‘lick right’ and ‘lick left’ 
trials as the fraction of correct choices, excluding lick early trials and 
ignore trials (Fig. 4b). Significance of the performance change in each 
photostimulation condition was determined using a nested bootstrap 
to account for variability across mice, sessions and trials26. We tested 
against the null hypothesis that the performance change caused by 
photostimulation was due to normal behavioral variability. In each 
round of bootstrap, we replaced the original behavioral dataset with 
a resampled dataset in which we resampled with replacement from: (1) 
mice, (2) sessions performed by each mouse, (3) the trials within each 
session. We then computed the performance change on the resampled 
dataset. Repeating this procedure 10,000 times produced a distribu-
tion of performance changes that reflected the behavioral variability. 
The P value of the observed performance change was computed as the 
fraction of times the bootstrap produced an inconsistent performance 
change (for example, if a performance decrease was observed during 
photostimulation, the P value was the fraction of times a performance 
increase was observed during bootstrap).

Electrophysiology data analysis
Silicon probe recording preprocessing. The extracellular record-
ing traces were band-pass filtered (300–6 kHz). Events that exceeded 
an amplitude threshold (4 s.d. of the background) were subjected to 
manual spike sorting to extract single units26. The primary dataset con-
sisted of 9,626 single units, 73 mice, 347 sessions. The second dataset 
consisted of 10,420 neurons, 29 mice, 110 sessions.

Spike width was the trough-to-peak interval in the mean spike 
waveform. Units with spike width < 0.35 ms were defined as fast-spiking 
neurons (1,045 of 20,046) and units with spike widths > 0.45 ms as 
putative pyramidal neurons (18,266 of 20,046). Units with intermedi-
ate values (0.35–0.45 ms, 735 of 20,046) were excluded from analyses. 
This classification was previously verified by optogenetic tagging of 
GABAergic neurons26,44. Unless stated otherwise, we concentrated our 
analyses on the putative pyramidal neurons.

t-SNE and clustering analysis of individual neuron response pro-
files. We computed each neuron’s average PSTHs for ‘lick left’ and ‘lick 
right’ trials (correct trials only) and concatenated the PSTHs. Each 
PSTH was baseline-subtracted and magnitude-normalized by dividing 
by the norm of the PSTH. We excluded neurons that did not exhibit 
consistent PSTHs. Specifically, we split each neuron’s trial data in half 
and computed PSTHs twice using the split data. We then computed 
Pearson’s correlation between the PSTHs. Neurons with correlation 

http://wavesurfer.janelia.org/
http://wavesurfer.janelia.org/


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01171-w

coefficient less than 0.5 were excluded (3,970 of 20,046). In whole-cell 
recordings, some neurons did not produce enough spikes to calculate 
PSTH. However, we found that the PSTH calculated from trial-averaged 
membrane potential (Vm) closely matched the spiking activity PSTH27. 
We therefore used PSTHs calculated from Vm for the whole-cell data. 
Vm was downsampled in time to match the PSTHs from spiking activity.

The input data for the t-SNE were an n × t matrix, where the rows 
contain the PSTHs of individual neurons. We tested a range of param-
eters for t-SNE, including perplexity (30 to 1,600), distance metrics 
(correlation, cosine or Euclidean distance) and the number of principal 
components (20–100). Only the perplexity affected the embedding 
outcome, but the results were similar for perplexity 30–100. We there-
fore used perplexity of 50, 50 principal components and cosine dis-
tance for the embedding. We computed t-SNE ten times and picked the 
outcome with the lowest Kullback–Leibler divergence. We performed 
t-SNE separately on the primary and second datasets.

ePAIRS test for clustering of response profiles. To test if ALM neu-
rons exhibited clusters of prototypical response profiles or a uniform 
continuum of response profiles, we used the projection angle index 
of response similarity (PAIRS) test first presented by ref. 9. We used a 
modified version of the PAIRS test presented by ref. 12 which accounted 
for the variance structure of the data, that is, ePAIRS test.

The input data were an n × t population response matrix, where 
the rows contain the PSTHs of individual neurons (‘lick left’ and ‘lick 
right’ trials concatenated). The PSTHs were baseline-subtracted and 
magnitude-normalized. We used PCA to reduce the dimensionality 
from n to 26, capturing 98% of the activity variance over time. We then 
examined the loadings matrix (n × 26), which represented the weights 
of individual neurons for the 26 principal components. Each neuron’s 
response profile over time was thus represented by a 26-element vector. 
For each neuron, we computed the average vector angle between the 
neuron and its k nearest neighbors. Across the population of neurons, 
we obtained a distribution of average angles. The median of this distri-
bution should be small if neurons exhibited similar response profiles.

For comparison, we generated null distributions that exhibited 
no clustering. We drew n samples from a 26-dimensional multivariate 
Gaussian distribution using the MATLAB function mvnrnd(). As in the 
ePAIRS test presented by ref. 12, we drew samples from a multivariate 
distribution with zero mean and the variance along each dimension 
was matched to the neural data. We then computed the average vector 
angles of nearest neighbors for this simulated dataset. This yielded 
null distributions for neuronal populations with a uniform continuum 
of PSTH shapes. To statistically compare the null distributions and 
the empirical distribution, we simulated the null distribution 10,000 
times and calculated the fraction of times the median of the empirical 
distribution exceeded the median of the null distribution. This cor-
responded to a P value.

The average vector angle depended on the number of dimensions 
considered. Here we used 26 principal components, but we also tried 
as few as eight principal components (the same as in ref. 9) and reached 
the same statistical outcome. The average vector angle also depended 
on the parameter k. We tested a range of k (1–10) and arrived at the 
same statistical outcome. Following ref. 12, we used simulated data to 
validate the ePAIRS test. We drew samples from either a single multi-
variate normal distribution (that is, no clustering) or from multiple 
multivariate normal distributions (that is, multiple clusters). We found 
that the ePAIRS test appropriately captured only cases where samples 
originated from multiple distributions.

Clustering of response profiles. Density peak clustering63 was per-
formed in the two-dimensional t-SNE representation. Clustering using 
the top principal components also produced similar results, but clus-
tering in the t-SNE gave slightly more consistent PSTHs within clusters. 
Density peak clustering required manual selection of clusters based on 

local density. We evaluated the robustness of cluster number across a 
range of population size. Subpopulations were created by subsampling 
neurons in the dataset and clusters were selected blind to the popula-
tion size. The number of clusters saturated at ~100 (Extended Data Fig. 
1e). To correct for over-clustering, we manually examined the PSTHs 
of each cluster and combined a small number of clusters (<10%) with 
very similar PSTHs. The primary dataset yielded 94 clusters. t-SNE 
and clustering were performed independently on the second dataset, 
resulting in 86 clusters.

