
antioxidants

Review

The Impact of Medium Chain and Polyunsaturatedω-3-Fatty
Acids on Amyloid-β Deposition, Oxidative Stress and
Metabolic Dysfunction Associated with Alzheimer’s Disease

Janine Mett

����������
�������

Citation: Mett, J. The Impact of

Medium Chain and Polyunsaturated

ω-3-Fatty Acids on Amyloid-β

Deposition, Oxidative Stress and

Metabolic Dysfunction Associated

with Alzheimer’s Disease.

Antioxidants 2021, 10, 1991. https://

doi.org/10.3390/antiox10121991

Academic Editor: Domenico Nuzzo

Received: 9 November 2021

Accepted: 12 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty
NT—Natural Science and Technology, Saarland University, D-66123 Saarbrücken, Germany;
janine.mett@uni-saarland.de

Abstract: Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is
closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid
(FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β
(Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events
leading to neuronal dysfunction and death. These include the induction of neuroinflammation and
oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of
cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium
chain fatty acids (MCFAs) and polyunsaturatedω-3-fatty acids (ω-3-PUFAs) seem to be valuable for
disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing
properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and
AD. This review summarizes the current knowledge about the molecular mechanisms by which
MCFAs andω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and
lessen oxidative stress levels.

Keywords: medium chain fatty acids; polyunsaturated fatty acids; decanoic acid; eicosapentaenoic
acid; docosahexaenoic acid; antioxidants; oxidative stress; energy metabolism; amyloid-β;
Alzheimer’s disease

1. Fatty Acids

Approximately 50% of the human brain’s dry weight consists of lipids, making it
the second most lipid-rich organ in the body after adipose tissue. The diversity of lipids
is mainly based on the variation of fatty acids (FAs) which can differ in the length and
saturation degree of their hydrocarbon chain. This determines their physical properties
such as their melting point [1]. FAs from 2 to 30 carbons or more naturally occur, but the
most common ones contain between 12 and 24 carbon atoms. Depending on their acyl
chain length, FAs are divided into short chain FAs (SCFAs) (≤6 carbon atoms), medium
chain FAs (MCFAs) (8–12 carbon atoms), long chain FAs (LCFAs) (14–18 carbon atoms),
and very long chain FAs (VLCFAs) (≥20 carbon atoms). Additionally, a distinction is
made between saturated FAs (SFAs) (no double bonds), monounsaturated FAs (one double
bond), and polyunsaturated FAs (≥2 double bonds). PUFAs are referred to as ω-3- and
ω-6-PUFAs when the first double bond is localized between the 3rd/4th and the 6th/7th
carbon atom from the terminal methyl group in their structure, respectively [2,3] (Table 1,
Figure 1).
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Table 1. Overview of most typical fatty acids.

Class Common
Name C:D ω−x Chemical Formula

Saturated Fatty Acids (SFAs)

SCFAs
Butyric acid 4:0 CH3(CH2)2COOH
Caproic acid 6:0 CH3(CH2)4COOH

MCFAs
Caprylic acid 8:0 CH3(CH2)6COOH
Decanoic acid
(Capric acid) 10:0 CH3(CH2)8COOH

Lauric acid 12:0 CH3(CH2)10COOH

LCFAs
Myristic acid 14:0 CH3(CH2)12COOH
Palmitic acid 16:0 CH3(CH2)14COOH
Stearic acid 18:0 CH3(CH2)16COOH

VLCFAs
Arachidic acid 20:0 CH3(CH2)18COOH
Behenic acid 22:0 CH3(CH2)20COOH

Lignoceric acid 24:0 CH3(CH2)22COOH

Monounsaturated fatty acids (MUFAs)

MUFAs

Palmitoleic
acid 16:1 ω-7 CH3(CH2)5CH=

CH(CH2)7COOH

Oleic acid 18:1 ω-9 CH3(CH2)7CH=
CH(CH2)7COOH

Erucic acid 22:1 ω-9 CH3(CH2)7CH=
CH(CH2)11COOH

Polyunsaturated fatty acids (PUFAs)