To examine the consistency of response profiles between the 
primary and second datasets (Fig. 1f,g and Extended Data Fig. 1f,g), we 
matched clusters across the two datasets. Because the second dataset 
has a longer delay epoch (1.7 s), we downsampled the PSTHs in the delay 
epoch using the MATLAB function resample(). For each cluster from the 
second dataset, we computed Pearson’s correlation for its PSTHs (‘lick 
left’ and ‘lick right’ trials concatenated) with all the clusters from the 
primary dataset. The clusters were matched based on the highest cor-
relation coefficient (Extended Data Fig. 1f). In some cases, the cluster 
with the highest correlation coefficient had already been matched 
to another cluster. The matched clusters were then defined as the 
next best match based on Pearson’s correlation coefficient and visual 
inspection of the PSTHs. We did not exhaustively match all clusters of 
the two datasets. Rather, we focused on a subset of the clusters from 
the second dataset (48 of 86) that could be easily matched to a cluster 
from the primary dataset.

To visualize the response profiles of all clusters (Fig. 1f and 
Extended Data Fig. 1h), the clusters were first sorted into three groups: 
lick right preferring, lick left preferring and nonselective. Within each 
group, clusters were further sorted by activity onset time. For the non-
selective clusters, clusters were further subdivided into excitatory and 
suppressive responses before sorting by activity onset time.

Cluster reproducibility. To evaluate the robustness of clusters from 
density peak clustering, we also performed Louvain–Jaccard clustering 
on the primary dataset. We calculated the matrix for co-clustering of 
every pair of neurons in each method (Extended Data Fig. 1c). We sorted 
the neurons based on co-clustering in density peak clustering. The 
block structure along the diagonal of the cell–cell co-clustering matrix 
was preserved in Louvain–Jaccard clustering, which indicates that if 
two cells belonged to the same cluster in density peak clustering, then 
their co-clustering probability was high for Louvain–Jaccard clustering.

To define reproducible clusters, for each cluster in density peak 
clustering, we found its matching cluster in Louvain–Jaccard cluster-
ing. A matching cluster must have >50% of its units also present in the 
original cluster. By this criterion, 70 of 94 clusters from density peak 
clustering could be matched to a cluster in Louvain–Jaccard cluster-
ing. For the matched clusters, 59 of 70 clusters defined by density peak 
clustering had >50% of their units captured by their matching clusters 
defined by Louvain–Jaccard clustering. We considered these clusters 
to be reproducible. The irreproducible clusters tend to be small in size 
(Extended Data Fig. 1d), representing 25.8% of the neurons in the dataset.

Noise correlation. We calculated noise correlation between all simul-
taneously recorded neuron pairs with three constraints (Fig. 1h and 
Extended Data Fig. 1i). First, neuron pairs must be >100 µm apart. 
This avoided contamination of spikes from spike sorting. Second, 
each neuron must be recorded for >10 trials for each trial type. Third, 
each neuron was only used once in neuron pairs. This avoided using 
the same neuron in multiple neuron pairs, making neuron pairs non-
independent from each other in statistical tests. In total, we obtained 
1,060 within-cluster pairs out of 2,658 possible neuron pairs, and 1,598 
across-cluster pairs instead of 107,136 possible pairs. Noise correla-
tion was calculated separately for ‘lick right’ and ‘lick left’ trials and 
separately during baseline, sample, delay and response epochs. The 
baseline epoch was 500 ms before the sample epoch. Only correct trials 
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were used. For each trial, we calculated spike counts within 100-ms 
windows. For each time window, we subtracted the mean spike count 
calculated from all trials of the same trial type. Noise correlation was 
Pearson’s correlation of the mean-subtracted spike counts across trials 
and time windows.

Decoding. Decoding was performed independently at each time point 
(200-ms windows in 50-ms steps). Decoding was performed using a 
linear support vector machine on pseudo-populations that combined 
neurons from different recordings. We concatenated the single-trial 
spike counts of individual neurons to generate population response 
vectors. Because neurons were not recorded simultaneously, trials 
from different neurons were randomly matched. This approach ignored 
any trial-to-trial correlation between neurons. Response vectors for 
testing were built using trials that were not used for training. Decoding 
was repeated 20 times using population responses generated from 
different combinations of single neuron trial data. Standard errors of 
mean performance were calculated as the standard deviations of per-
formances across different runs. We used pseudo-populations because 
most recording sessions did not yield many neurons simultaneously 
recorded for enough error trials.

To decode trial type, we matched the number of correct and error 
‘lick left’ and ‘lick right’ trials. Trials could be classified by stimulus, 
choice or outcome while holding the other two variables constant29,31,32. 
To decode trial epochs, correct ‘lick left’ and ‘lick right’ trials were 
combined. Population response vectors were subjected to four-way 
classification (baseline, sample, delay or response epochs). To decode 
reaction time, correct ‘lick left’ and ‘lick right’ trials were combined 
and sorted by reaction time (interval between ‘go’ cue onset and the 
first lick). The top and bottom one-third of the sorted trials were used 
for binary classification. To decode ignore trials, all ‘lick left’ and ‘lick 
right’ trials were combined and classified by whether mice generated 
a licking response within a 1.5-s time window following the ‘go’ cue.

Population selectivity vectors. Across n neurons, we concatenated 
the trial-averaged responses within specific time windows into n × 1 
response vectors that described the population response for each trial 
type: correct ‘lick right’ trials, CR; correct ‘lick left’ trials, CL; error ‘lick 
right’ trials, ER; error ‘lick left’ trials, EL. The population selectivity 
vectors were calculated as:

Stimulus selectivity vector =
(CR−EL)+(ER−CL)

2

Choice selectivity vector =
(CR−ER)+(EL−CL)

2

Outcome selectivity vector =
(CR−ER)+(CL−EL)

2

Stimulus selectivity represents the response in posterior object 
location trials (CR, ER) relative to anterior trials (CL, EL). Choice selec-
tivity represents the response when mice licked right (CR, EL) relative 
to licking left (CL, ER). Outcome selectivity represents the response in 
correct trials (CR, CL) relative to error trials (ER, EL).

Selectivity vectors were calculated in analysis windows of 100 ms 
at different time points (1-ms steps). We quantified the similarity of 
selectivity vectors across time using Pearson’s correlation (Fig. 2b, 
off diagonal). Within each analysis window, we calculated Pearson’s 
correlation between the selectivity vectors calculated from split-half 
trials (Fig. 2b, diagonal).

Activity modes. Across n neurons, we defined a set of orthogonal 
directions in activity space (Mode, n × 1 vectors) that captured com-
ponents of population activity (Fig. 2). We defined the activity modes 
using a portion of the trials. Separate trials were used for activity 
projections. At each time point, we calculated the trial-averaged 

population response vectors (r, n × 1) for specific trial types. Activity 
projections were calculated as ModeTr. To obtain standard errors, 
we bootstrapped the neurons in the dataset. Standard error was the 
standard deviation of the activity projections calculated on the resa-
mpled datasets.

We calculated stimulus, choice and outcome modes from selec-
tivity vectors (see Population selectivity vectors). Stimulus selectiv-
ity vectors were similar during the sample and early delay epochs 
(Fig. 2b). We averaged the stimulus selectivity vectors in the sample 

epoch to obtain the stimulus mode, Modestimulus =
(CR−EL)+(ER−CL)

2
. Choice 

selectivity vectors developed during the late sample epoch and were 
stable during the delay epoch (Fig. 2b). We averaged the choice 
selectivity vectors in the delay epoch to obtain the choice mode, 

Modechoice =
(CR−ER)+(EL−CL)

2
. We defined the action mode based on choice 

selectivity during movement initiation (0.1 s < t < 0.3 s after the ‘go’ 
cue), Modeaction = CR − CL. We defined the outcome mode by averaging 
the outcome selectivity vectors during the response epoch (0 s < t < 1.3 s 

after the ‘go’ cue), Modeoutcome =
(CR−ER)+(CL−EL)

2
.

We additionally defined two non-trial-type-selective activity 
modes previously shown to play roles in decision-making  
and motor response30,35. We defined a ramping mode as 
Moderamping = ̄rdelay − ̄rpre sample , where ̄rpre sample represents the population 
response vector 500 ms before the sample epoch and ̄rdelay represents 
the population response vector during the last 500 ms of the delay 
epoch. We defined a go mode that captured the phasic activity after 
the ‘go’ cue35, Modego = ̄rafter go cue − ̄rbefore go cue , where ̄rbefore go cue  and 
̄rafter go cue represent the population response vectors 100 ms before and 

after the ‘go’ cue. The ramping and go modes were calculated using the 
combined responses from correct ‘lick left’ and ‘lick right’ trials.

Finally, we calculated an activity mode that captured most of 
the remaining activity variance. We calculated eigenvectors of the 
population response using singular value decomposition (SVD). The 
data for the SVD were an n × t population response matrix containing 
the baseline-subtracted PSTHs of n neurons (‘lick right’ and ‘lick left’ 
trials concatenated). Consistent with previous analyses of frontal 
cortex activity7,41, the eigenvector carrying the most variance showed 
non-trial-type-selective modulation during the response epoch, which 
we defined as the response mode (Moderesponse).

The seven activity modes were near orthogonal to each other 
(Extended Data Fig. 2a). For all analyses in the paper, we further 
rotated the activity modes using the Gram–Schmidt process to be 
fully orthogonal to each other. Together, the seven activity modes 
captured 69% of ALM activity variance, 71% of the stimulus selectiv-
ity, 92% of the choice selectivity and 93% of the outcome selectivity 
(Extended Data Fig. 2b). Activity variance was the root mean square 
(r.m.s.) of the baseline-subtracted activity over the sample, delay and 
response epochs. The population stimulus and choice selectivity were 
the r.m.s. values of the stimulus and choice selectivity over the sample 
and delay epochs. The population outcome selectivity was the r.m.s. 
of the outcome selectivity during the response epoch.

Our primary analyses were based on neurons combined from dif-
ferent recordings. We also performed the same analysis on simultane-
ously recorded populations (Extended Data Fig. 2c). We restricted the 
analysis to sessions with at least ten neurons recorded simultaneously 
for at least ten trials of each trial type (33 sessions, 10–57 neurons 
recorded simultaneously, 24 neurons on average). To average activity 
projections across multiple sessions, we offset the activity projections 
of each session by subtracting the global mean of activity projections 
across all trials and time points. This removed session-to-session fluc-
tuations in mean activity. The offsets were computed using the trials 
that were used to construct the activity modes. Independent trials were 
used for activity projections.
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Activity modes from demixed PCA. Demixed PCA was performed 
using the dPCA package, https://github.com/machenslab/dPCA 
(v.1.0.5)7 (Extended Data Fig. 2c,d). The input to the dPCA was an 
n × s × d × t × k matrix where each entry was the spike rates of indi-
vidual neurons in individual trials (calculated in 200-ms windows). 
n corresponds to neurons, s corresponds to trial types instructed by 
object location (‘stimulus’, anterior versus posterior), d corresponds to 
lick directions (‘choice’, left versus right), t corresponds to time steps 
(1 ms) and k corresponds to individual trials. Neurons were combined 
from different recordings. For conditions with fewer numbers of tri-
als, the empty entries in the response matrix were filled in with nan’s. 
dPCA was performed using the MATLAB function dpca() in the package 
with the default parameters. We found that ALM population activity 
reorganized dramatically after the ‘go’ cue (Fig. 2b). We therefore used 
the timeSplits option in the dpca() function to split the time periods at 
the ‘go’ cue for separate marginalization.

ePAIRS test for mixed selectivity. We tested for a notion of mixed 
selectivity where a shared neuronal population encoded random 
mixtures of the seven activity modes defined above (Fig. 2). Each 
activity mode corresponds to a weighted sum of individual neuron 
activities. Each neuron’s weights for the activity modes constituted a 
seven-dimensional coding vector. We calculated the angles between 
each neuron’s coding vector and its nearest neighbors. We then tested 
if the distribution of the nearest-neighbor angles differed from null 
distributions expected from random distribution of coding vectors. 
For null distribution, we drew vectors from a seven-dimensional mul-
tivariate Gaussian distribution with variance along each dimension 
matched to the neural data. The procedures for the ePAIRS test were 
the same as above (see ePAIRS test for clustering of response profiles), 
but here for the seven-dimensional vectors (Fig. 3c).

Joint coding of specific activity modes. We characterized individual 
neurons’ weights for pairs of activity modes as two-dimensional vec-
tors (Fig. 3d). If a pair of activity modes were randomly mixed across 
a shared neuronal population, the angles of the coding vectors would 
be uniformly distributed. If neurons coded individual activity modes, 
the distribution would exhibit peaks at 0° and 90°. Because weights 
can take on positive or negative values, we limited the angles to 0° 
and 90° by taking the absolute value of the weights. Finally, we lim-
ited the analysis to the top 20% of the neurons ranked by the length of 
their coding vectors. If neurons were not selective for either activity 
mode, their coding vectors would appear uniformly distributed even 
though the vector lengths were very small. Importantly, this selection 
did not affect the coding vector distribution because neurons coding 
both activity modes also exhibited large vector length. Using a more 
inclusive criterion (for example, the top 50% of the neurons) yielded 
similar results.