ω3-PUFAs

α-Linolenic
acid (ALA) 18:3 ω-3 CH3CH2CH=CHCH2CH=

CHCH2CH=CH(CH2)7COOH

Eicosapentaenoic
acid (EPA) 20:5 ω-3

CH3CH2CH=CHCH2CH=
CHCH2CH=CHCH2CH=

CHCH2CH=CH(CH2)3COOH

Docosahexaenoic
acid (DHA) 22:6 ω-3

CH3CH2CH=CHCH2CH=
CHCH2CH=

CHCH2CH=CHCH2CH=
CHCH2CH=

CH(CH2)2COOH

ω6-PUFAs
Linoleic acid

(LA) 18:2 ω-6 CH3(CH2)4CH=CHCH2CH
=CH(CH2)7COOH

Arachidonic
acid (AA) 20:4 ω-6

CH3(CH2)4CH=CHCH2CH=
CHCH2CH=CHCH2CH=

CH(CH2)3COOH
C:D: total amount of carbon (C) atoms of the fatty acid, and the number of double (D) bonds in it; ω−x (also
n-x): position of the first double bond counting from the terminal methyl carbon (referred to as n orω) toward
the carbonyl carbon; SFAs: saturated fatty acids; SCFAs: short chain fatty acids; MCFAs: medium chain fatty
acids; LCFAs: long chain fatty acids; VLCFAs: very long chain fatty acids; MUFAs: monounsaturated fatty acids;
PUFAs: polyunsaturated fatty acids.

The term ‘essential’ is applied only to those FAs that are required for good health and
cannot be completely synthesized in the human body. With α-linolenic acid (ALA, 18:3ω-3)
indicating a length of 18 carbon atoms and 3 double bonds in ω-3-position) and linoleic
acid (LA, 18:2ω-6) there are only two FAs that are known to be essential for humans; they
must be supplied with diet. The oils of safflower, sunflower, and grapeseed have a high
content of LA, rich ALA is found in linseed oil. The human body exhibits a limited ability to
elongate ALA and LA to longer-chained PUFAs. Administration of LA into the body enables
the formation of longerω-6 FAs, while ALA is converted into longer-chainedω-3 FAs such
as eicosapentaenoic acid (EPA; 20:5ω-3) and docosahexaenoic acid (DHA; 22:6ω-3). EPA
(20:5ω-3) and DHA (22:6ω-3) are synthesized in large amounts by marine algae and can
be dietary supplemented in the form of fish and marine oils [2,3]. Unique among dietary
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fats also is coconut oil with 62–70% MCFAs of the SFA portion (about 92%) [4]. PUFAs and
MCFAs that are ingested with food can change the cerebral FA composition upon passing the
blood-brain barrier [5–11].

Figure 1. Chemical structures of the most important medium chain and polyunsaturatedω-3-fatty acids (MCFAs,ω-3-PUFAs).

Supplemented FAs are rapidly incorporated into the phospholipids of cellular mem-
branes affecting the membrane structure, microdomain organization, and fluidity. Satu-
rated longer-chained FAs are known to increase the gel-to-fluid phase transition temper-
ature (melting temperature, Tm) of phospholipid bilayers and hence reduce membrane
fluidity. In contrast, shorter-chained and unsaturated FAs have the opposite effect. Such
alterations in the biophysical properties of cellular membranes can affect the trafficking of
cellular constituents, membrane protein function, and signal propagation [12,13]. Besides
their role as essential components of cellular membranes, FAs have a wide range of further
functions within the central nervous system. They represent energy sources, signaling
molecules, and are known to influence gene transcription, neuronal activity, as well as
neuro-inflammatory and apoptotic processes [1,3]. There are three families of proteins sens-
ing and transducing the signals of free FAs (FFAs) in neuronal cells: 1. G-protein-coupled
free fatty acid receptors (FFARs) in the plasma membrane, 2. cytosolic fatty acid binding
proteins (FABPs) involved in FA transport, and 3. nuclear peroxisome proliferator-activated
receptors (PPARs) acting as transcription factors [12,14].