Synthetic neuronal population. We generated a synthetic population 
coding random mixture of activity modes (Fig. 3c,d and Extended Data 
Fig. 4e–g). We first computed the seven activity modes as described 
above (see Activity modes). We then found eigenvectors of the popula-
tion response matrix (n × t) using SVD. The population response matrix 
contained the baseline-subtracted PSTHs of n neurons (‘lick right’ and 
‘lick left’ trials concatenated). We rotated the eigenvectors using the 
Gram–Schmidt process to be orthogonal to the seven activity modes. 
Individual neuron PSTHs could be reconstructed from linear combina-
tions of the activity modes and eigenvectors. We constructed synthetic 
neuron responses using random combinations of the activity modes 
and eigenvectors (Extended Data Fig. 4e,f). The weights were drawn 
from a Gaussian distribution with zero mean. The variance of the Gauss-
ian distribution was scaled so each activity mode and eigenvector in the 
synthetic population carried the same amount of activity variance as 
in the original population. This procedure thus preserved the activity 

modes, but randomly redistributed them across the synthetic popula-
tion. We calculated t-SNE of the synthetic responses (Extended Data 
Fig. 4g). We also recalculated the activity modes using the synthetic 
responses and obtained the weights of individual neurons (Extended 
Data Fig. 4g). We carried out the ePAIRS test as described above on the 
synthetic population (Fig. 3c and Extended Data Fig. 4b).

Functional populations. We performed k-means clustering on the 
activity mode weights (n × 7 matrix for a population of n neurons) to 
divide neurons into functional populations (Fig. 3e and Extended Data 
Fig. 5a,b). Only neurons with more than five error trials of each trial 
type are included for this analysis. For the stimulus, choice and action 
modes, large positive and negative weights both indicated strong 
contributions to the activity modes, but with opposite preference for 
trial types (Fig. 3b). We therefore took the absolute value of the weights 
before clustering. We tested a range of cluster numbers, and six clusters 
produced the largest Silhouette score (Euclidean distance).

For each activity mode, we quantified the fraction of its variance 
carried by each functional population (Extended Data Fig. 5a,b). We 
calculated activity projection using only neurons from a functional 
population, that is, by setting the weights of other neurons to zero  
(Fig. 3a). The variance of the activity projection is divided by the vari-
ance of the full population activity projection to calculate the fraction 
of variance carried.

To classify functional population identify based on t-SNE location 
(Fig. 3f), we used a nearest-neighbor classifier. Each neuron is classified 
based on the identity of its ten nearest neighbors in the t-SNE.

Effects of S1/S2, cALM and ThalALM photoinhibition. To quantify 
the effect of photoinhibition on ALM neuron spike rates (Fig. 6 and 
Extended Data Fig. 10), we calculated spike counts within the photoin-
hibition window and compared them with the control trials in the same 
time window. Significant spike rate change was tested using two-tailed 
t-test (P < 0.01). ‘Lick left’ and ‘lick right’ trials were pooled. Photoinhibi-
tion during the sample and delay epochs was pooled.

To quantify the effect of photoinhibition on ALM activity modes 
(Fig. 7 and Extended Data Fig. 10), we projected activity in control and 
photostimulation trials on the activity modes. Because S1/S2, cALM 
and ThalALM photoinhibition were tested on different sessions, activity 
modes were computed separately for each condition. Activity modes 
were calculated using a subset of control trials. Separate trials were 
used for activity projections. For activity projections, both correct and 
error trials were used (Figs. 7 and 8), grouped by instructed trial type. 
We calculated the difference in activity projections between control 
and photostimulation trials in the photoinhibition window. Because 
the difference could be positive or negative, we took the absolute 
value of the difference. For each activity mode, the activity change 
was standardized by dividing by the standard deviation of the control 
trial activity projection across time. ‘Lick left’ and ‘lick right’ trials were 
pooled. Sample and delay epoch photoinhibition were pooled.

We compared the activity change of ThalALM versus S1/S2 or cALM 
photoinhibition (Fig. 7d). Significance was determined by bootstrap. 
In each round of bootstrap, we resampled neurons in the dataset with 
replacement. Activity change was calculated on the resampled dataset. 
Repeating this procedure 10,000 times produced a distribution of 
activity changes that reflected the variability from neuron sampling. A 
P value was computed as the fraction of times the bootstrap produced 
an inconsistent activity change (for example, if ThalALM photoinhibition 
produced a stronger activity change than S1/S2 in the data, the P value 
was the fraction of times S1/S2 produced a stronger activity change 
during bootstrap).

ChR2-tagging and silicon probe recording analysis. To identify 
putative postsynaptic neurons (Fig. 5b), tagged neurons were defined 
based on time-locked responses to the photostimulation (10–30 mW). 

https://github.com/machenslab/dPCA
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We compared the spike counts in 20-ms windows before and fol-
lowing each light pulse (1 ms). Significant change was tested using 
two-tailed t-test (P < 0.01). Among the significantly excited neurons, 
we quantified the average number of spikes evoked per light pulse 
relative to baseline spike rate. Latency was the first time bin in which 
the baseline-subtracted spike rate reached 50% of the peak amplitude. 
Neurons with latency less than 5 ms and >0.2 spikes evoked per light 
pulse were deemed putatively connected. The fraction of connected 
neurons in each functional population was relative to all the tested 
neurons in that population (Fig. 5g). Standard error was calculated by 
bootstrapping the entire dataset (regardless of whether neurons were 
tested for connectivity). Standard error was the standard deviation of 
the fractions calculated on the resampled dataset.

Whole-cell recording analysis. Neurons with resting membrane 
potential (Vm) below −40 mV were included for analysis. Spikes were 
clipped off by interpolating the Vm before (−1 ms) and after (4 ms) each 
spiking event. Light-evoked EPSP was the baseline-subtracted Vm. 
Baseline Vm was averaged in a 10-ms window before photostimulation. 
Mean EPSP was calculated in a 20-ms window after laser onset. Latency 
was when EPSP reached 10% of its peak. In calibration recordings, 
long-range input connections were verified with TTX pharmacology 
(Fig. 5d–f and Extended Data Fig. 6). At 20 mW, an EPSP latency thresh-
old of 5 ms could reliably distinguish ALM neurons with S1/S2, cALM 
and ThalALM input connections (Fig. 5e,f). We thus used this latency 
threshold to infer connections in recordings during behavior (Fig. 5g). 
In vM1, the EPSP latency was faster than ALM neurons (Extended Data 
Fig. 6c). Nevertheless, connected and unconnected neurons could still 
be differentiated based on latency.