The role of FAs in human health and their potential in the prevention and/or treatment
of various diseases has become more and more apparent. In general, an excess of satu-
rated LCFAs and VLCFAs is considered as unhealthy whereasω-3-PUFAs are associated
with health benefits. A series of neurological disorders is connected to a dysregulated
cerebral lipid homeostasis and particular changes in brain FA composition. These include
depression, schizophrenia, Parkinson’s disease (PD), and Alzheimer’s disease (AD). Epi-
demiological studies and experimental research indicate that nutritional therapies that are
based on FAs can be of benefit to several neurodegenerative and neurological diseases [3].
As described below, the dietary supplementation of MCFAs andω-3-PUFAs seems to be
advantageous in mild cognitive impairment (MCI) and the early stages of AD. Moreover,
in the following chapters of this article, I will summarize the current knowledge about
the impact of these special FAs on the molecular mechanisms that are associated with AD
focusing on amyloid-β (Aβ) deposition, oxidative stress, and neuronal energy metabolism
dysfunction.

2. Alzheimer’s Disease

AD is the most common cause of dementia in the elderly population and affects tens
of millions of people worldwide. Clinically, AD is characterized by a progressive decline in
cognitive brain functions that finally result in a total loss of memory and personality [9,15].
This clinical picture is caused by an extensive loss of neurons and synapses which predom-
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inantly occurs in the hippocampal and cortical regions of the brain. Macroscopically, AD
is characterized by a symmetric pattern of cortical atrophy mainly affecting the medial
temporal lobes and relatively sparing the primary motor, sensory, and visual cortices. The
characteristic neuropathological hallmarks of the disease further include the presence of
extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs) [16]. The
latter are mainly composed of the microtubuli-associated protein tau in a misfolded and
abnormally hyperphosphorylated state [17,18]. The tau pathology follows a stereotypical
spatiotemporal progression that strongly correlates with the severity of dementia [19,20].
The formation of amyloid plaques results from the abnormal extracellular accumulation
and deposition of the peptide Aβ, which is considered as an early toxic event in AD
pathogenesis triggering the disease process [21,22]. The 38–43 amino acid (aa) long, hy-
drophobic Aβ-monomers are physiologically derived from the amyloid precursor protein
(APP) after its sequential cleavage by two proteases, β- and γ-secretase [23–26]. Due to
its higher tendency to aggregate compared to the more prevalent Aβ40 (indicating 40 aa),
Aβ42 represents the principal Aβ-species that is deposited in AD-brain tissue [27–29].
The aggregation process of Aβ-monomers involves distinct intermediates: dimers and
trimers, oligomers (fibrillar, non-fibrillar and high molecular weight oligomers), protofib-
rils, and fibrils [22]. Importantly, it is not the large amyloid plaques, but rather the small
Aβ-oligomers that elicit neuro- and synaptotoxicity. By interrupting the functional integrity
of cellular membranes, they can initiate a series of events leading to cellular dysfunction
and death [30–32]. These include the induction of tau pathology, neuroinflammation and
oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impair-
ment of cerebral energy metabolism, as well as synaptic dysfunction and mitochondrial
damage [22] (Figure 2).

Figure 2. Molecular mechanisms of amyloid-β (Aβ)-induced toxicity leading to synaptic dysfunction
and neuronal cell damage.

3. ω-3-PUFAs and MCFAs in Mild Cognitive Impairment and Alzheimer’s Disease

Besides arachidonic acid (20:4ω-6), DHA (22:6ω-3) represents the most abundant PUFA
that is incorporated in brain tissue and accounts for about 7–8% of the total cerebral FAs
weight [33–35]. Several studies reported a declined EPA (20:5ω-3)- and DHA (22:6ω-3)-
content in post-mortem AD brain tissue and in serum/plasma samples of persons that were
suffering from AD [36–39]. Owing to their double bounds, PUFAs are very susceptible to lipid-
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peroxidation. The level of PUFA oxidation products is elevated in AD brain tissue, pointing
to an enhanced oxidative damage of these FAs under the pathological conditions [40–42].
Conversely, an increased dietary uptake and higher plasma/serum levels of EPA (20:5ω-3)
and DHA (22:6ω-3) were found to be associated with a reduced risk for developing AD in
several trials [43–46]. Especially an increasedω-3/ω-6-ratio seems to negatively correlate with
cognitive decline and the incidence of AD [47]. Persons suffering from MCI or mild dementia
due to AD show improved cognitive performances after the dietary supplementation of
EPA (20:5ω-3) and DHA (22:6ω-3) [48–50]. As illustrated by using AD animal models, these
effects could be based on a negative correlation between the cerebral Aβ-content/Aβ-plaque
formation and the uptake of ω-3-PUFAs [51–55]. However, it should be noted that other
authors failed to find any association between theω-3 PUFA status and AD-risk or disease
progression [56–59].