Additional analyses ensured that in vivo ChR2-assisted circuit 
mapping measured long-range input connectivity. First, injection of 
AAV Cre viruses in the input brain regions might anterogradely infect 
ALM neurons to express ChR2 or ReaChR, which could contribute 
to the light-evoked EPSPs. However, post hoc histological analysis 
showed that anterogradely labeled neurons were rare in ALM (Extended 
Data Fig. 6e). One mouse was excluded from our analysis due to a 
slightly higher fraction of labeled ALM neurons. Second, our in vivo 
ChR2-assisted circuit mapping replicated input connectivity patterns 
previously measured in slice experiments. In vM1, we found that vS1 
inputs preferentially targeted the superficial layers, whereas M2 inputs 
preferentially targeted the deep layers (Extended Data Fig. 6d)20.

Neurons were characterized by firing patterns to current injections 
(Extended Data Fig. 7c). A regular spiking neuron was defined by char-
acteristic spike frequency adaptation. A bursting neuron was defined 
by short inter-spike interval and amplitude decrease in a train of spikes. 
A high-threshold neuron was defined by a lack of spiking activity upon 
high-amplitude current injection (500 or 1,000 pA). Neurons were also 
characterized by EPSP amplitude to a train of light pulses (Extended 
Data Fig. 7d). Increasing EPSP amplitude defined facilitating synapses. 
Decreasing amplitude defined depressing synapses. Unconnected 
neurons showed either inhibitory postsynaptic potentials (IPSPs), 
indicating di-synaptic inhibition, or delayed EPSPs, indicating indirect 
connection. Finally, 1-ms alternating depolarizing or hyperpolarizing 
current (500 pA) was injected to measure the membrane time constant 
(Extended Data Fig. 7e). The time constant was calculated as the slow 
component of a double-exponential fit of the average Vm decay64.

Definition of cortical layers. For analyses across cortical depth  
(Figs. 3, 5 and 6), we used layer annotations in the Allen Mouse Brain Com-
mon Coordinate Framework (CCFv3). We labeled a subset of recording 
tracks using DiI (eight penetrations, eight mice). We aligned coronal 
sections containing the labeled tracks into the CCFv3 using an affine 
transformation followed by a nonrigid transformation using b-splines49. 
The tracks were reconstructed in CCFv3, which provided the layer anno-
tations across depth (boundaries between layers 1 and 2/3, 110 ± 8.2 µm; 

layers 2/3 and 5, 378.3 ± 21.7 µm; layers 5 and 6, 771.7 ± 71.9 µm; mean ± s.d. 
across penetrations). Using these boundaries, layers were determined 
for all neurons from their recording depths, which were obtained from 
manipulator reading and electrode spacing on the probe.

Statistics
The sample sizes were similar to sample sizes used in the field: for 
behavior, three mice or more per condition. No statistical methods 
were used to determine sample size. All key results were replicated in 
multiple mice. Mice were allocated into experimental groups accord-
ing to their strain. Unless stated otherwise, the investigators were not 
blinded to allocation during experiments and outcome assessment. 
Trial types were randomly determined by a computer program. During 
spike sorting, experimenters cannot tell the trial type, so experiment-
ers were blind to conditions. Statistical comparisons using t-tests, 
bootstrap and other nonparametric tests are described in detail in 
the sections above.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Data have been deposited on Zenodo and can be accessed at https://
doi.org/10.5281/zenodo.6846161.

Code availability
Code for data analysis can be accessed at https://github.com/
NuoLiLabBCM/YangEtAl2022_code_activity_modes.

References
59.	 Hippenmeyer, S. et al. A developmental switch in the response of 

DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, 
e159 (2005).

60.	 Hooks, B. M., Lin, J. Y., Guo, C. & Svoboda, K. Dual-channel circuit 
mapping reveals sensorimotor convergence in the primary motor 
cortex. J. Neurosci. 35, 4418–4426 (2015).

61.	 Guo, Z. V. et al. Procedures for behavioral experiments in 
head-fixed mice. PLoS ONE 9, e88678 (2014).

62.	 Hao, Y., Thomas, A. M. & Li, N. Fully autonomous mouse 
behavioral and optogenetic experiments in home-cage. eLife 
https://doi.org/10.7554/eLife.66112 (2021).

63.	 Rodriguez, A. & Laio, A. Machine learning. Clustering by fast 
search and find of density peaks. Science 344, 1492–1496 (2014).

64.	 Dembrow, N. C., Chitwood, R. A. & Johnston, D. Projection-specific 
neuromodulation of medial prefrontal cortex neurons. J. Neurosci. 
30, 16922–16937 (2010).

Acknowledgements
We thank J. Yau, M. Hooks, T. Wang, H. Inagaki, M. Economo, J.-H. Kim, 
B. Kang, K. Daie, U. Pereira and E. Yttri for comments on the manuscript 
and insightful discussions. This work was funded by the Robert and 
Janice McNair Foundation; the Whitehall Foundation; the Alfred P. 
Sloan Foundation; Searle Scholars Program; Pew Scholars Program; 
NIH grants no. NS104781, no. NS112312 and no. NS113110; the McKnight 
Foundation; and the Simons Collaboration on the Global Brain.

Author contributions
W.Y. and N.L. conceived and designed the experiments. W.Y. 
performed the experiments with help from S.L.T. G.C. contributed the 
second electrophysiology dataset. W.Y. and N.L. analyzed data. W.Y. 
and N.L. wrote the paper with inputs from all authors.

Competing interests
The authors declare no competing interests.

https://doi.org/10.5281/zenodo.6846161
https://doi.org/10.5281/zenodo.6846161
https://github.com/NuoLiLabBCM/YangEtAl2022_code_activity_modes
https://github.com/NuoLiLabBCM/YangEtAl2022_code_activity_modes
https://doi.org/10.7554/eLife.66112


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01171-w

Additional information
Extended data are available for this paper at  
https://doi.org/10.1038/s41593-022-01171-w.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41593-022-01171-w.

Correspondence and requests for materials should be addressed  
to Nuo Li.