Like PUFAs, MCFAs that are nutritionally administered as medium chain triglyc-
erides (MCTs) or coconut oil seem to ameliorate the cognitive functions of patients that
are suffering from MCI and early stages of AD [60–65]. Improved novel object recognition
memory and social recognition has been reported for aged Wistar rats after the dietary
supplementation of MCTs as well [66]. As described in detail below, MCFAs are metabo-
lized within liver mitochondria resulting in the generation of β-hydroxybutyrate (BHB),
acetoacetate, and acetone. Besides glucose, brain cells can use these hepatically derived
major ketone bodies as fuel. Thus, the beneficial effects of MCFAs are often attributed to
an improvement of cerebral energy metabolism [4,11,67]. However, some studies have
challenged the central role of ketones, since MCFAs can promote neuronal health and
improve cognition independent of ketone levels [11,66,68].

4. The Impact ofω-3-PUFAs and MCFAs on Aβ Deposition

As already mentioned, Aβ peptides are derived from the precursor protein APP
through the successive actions of β- and γ-secretase. Due to multiple-site cleavages that
are performed by γ-secretase, Aβ peptides can vary in length with Aβ38, Aβ40, and
the most neurotoxic, Aβ42, as the main products. Alternatively, APP can be processed
in the predominant α- and γ-secretase-dependent non-amyloidogenic cleavage cascade
completely precluding the formation of Aβ peptides. APP processing strongly depends
on the surrounding lipid bilayer since APP and all secretases are transmembrane proteins.
γ-secretase-dependent APP cleavage even takes place within the hydrophobic membrane
environment [69] (Figure 3).

DHA (22:6ω-3) reduces Aβ generation by shifting the proportion of amyloidogenic
and non-amyloidogenic APP processing. It inhibits the enzymatic activities of β- and
γ-secretase directly and by affecting the intracellular trafficking of the β-secretase BACE-1
(β-site APP-cleaving enzyme 1) and the association of the γ-secretase component presenilin
1 (PS1) with lipid raft membrane microdomains. Additionally, DHA (22:6ω-3) and other
FAs with four or more double bonds, such as EPA (20:5ω-3), were found to stimulate
α-secretase activity and thus non-amyloidogenic APP processing [70–72]. Total cerebral Aβ
levels and amyloid pathology are not only determined by Aβ generation, but also by Aβ
elimination involving a variety of transport processes and its enzymatic degradation [26,73].
Insulin-degrading enzyme (IDE), a zinc-requiring metalloprotease, is a key enzyme that is
involved in Aβ degradation in brain tissue. Cerebral Aβ accumulation is strongly increased
in IDE-deficient mice, while it is reduced in the brain tissue of mice overexpressing the
enzyme [74,75]. We observed a strongly enhanced IDE-dependent Aβ40 degradation in
neuroblastoma cells that were supplemented with DHA (22:6ω-3) or EPA (20:5ω-3) [76]. A
stimulating effect on the microglial Aβ42 phagocytosis and interstitial Aβ clearance has
been also reported forω-3-PUFAs [77,78]. Accordingly, the beneficial Aβ-lowering effects
ofω-3-PUFAs are not only based on a reduction of Aβ generation but also on a stimulation
of its elimination. DHA (22:6ω-3) seems to additionally inhibit the in vitro aggregation of
Aβ and to resist the Aβ-induced toxicity in neuroblastoma cells [79,80].
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Figure 3. Proteolytic processing of the amyloid precursor protein (APP). Amyloidogenic APP process-
ing pathway (left): Amyloidogenic APP processing is initiated by β-secretase (β-site APP cleaving
enzyme 1, BACE1)-dependent cleavage of APP within its extracellular domain, generating the
soluble β-secreted APP (sAPPβ) and the C-terminal membrane-bound fragment C99/β-CTF (APP–β-
carboxyl terminal fragment) as intermediate product (not shown). C99/β-CTF is further cleaved by
the γ-secretase complex resulting in the release of amyloid-β (Aβ) peptides (red) into the extracellular
space. The aggregation of Aβ involves distinct intermediates and finally leads to the generation of
larger Aβ aggregates and amyloid plaques (red). Total cerebral Aβ levels and amyloid pathology
are also determined by Aβ elimination involving transport processes and its enzymatic degradation.
Non-amyloidogenic APP processing pathway (right): In the non-amyloidogenic pathway APP is first
processed by the α-secretases (A Disintegrin and metalloproteinase domain-containing proteins 10
and 17, ADAM10 and ADAM17). α-secretase-dependent APP cleavage generates soluble α-secreted
APP (sAPPα) and the membrane spanning fragment C83/α-CTF (APP–α-carboxyl terminal frag-
ment) as intermediate (not shown). C83/α-CTF is further cleaved by the γ-secretase complex to
generate the non-toxic peptide p3 (green). Since the α-secretase cleavage site in APP is located within
the Aβ domain (dark blue), the formation of Aβ peptides is precluded in the non-amyloidogenic APP
processing pathway. In both APP processing pathways, the transcriptionally active APP intracellular
domain (AICD) is released into the cytosol.

Compared to ω-3-PUFAs, less is known about the relevance of MCFAs on the an-
abolism and catabolism of Aβ peptides. FA acyl chain length has been shown to influence
γ-secretase activity in a cell-free system indicating direct effects on the enzyme’s catalytic
activity. In this study FA acyl chain length in the range of 14 to 20 carbon atoms positively
correlated with γ-secretase activity. Interestingly, the ratio of produced Aβ42/Aβ40 was
reduced in the presence of longer FAs [81]. Further, α-secretase activity as well as IDE-
dependent Aβ-degradation are stimulated by FAs consisting of 10 to 14 carbon atoms. Both
these effects would likely lead to reduced Aβ levels [71,82]. In line with this assumption,
a trend towards decreased total Aβ levels in the brain tissue of dogs receiving MCTs for
two months has been reported. However, this tendency was traced to reduced steady-state
levels of the precursor APP [83]. In this context, a recent publication by Shippy et al.
should be mentioned that reported the MCFA metabolite and ketone body BHB to reduce
overall AD pathology in an AD mouse model. In this study, exogenous BHB administration
reduced amyloid plaque formation, microgliosis, and caspase-1 activation by inhibiting
the NLRP3 inflammasome activation. The NLRP3 inflammasome is known to control
caspase-1 activation and the release of interleukins (IL-1β and IL-18) in macrophages [84].
In strong analogy toω-3-PUFAs, pure MCFAs, coconut oil, and ketones have been addition-
ally demonstrated to reduce the susceptibility of primary neurons to Aβ-induced toxicity,
further emphasizing the neuroprotective potential of these natural compounds [85–87].

5. The Impact ofω-3-PUFAs and MCFAs on Oxidative Stress

One of the molecular mechanisms underlying Aβ-induced toxicity is the induction
of oxidative stress, which is defined as ‘an imbalance in pro-oxidants and antioxidants
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with associated disruption of redox circuitry and macromolecular damage‘ [88]. It is
characterized by increased levels of reactive oxygen and nitrogen species (ROS, RNS) such
as O2

•− (superoxide radical anion), OH• (hydroxyl radical), H2O2 (hydrogen peroxide),
•NO (nitric oxide), and ONOO− (peroxynitrite). The major cellular sources of these
highly reactive molecules are the mitochondrial electron transport chain and the family
of NADPH oxidases (NOXs) mainly producing O2

•− and H2O2. There are two different
kinds of ROS-detoxifying defense mechanisms within brain tissue: 1. The antioxidant
enzyme system and 2. low-molecular weight antioxidants. The antioxidant enzyme
system includes superoxide dismutase (SOD), glutathione reductase (GR), glutathione
peroxidase (GPx), and catalase (CAT). O2