Peer review information Nature Neuroscience thanks the anonymous 
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

https://doi.org/10.1038/s41593-022-01171-w
https://doi.org/10.1038/s41593-022-01171-w
http://www.nature.com/reprints


Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01171-w

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Prototypical response profiles in ALM. a Example 
clusters from the primary dataset. Left, dots represent individual neurons in 
the t-SNE representation. Neurons are divided into 94 clusters. Colors indicate 
7 example clusters. Right, PSTHs of individual neurons in the example clusters. 
b ePAIRS test for distribution of response profiles. Each neuron’s PSTH shape 
is represented by a 26-dimensional vector that contains the loadings of the top 
26 principal components of the population activity. For continuous variation of 
response profiles (that is no clustering), the vectors are uniformly distributed 
around the origin, which can be quantified by computing the angle between 
nearest neighbors (ePAIRS test). The distribution of angles deviates significantly 
from uniform distribution (P <1 × 10−4 for k=1, P < 1 × 10−4 for k=10, one-sided test, 
Methods), indicating that ALM response profiles exhibit clusters of prototypical 
response profiles. The result is consistent across different number of nearest 
neighbors (k) used to calculate average angle. c Cell-cell co-clustering matrix for 
every pair of neurons in the primary dataset. Only neurons showing consistent 
modulation during the task are included (n = 7340 neurons, 73 mice). Neurons 
are sorted based on density peak clustering (left). Co-clustering matrix of the 
same neuron pairs is shown for Louvain-Jaccard clustering (right). The block 
structure along the matrix diagonal is preserved in Louvain-Jaccard clustering, 
indicating that if two neurons belong to the same cluster by density peak 
clustering, then their co-clustering probability is high for Louvain-Jaccard 
clustering. d Average PSTHs of the largest and smallest clusters from the primary 
dataset. Mean ± SEM across neurons. The largest clusters are reproducible in 
Louvain-Jaccard clustering. The small clusters are not reproduced. e Robustness 
of the clustering results. Left, number of clusters from density peak clustering 
as a function of population size. Neurons are subsampled. Mean ± S.D. across 

populations. Cluster number saturates rapidly after 1000 neurons. Dashed 
line, the primary dataset consists of 94 clusters after manual merging of some 
similar clusters (Methods). Right, reproducibility of clusters in Louvain-Jaccard 
clustering. For each cluster from density peak clustering, we quantified the 
fraction of its units captured by a matching cluster in Louvain-Jaccard clustering 
(Methods). Clusters with >0.5 of units captured are considered reproducible. 
f Clusters from the second dataset are matched to clusters from the primary 
dataset based on the similarity their PSTHs. The plot shows Pearson’s correlation 
between clusters from the second dataset with all the clusters from the primary 
dataset. Clusters are matched based on high correlation coefficient (Methods). 
This analysis focuses on 48 clusters from the second dataset that are most 
readily matched to a corresponding cluster in the primary dataset. Gray lines, 
individual clusters; black line, mean. g Average PSTHs of 8 example clusters. 
Mean ± SEM across neurons. Rows 1–4 show distinct mouse groups (n = 18 mice 
per group). Row 5 shows matching clusters from the second dataset. h Response 
profiles of all clusters from 4 distinct mouse groups. Each row shows average 
activity of one cluster. i Neuron pairs with similar response profiles exhibit noise 
correlation. Top, an example neuron pair from the same cluster. Spike raster 
and PSTHs show simultaneously recorded responses from the neuron pair. In 
trials where one neuron exhibits high spike rate, the other neuron also exhibits 
high spike rate. The two neurons are 200 µm apart. Bottom, noise correlation for 
all neuron pairs. Mean ± SEM across neuron pairs. Same as Fig. 1h but for noise 
correlation calculated in various epochs. Baseline, = 1.98 × 10−11; sample,  
P = 1.94 × 10−30; delay, P = 8.91 × 10−35; response, P = 9.92 × 10−15, two-sided 
Wilcoxon rank sum test (Methods).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Activity modes are highly robust across mice, 
conditions, and analysis Methods. a Angles between activity modes. The 
activity modes are near orthogonal to each other. b Activity and selectivity 
variance explained by each activity mode. Activity and selectivity variance 
are computed using trial-averaged activity during specific epochs (Methods), 
thus they reflect variance across time and neurons. Variance across trials is 
not reflected. c Activity modes are highly robust across mice, conditions, and 
decomposition methods. The plots show ALM activity projections on specific 
activity modes. Solid colors, correct trials; transparent colors, error trials. 
Blue, ‘lick right’ trials instructed by object location; red, ‘lick left’ trials. Row 
1–4, activity modes from 4 distinct mouse groups in the primary dataset. Only 
neurons with more than 5 error trials of each trial type are included (n = 988, 767, 

972, 1200 respectively). Mean ± SEM (bootstrap, Methods). Row 5, activity modes 
from simultaneously recorded populations (33 sessions, 10–57 neurons per 
session, average 24 neurons). Mean ± SEM across sessions. Row 6, activity modes 
from the second dataset (n = 4010 neurons). Mean ± SEM (bootstrap, Methods). 
Row 7, activity modes from demixed principal component analysis (demixed 
PCA) on the primary dataset. The top activity modes discovered by demixed PCA 
correspond to stimulus, choice, action, outcome, ramping, go, and response 
mode. The percentage of activity variance captured by each activity mode is 
shown on top. d Additional activity modes obtained from demixed PCA ranked by 
their activity variance. Together, the 14 activity modes from demixed PCA shown 
here captured 99.47% of activity variance.
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Extended Data Fig. 3 | Correlation of activity modes with behavior. a Activity 
projections in correct, error, and early lick trials. Activity is aligned to the go 
cue for correct and error trials. Activity is aligned to the time of the first lick for 
early lick trials. Only neurons with more than 3 early lick trials of each trial type 
are included (n = 1994). Mean ± SEM (bootstrap, Methods). b Left, reaction time 
in correct trials with the fastest (top 1/3), intermediate (middle 1/3), and slowest 
reaction time (bottom 1/3). Box-whisker plot, box edges, 75 and 25 percentiles, 

whiskers, extremities of data not considered as outliers, black bars, median. 
n = 132,907 trials/85 mice. Right, activity projections during the last 200 ms of 
the delay epoch. Only neurons with more than 5 error trials of each trial type and 
more than 2 trials of each reaction time condition are included (n = 3918). Choice 
mode, **P = 0.0014; ***P = 3.22 × 10−5, two-tailed t-test. Ramping mode, *P = 0.002; 
***P = 5.06 × 10−14, two-tailed t-test.
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Extended Data Fig. 4 | See next page for caption.



Nature Neuroscience

Article https://doi.org/10.1038/s41593-022-01171-w

Extended Data Fig. 4 | Activity modes are non-randomly mixed across ALM 
populations. a Neuron weights in the t-SNE representation. Same as Fig. 3b, but 
for the second dataset. b Distribution of coding vector angles between nearest 
neighbors. Same as Fig. 3c, but for different number of nearest neighbors (k) 
used to calculate average angles (ePAIRS test, one-sided test; P = 0.049 for k=1, 
P < 1 × 10−4 for k=10, Methods). Data from the primary dataset. Only neurons 
with more than 5 error trials of each trial type are included (n = 3966). c Effect 
of neuronal population size on analysis of mixed selectivity. 100 neurons are 
randomly selected from the full dataset to generate subpopulations. The 
histogram shows the distribution of coding vector angles between nearest 
neighbors in the subpopulation (P = 0.54, ePAIRS test, one-sided test). The 
distribution is not significantly different from random distribution. Thus a 
population of 100 neurons appears to exhibit randomly mixed selectivity.  