•− is rapidly dismutated by SODs to H2O2, which
produces the highly reactive OH• if it is not detoxified by CAT and GPx. Low molecular
weight antioxidants such as glutathione, uric acid, and ascorbic acid neutralize ROS by
causing the chelation of transition metals [89–91]. In moderate or low amounts, ROS play
a key role as messengers in normal cell signal transduction, whereas in excess they are
hazardous. They can oxidize all major biomolecules (nucleic acids, proteins, and lipids)
preventing them from performing their original functions. By affecting phospholipid
asymmetry in cellular membranes, lipid peroxidation could be responsible for a disruption
of membrane integrity, for example [92]. Accordingly, such oxidative modifications can
finally lead to cellular degeneration, functional decline, and cell death [89,93,94]. Because
of its high oxygen consumption rate, its high content of PUFAs, and its relatively poor
antioxidative mechanisms, the human brain is extremely susceptible to ROS insults [95].
Several markers of oxidative stress such as lipid peroxidation products (4-hydroxy-2-
nonenal (HNE), F2-isoprostanes, F4-isoprostanes), and oxidatively-modified proteins are
significantly enhanced in the brain tissue and cerebrospinal fluid (CSF) of MCI- and
AD-patients [92,96–102]. This clearly points to increased oxidative injuries under the
pathological conditions of AD.

Despite the high oxidizability of ω-3-PUFAs, their mere presence in tissues does
not predispose the membranes to oxidative stress. As shown in animal models, dietary
supplementation of ω-3-PUFAs rather ameliorates oxidative insults within brain tissue.
Chronic administration of DHA (22:6ω-3) to Aβ40-infused rats suppressed the cortical
and hippocampal increase in lipid peroxide and ROS levels. Further, the incorporation of
DHA (22:6ω-3) and EPA (20:5ω-3) into the brain tissue of aged Wistar rats reduced lipid
peroxidation and increased SOD activity [103,104]. In another study, the oral administration
of DHA (22:6ω-3) stimulated the antioxidant defenses by enhancing CAT- and GPx-activity
as well as the level of glutathione in rat cerebrum. This might be based on alterations in the
enzymes’ gene expression as demonstrated for phospholipid-hydroperoxide glutathione
peroxidase (Gpx4) in the murine hippocampus and for CAT and GPx in hepatic tissues and
rat skeletal muscle [33,105–107]. ω-3-PUFAs and their oxidation products can facilitate
the antioxidative defense by raising the activity of the nuclear erythroid factor-2 (Nrf2).
This stress-responsive transcription factor mediates the coordinated regulation of multiple
antioxidant genes including those encoding for SOD1 and SOD2, CAT, and GPx by binding
to antioxidant response elements (AREs) in their promoter regions [108]. As demonstrated
in AD model mice, the induction of Nrf2 prevents cognitive impairment by suppressing
oxidative stress and neuroinflammation, suggesting that Nrf2 might be an important
therapeutic target regarding AD [109]. In a recent study, a direct link between the DHA
(22:6ω-3)-dependent activation of Nrf2 signaling pathways and the reduction of oxidative
damage that was caused by Aβ25–35 was shown in PC12 cells [110]. In this context it
should be mentioned that there are many bioactive metabolites of ω-3-PUFAs such as
protectins, resolvins, and maresins, which might mediate some of their antioxidative and
anti-inflammatory effects [2,33].

Less is known about the impact of dietary MCFAs on oxidative stress parameters. The
MCFA lauric acid (12:0) has been recently reported to induce myocardial oxidative stress
and atrophy in mice [111]. In contrast, in human liver cells MCFAs evoked lower levels
of the oxidative stress marker malondialdehyde (MDA) and lessened inflammation and
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apoptosis compared to LCFAs [112,113]. As already mentioned above, beneficial effects
of MCFA have been also described in neuronal cells. MCFAs protected cortical neurons
from Aβ-induced toxicity and coconut oil diminished oxidative stress markers in these
cells [86,87]. In SH-SY5Y cells that were exposed to decanoic acid (10:0) a marked increase
in mitochondrial citrate synthase and complex I activity has been shown by Hughes et al.,
indicating an elevated mitochondrial number which might affect O2

•− production. The
authors propose that this effect might be the consequence of the activation of PPARγ
and hence the altered expression of target genes that are involved in mitochondrial bio-
genesis [114]. PPARγ belongs to the PPAR family of ligand-activated nuclear receptors
acting as transcription factors. They are known to be activated by different FAs including
ω-3-PUFAs and MCFAs, and other endogenous lipidic compounds. After ligand binding,
PPARs form a heterodimer with the retinoid X receptor (RXR) and recruit co-activators.
The complex then binds to specific regions on the deoxyribonucleic acid (DNA) of target
genes called peroxisome proliferator response elements (PPREs) and regulate gene tran-
scription [14,115–117]. In addition, the authors found a stimulated CAT activity in these
cells, while the cellular content of reduced glutathione (GSH) was unaffected [114]. We
recently also observed an improved antioxidative status along with reduced ROS levels in
neuroblastoma cells that were supplemented with phosphatidylcholine (PC) containing
decanoic acid (PC10:0/10:0) [68]. The deepened examination revealed PC10:0/10:0 to
reduce the cellular H2O2 release by elevating CAT activity and hence H2O2 detoxification.
However, in contrast to the study by Hughes et al., this effect was independent of the
transcription factor PPARγ and of alterations in CAT gene expression in our study. Accord-
ingly, the CAT-stimulating effect of PC10:0/10:0 might be based on the direct effects on the
enzyme’s catalytic activity protecting the cells from H2O2 [68], a key player in Aβ-induced
toxicity [118]. It should be noted that in both studies the observed effects of decanoic acid
(10:0) seemed not to be mediated by ketone bodies, but rather directly by the FA [68,114].
As reported by others, MCFAs also reduced the H2O2 production in mouse skeletal muscle
and lessened ROS levels in C2C12 myotubes compared to LCFAs [119].

6. The Impact ofω-3-PUFAs and MCFAs on Neuronal Energy Metabolism

Neurons are high energy-demanding cells which need to be constantly supplied
with oxygen and energy for maintaining ionic gradients and sustaining their functions.
The major energy source of these cells is glucose which is metabolized to adenosine
triphosphate (ATP) via glycolysis, the tricarboxylic acid (TCA) cycle, and the electron
transport chain. Glucose enters the brain from the vasculature and is taken up by neurons
predominantly through the highly efficient glucose transporters 1 and 3 (GLUT1, GLUT3),
respectively [120,121]. A dysfunctional cerebral glucose utilization, secondary to oxidative
stress, is considered as a key event in AD pathogenesis. A reduced neuronal uptake
and metabolism of glucose leads to inefficient glycolysis and is finally closely linked to
progressive cognitive decline. Already decades prior to the clinical manifestation of AD, a
deterioration in brain energy metabolism specific to glucose can be measured by Positron
emission tomography (PET) imaging [11,122–126]. This could be due to the conjugation
of lipid peroxidation products with proteins that are involved in energy metabolism.
Oxidation-induced alterations in the structure and function of transporters and enzymes
that are involved in ATP production and glucose metabolism (e.g., ATP synthase, aldolase,
triose phosphate isomerase, aconitase, and pyruvate kinase) seem to be associated with
AD pathology. Additionally, a reduced neuronal expression of genes encoding for subunits
of the mitochondrial electron transport chain has been reported. The resulting decreased
cellular ATP levels can cause electron leakage and mitochondrial ROS overproduction.
Thus, mitochondria are considered both as major target of oxidative damage and as one of
the most important sources of ROS generation [32,126–131]

ω-3-PUFAs have been demonstrated to propagate their neuroprotective effects by
improving mitochondrial function and cerebral glucose metabolism. Fish oil restored the
age-related decrease in respiration and improved ATP production in the brain of aged
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mice [132]. DHA (22:6ω-3) has been shown to diminish a hyperoxia-induced surge in
mitochondrial ROS production, to preserve mitochondrial Ca2+ buffering capacity, and
to improve mitochondrial dynamics in vitro and in vivo [133–135]. A body of evidence
suggests that dietary ω-3-PUFAs might also have important functions in the regulation
of brain glucose utilization. ω-3-PUFA-deficient animals show an impaired neurotrans-
mission, which is probably closely linked to a disturbed brain glucose utilization. In
contrast,ω-3-PUFA-supplementation results in a higher brain glucose uptake along with
an increased cerebral metabolic rate of glucose [136–139]. These effects seem to be based
on aω-3-PUFA-dependent modulation of the glucose transport in endothelial cells of the
blood-brain barrier. The FAs probably affect the protein amount and activity of GLUT1
at the post-transcriptional and/or post-translational level [138,140,141]. In addition, in
ω-3-PUFA-deprived rats, a decreased respiratory chain activity was found as indicated by
a reduced cytochrome oxidase (CO) activity. In line with this, a stimulating effect of dietary
ω-3-PUFAs on the expression of genes encoding for enzymes that are involved in energy
metabolism such as CO, NADH dehydrogenase, and ATP synthase in rat brains has been
reported [142,143].