d Power analysis showing the P value of ePAIRS test as a function of population 
size. Subsets of neurons are randomly selected from the full dataset to 
generate subpopulations. Detecting significant deviations from randomly 
mixed selectivity using a criterion of P < 0.01 (one-sided test) requires at least 
400 neurons. e Generation of a synthetic population in which the coding of 
activity modes is randomly mixed. Each synthetic neuron’s PSTH is constructed 
from random combinations of the activity modes and eigenvectors of the 
original population response. This procedure preserved the activity modes 
but redistributed them randomly across the synthetic population. f PSTHs of 
example synthetic neurons. Blue, ‘lick right’ trials; red, ‘lick left’ trials. g Neuron 
weights in the t-SNE representation. Same as Fig. 3b, but for the synthetic 
population.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Functional populations. a Neurons in the primary 
dataset are divided into 6 functional populations using k-mean clustering on the 
weights of the 7 activity modes (Methods). Left, different functional populations 
in the t-SNE representation. Right, fraction of variance carried for each activity 
mode. For each activity mode, the fraction of variance across all 6 functional 
populations adds up to 1. Most functional populations carry the majority of 
variance for single activity modes. Functional populations that carry the most 
variance for the stimulus, choice, and action modes are termed stimulus, choice, 
and action coding. Choice coding population also carries most of the variance for 
the ramping mode. Action coding population also carries most of the variance 
for the go mode. The response mode is more evenly distributed across different 
functional populations. Only neurons with more than 5 error trials of each trial 
type are included (n = 3966). b Same as (a) but for the second dataset.  

n = 4010 neurons. c Same as (a) but for the synthetic population in which the 
coding of activity modes is randomly mixed. n = 3966 synthetic neurons.  
d Distribution of functional populations across depth. Open bars, distribution 
of specific functional populations; gray bars, distribution of all neurons in the 
dataset. Silicon probe recordings preferentially sample neurons from the deep 
layers. The distribution of each functional population does not differ from the 
distribution expected from sampling (gray). Neurons from the primary dataset. 
e Left, putative pyramidal neurons (gray dots) and fast-spiking interneurons (red 
dots) in the t-SNE representation. Interneuron responses are also diverse and 
span all prototypical response profiles observed in ALM. Right, average PSTHs 
of pyramidal neurons (top) and interneurons (bottom) in example clusters. 
Mean ± SEM across neurons. Interneurons exhibit similar PSTHs as the pyramidal 
neurons, but exhibit less trial-type selectivity.
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Extended Data Fig. 6 | ChR2-assisted circuit mapping and validation.  
a Left, calibration whole-cell recordings measuring vS1→vM1 connectivity using 
ChR2-assisted circuit mapping. Right, recordings from two example vM1 neurons 
during photostimulation of vS1 axons. The traces show 15 mins of recordings 
after TTX application. Green, membrane potential; blue, action potentials. TTX 
left EPSPs intact in the connected neuron (top, see light-induced EPSPs in the 
green trace after action potentials were eliminated). TTX abolished EPSPs in the 
unconnected neuron (bottom). b Pharmacology to verify synaptic connections. 
Left, photostimulation of vS1 axons elicits short-latency EPSPs in vM1 neurons. 
Application of TTX left EPSPs intact in a connected neuron (top). TTX abolished 
EPSPs in an unconnected neuron (bottom). Middle, data from a connected 
neuron. Application of TTX left EPSPs intact. Application of AMPAR antagonist 
NBQX and NMDAR antagonist AP5 abolished the remaining EPSPs, confirming 
that the remaining EPSPs resulted from synaptic depolarization. Thin lines, 
individual photostimulation repetitions; thick lines, mean. Right, data from all 
recordings tested with TTX, NBQX and AP5. Neurons tested with TTX, NBQX and 
AP5, n = 4; neurons tested with various TTX concentrations, n = 19. c Left, mean 
EPSP before and after TTX for all tested vM1 neurons. Right, EPSP latency of all 

vM1 neurons verified to be connected or unconnected using TTX. Mean ± SD 
across neurons (n = 28 neurons). Dots, individual neurons. Photostimulation 
power, 20 mW. Unconnected neurons with no EPSPs are shown on top. The 
EPSP latencies in vM1 neurons are overall faster than ALM neurons (Fig. 5f). 
Nevertheless, connected and unconnected neurons could be differentiated 
based on latency. d Left, connection probability of vS1 inputs in vM1 superficial 
(<570 µm) and deep layers (>570 µm). vS1 inputs preferentially excite vM1 
superficial layers, consistent with24. Right, connection probability of M2 inputs 
to vM1 inputs. M2 inputs preferentially excite vM1 deep layers, consistent with24. 
e Limited anterograde infection of ALM neurons from virus injections in S1/S2, 
cALM, and ThalALM. Left, an example confocal image showing an ALM section 2 
months after virus injection in S1/S2. Red, NeuN; green, ChR2 expression in S1/S2  
input axons. Arrows indicate rare ALM neurons with ChR2 expression. Right, 
fraction of ALM neurons showing ChR2 or ReaChR expression for virus injections 
in S1/S2, cALM, and ThalALM (n = 3 mice each, 2–3 months after virus injection). 
The lack of ChR2 or ReaChR expression indicates that the light-induced EPSPs are 
due to ChR2 or ReaChR expressing long-range input axons. Scale bar, 10 µm.
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Extended Data Fig. 7 | Connectivity and intrinsic properties of ALM neurons. 
a Connected (solid dots) and unconnected neurons (open dots) measured from 
ChR2-assist circuit mapping shown in the t-SNE representation. b Same as (a) 
but for connected neurons measured from ChR2-tagging. c Firing patterns of 
ALM neurons do not predict long-range input connectivity. Left, example firing 
patterns in response to current injections during whole-cell recording. Neurons 
are classified into regular spiking, bursting, and high threshold types (Methods). 
Middle, regular spiking (black), bursting (brown), and high threshold neurons 
(red) shown in the t-SNE representation. Right, classification flow chart of 
connected neurons to regular spiking, bursting, and high threshold types.  
d EPSP dynamics of ALM neurons do not predict long-range input connectivity. 