In contrast to LCFAs, MCFAs are directly absorbed from the gut into the portal vein
and do not require a carnitine-dependent activation before accessing the mitochondria
where they are used as substrates in mitochondrial β-oxidation and the TCA cycle. More-
over, the cellular uptake and transport of MCFAs is independent of FA transport proteins
such as plasma membrane-embedded FA translocase and cytosolic FABPs [10,144]. The
consequence is an increased hepatic metabolization of MCFAs into ketone bodies. After
their monocarboxylic acid transporter 1 (MCT1)-dependent transport across the blood
brain-barrier, these hepatically derived ketone bodies can be used as additional fuel by
the neuronal cells [4,11,67,145]. In strong contrast to glucose utilization, the metabolism
of ketone bodies is unaltered in AD, at least in the early stages of the disease. Thus,
MCFA-derived ketone bodies might serve as an alternative fuel in the brain of AD patients
compensating for the lack of cerebral glucose utilization [1]. For this reason, the benefi-
cial effects of MCFAs in helping ameliorate the cognitive decline that is caused by AD
are generally attributed to the resulting ketones boosting brain energy supply [4,11,67].
However, MCFAs also have cognition- and synaptic plasticity-enhancing properties in rats
which are not related to ketone production [66]. As already mentioned above, MCFAs
and, in particular, decanoic acid (10:0), seem to alter cell energetics by enhancing mito-
chondrial function. PPARγ activation by decanoic acid (10:0) has been shown to trigger
mitochondrial biogenesis and to prevent glucose deprivation-induced neuronal death. The
resulting higher number of mitochondria in neuroblastoma cells that are supplemented
with decanoic acid (10:0) results in an elevated TCA cycle and mitochondrial complex I
activity and finally in an increased ATP availability [11,114,117,146]. The FA has been also
reported to increase mitochondrial function and ATP synthesis capacity in vivo in a mouse
model [147].

7. Conclusions

AD, the most common cause of dementia in the elderly population, is associated with
an altered cerebral lipid homeostasis and changes in brain FA composition. A body of
evidence supports the fact that the dietary supplementation of ω-3-PUFAs and MCFAs
could be valuable for disease modification. They have neuronal health promoting and
cognition-enhancing properties and might be of benefit for humans that are affected by
MCI and early stages of AD. On the cellular level there are indications that these FAs
promote their neuroprotective actions via additive pleiotropic mechanisms. These include
effects on Aβ accumulation as well as on mechanisms that are involved in Aβ-induced
neuro- and synaptotoxicity. Bothω-3-PUFAs and MCFAs seem to reduce cerebral Aβ de-
position, to lower oxidative stress levels, and to positively affect brain energy metabolism
(Figure 4). A deeper understanding of the molecular mechanisms by which these bioactive
compounds exert their beneficial effects could lead to further progression in the devel-
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opment of nutritional therapies for AD and maybe other currently incurable nervous
system disorders.

Figure 4. Summary of the mechanisms by which ω-3-polyunsaturated fatty acids (ω-3-PUFAs) and
medium chain fatty acids (MCFAs) reduce cerebral amyloid-β (Aβ) levels, improve brain energy
metabolism, and lessen oxidative stress. Bothω-3-PUFAs and MCFAs reduce Aβ deposition by stim-
ulating non-amyloidogenic amyloid precursor protein (APP)-processing and insulin-degrading en-
zyme (IDE)-dependent Aβ degradation. ω-3-PUFAs additionally suppress Aβ production. Metabolic
dysfunction and oxidative stress are also lessened by both fatty acid (FA) classes. Glucose uptake
and energy metabolism are increased by ω-3-PUFAs, while oxidative stress levels are reduced in
the presence of these FAs due to an increased ROS detoxification. MCFAs improve the cellular
metabolic function as well and lower oxidative stress by stimulating reactive oxygen species (ROS)
detoxification and reducing ROS generation.
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