Left, example light-induced EPSPs. Neurons are classified into facilitating, 
depressing, and indirect/inhibitory types based on EPSP dynamics. Middle, 
neurons with facilitating (black), depressing (purple), and indirect/inhibitory 
responses (green) in the t-SNE representation. Right, classification flow chart of 
connected neurons to facilitating, depressing, and indirect/inhibitory responses. 
e Membrane time constant of ALM neurons does not predict long-range input 
connectivity. Left, example neurons with short and long time constant. Tau is 
measured as the time when EPSP decays to 67% of its peak amplitude after a 1-ms 
depolarizing or hyperpolarizing current injection. Middle, neurons with different 
time constant in the t-SNE representation. Right, classification flow chart of 
connected neurons to different time constant.
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Extended Data Fig. 8 | Connectivity patterns of S1/S2, cALM, and ThalALM 
inputs. a Connection probability across depth measured from whole-cell 
recording and ChR2-assisted circuit mapping. Left, data from untrained mice, in 
which connections are verified with TTX pharmacology. Right, data from mice 
trained in the tactile decision task, in which connections are inferred by EPSP 
latency. Only a subset of the neurons was held long enough to be tested further 
in the tactile decision task (Fig. 5g and S7). Numbers on each bar indicate the 
number of tested neurons. b Connection strength measured from whole-cell 

recordings. Mean ± SEM across neurons (each dot represents one neuron). 
Untrained mice, S1/S2, n = 16 neurons; cALM, n = 28 neurons; VM, n = 28 neurons. 
Trained mice, S1/S2, n = 27 neurons; cALM, n = 25 neurons; VM, n = 17 neurons.  
A range of photostimulation power (1, 5, 10, 20 mW) and pulse conditions (1, 3, 5, 
10 pulses; 2-ms pulses at 5-ms interval) were tested. Photostimulation of ThalALM 
axons elicits the strongest EPSP (between S1/S2 or cALM and VM, P = 1.86 × 10−8, 
untrained group; P = 8.82 × 10−14, trained group, two-way ANOVA, powers and 
inputs).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Direct ThalALM photoinhibition using GtACR1.  
a Direct photoinhibition of ThalALM using GtACR1. Top, injection of AAV Cre 
virus in ThalALM of a Cre-dependent GtACR1 reporter mouse. Green, expression 
of eGFP-Cre. Red, GtACR1 expression. Autofluorescence around optical fiber 
track is visible in green. After mice were tested in ThalALM photoinhibition, 
optical fiber implants were removed. Optrode recordings were made in ThalALM 
(left) and posterior thalamus (right) to characterize the spatial specificity of 
ThalALM photoinhibition. For posterior thalamus, recording tracks were labeled 
with DiI (arrow in the right image). Recordings were performed in awake non-
behaving mice (n = 2). Bottom, example voltage traces and average activity of 
neurons in ThalALM and posterior thalamus. Photostimulation power, 1 mW. 
b Effect of direct ThalALM photoinhibition on cortical activity. Left column, 
silicon probe recordings in ALM (coordinates from bregma: anterior 2.5 mm, 
lateral 1.5 mm; n = 113, 2 mice) and S1 (posterior 1.0 mm, lateral 3.1 mm; n = 165, 
2 mice). The image shows expression of eGFP-Cre (green) and GtACR1 (red) in 
ThalALM. Recording tracks were labeled with DiI (arrow). Middle column, ThalALM 
photoinhibition reduced the spike rate in ALM, but not in S1. Average spike rates 
aligned to photostimulation. Black, control; cyan, photostimulation. Mean ± 
SEM across neurons. Right column: neurons with significant spike rate change, 
defined as P < 0.01 using two-tailed t-test between photoinhibition and control 
trials. Layer 2/3, 110–378 µm (ALM, n = 5 neurons; S1, n = 8); layer 5, 378–772 µm 
(ALM, n = 45; S1, n = 57); layer 6, below 772 µm (ALM, n = 63; S1, n = 100; Methods). 
Recordings were performed in awake non-behaving mice. Only neurons with 

spike rate above 1 Hz are included in the analysis. Mean ± SEM (bootstrap across 
neurons). Data from 2 mice, the fractions for individual mice are shown as dots. c 
Effect of direct ThalALM photoinhibition on ALM functional populations. Excited 
(red dots) or silenced (blue dots) neurons shown in the t-SNE representation. 
Gray dots, all neurons in the dataset (Fig. 1a). Only a subset of the neurons in the 
dataset are tested for photoinhibition. Photoinhibition is during the sample, 
delay, or response epoch. Action coding neurons have low spike rates during 
the sample and delay epoch. Thus photoinhibition during the sample and delay 
epoch induced limited silencing in this population (Fig. 6b). Here, response 
epoch photoinhibition strongly silenced action coding neurons. d Distribution 
of excited and inhibited neurons across functional populations. Fraction is 
relative to the total number of tested neurons within each functional population. 
Fraction for stimulus and choice coding populations are from sample and delay 
epoch photoinhibition. Fraction for action coding population is from response 
epoch photoinhibition. Mean ± SEM (bootstrap across neurons). Data from 
2 mice, the fractions for individual mice are shown as dots. When functional 
populations are tested during the epoch in which they are active, the fraction of 
silenced neurons is similar. Stimulus vs. choice coding, P = 0.71; choice vs. action 
coding, P = 0.36; stimulus vs. action coding, P = 0.48, two-sided chi-square test. 
e Effect of direct ThalALM photoinhibition on ALM activity modes. Mean ± SEM 
(bootstrap, Methods). Dotted lines show activity projections of control trials. 
The effects are similar to Fig. 7.
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Extended Data Fig. 10 | Effects of S1/S2, cALM, and ThalALM photoinhibition 
on ALM activity. a Spike rates during photoinhibition (1.3 s) versus control 
conditions. Filled circles, ALM neurons that are significantly modulated 
by photoinhibition (defined as P < 0.01 using a two-tailed t-test between 
photoinhibition and control trials). Left column, all neurons. Right column, 
neurons that retained >50% of the control condition spike rate during 
photoinhibition. b Effects of photoinhibition on ALM stimulus mode. Activity 
modes are computed using only neurons that retained >50% of control condition 
spike rate during photoinhibition. Mean ± SEM (bootstrap, Methods). Dotted 

lines show activity projections of control trials. Dashed lines delineate behavioral 
epochs. The effects are similar to Fig. 7. c Same as (b) but for ALM choice 
mode. Mean ± SEM (bootstrap, Methods). d Same as (b) but for ALM ramping 
mode. Mean ± SEM (bootstrap, Methods). e Example ALM neurons during 
ThalALM photoinhibition. Spike raster and PSTH. Left, control trials; middle, 
sample epoch photoinhibition; right, delay epoch photoinhibition. Cyan bars, 
photostimulation period. Neurons are not silenced by ThalALM photoinhibition, 
but lost selectivity.
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with Rosa26-LSL-ReaChR-mCitrine, PV-ires-cre crossed with Ai32, GtACR1 and wildtype mice. Mice were aged 2-5 months old when 

surgery was performed. Mice were housed at a constant temperature (22±1 °C) and humidity (30-55%)under a 12:12 reverse 

light:dark cycle and tested during the dark phase. 
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Ethics oversight The animal care and surgery procedures were in accordance with the protocols approved by the Institutional Animal Care and Use 

Committees at Baylor College of Medicine.
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