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Abstract: Since 2020, the world is still facing a global economic and health crisis due to the COVID-
19 pandemic. One approach to fighting this global crisis is to track COVID-19 cases by wireless
technologies, which requires receiving reliable, efficient, and accurate data. Consequently, this article
proposes a model based on Lagrange optimization and a distributed deep learning model to assure
that all required data for tracking any suspected COVID-19 patient is received efficiently and reliably.
Finding the optimum location of the Radio Frequency Identifier (RFID) reader relevant to the base
station results in the reliable transmission of data. The proposed deep learning model, developed
using the one-dimensional convolutional neural network and a fully connected network, resulted in
lower mean absolute squared errors when compared to state-of-the-art regression benchmarks. The
proposed model based on Lagrange optimization and deep learning algorithms is evaluated when
changing different network parameters, such as requiring signal-to-interference-plus-noise-ratio,
reader transmission power, and the required system quality-of-service. The analysis of the obtained
results, which indicates the appropriate transmission distance between an RFID reader and a base
station, shows the effectiveness and the accuracy of the proposed approach, which leads to an easy
and efficient tracking system.

Keywords: Internet of Things; Radio Frequency Identifier; deep learning; pandemic; COVID-19;
Lagrange optimization; reliability; efficiency

1. Introduction

There is no doubt that the world has been facing one of its biggest challenges since
the World Health Organization (WHO) declared coronavirus disease (COVID-19) as an
epidemic in December 2019 [1]. The consequences of this epidemic did not affect only the
health domain, but also many areas such as the economy, education, and technology [2].
COVID-19 is caused by a coronavirus known as severe acute respiratory syndrome two
(SARS-CoV-2), which was first identified in Wuhan, China [1,3,4]. It is not a new disease,
but it is the evolution of an older virus known as SARS-CoV that was also discovered in
China in 2003 [1,5].

Commonly, COVID-19 begins with mild symptoms that match those of influenza/
bacterial pneumonia, such as cough and fever, then progressively can lead to death in
severe cases [1,6,7]. Even though the vaccine for COVID-19 is now available, vaccinated
people can still get infected. People in crowded areas, such as shopping malls, can easily
spread this virus. The WHO declared that the best ways to prevent infection during
the COVID-19 outbreak are still non-pharmaceutical measures such as social distancing,
personal hygiene, disinfection of surfaces, and wearing masks and gloves [1,7–9]. This

Int. J. Environ. Res. Public Health 2021, 18, 12941. https://doi.org/10.3390/ijerph182412941 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-3663-0103
https://orcid.org/0000-0002-1289-0501
https://doi.org/10.3390/ijerph182412941
https://doi.org/10.3390/ijerph182412941
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182412941
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182412941?type=check_update&version=3


Int. J. Environ. Res. Public Health 2021, 18, 12941 2 of 20

created a need to find efficient ways to identify suspected cases in crowded areas, which
motivated many researchers to deploy the application of the Internet of Things (IoT) in
physical distance monitoring and physical conditions tracking.

Consequently, [10] developed an IoT investigation system, which supported identify-
ing undocumented patients who showed no apparent symptoms and infectious places as
well. In addition, their system allowed the identification of people who has close contact
with an infected or suspected patient [10]. In September 2020, [11] proposed a privacy
anonymous IoT model using RFID proof-of-concept, which granted mobile objects the abil-
ity to send/receive alerts when getting near a flagged, confirmed/expected infected case
or flagged object/place. In addition, their model supported the identification of infection
clusters’ contacts and distributed an alert for isolation purposes while conserving patients’
privacy [11]. The challenges and technical needs to deploy IoT and 5G-related technologies
to support the prevention of COVID-19 spreading through offering novel solutions for
contact tracing and telehealth were discussed in [12].

In October 2020, [13] developed a COVID-SAFE IoT framework, which aided in
avoiding the spread of coronavirus. The COVID-SAFE framework was based on three
main units: mobile application, IoT node, and fog-based Machine Learning (ML) tools. The
IoT node was responsible for health conditions’ tracking, such as cough and respiratory
rates, body temperature, and blood oxygen saturation, which was displayed using a mobile
application and alerted the user to keep a safe physical distance of 2 m to control the spread
of the virus. To predict virus spreading risk, the authors used a Fuzzy Mamdani real-time
predictive system at the fog server and deployed two alternatives for the IoT node and fog
server communication: LoRa or 4G/5G/WiFi [13].

Lately, in March 2021, [14] presented an IoT-based paradigm entitled IoT Based
Paradigm for Medical Equipment Management Systems (IoT MEMS) to efficiently operate
medical equipment in Intensive Care Units (ICUs). To provide fairness and transparency
in allocating medical equipment they applied IoT technology to enhance the information
flow between medical equipment management systems and ICUs during the COVID-19
pandemic [14].

To detect exposed places and prevent the spread of COVID-19, ref. [7] presented
an ML approach for auditing COVID-19 infection risk measurements in public places
using features that were extracted from IoT sensors then feed as the input for several
ML algorithms, such as decision tree, random forest, support vector machine, neural
network and naïve Bayes classifier, to calculate the risk probability and predict the risks
of the COVID-19 infection. In August 2021, ref. [15] explained the benefits of using IoT,
Artificial Intelligence (AI), Robotics, and Blockchain technologies in controlling the spread
of COVID-19 and presented multidisciplinary techniques and applications such as Remote
Patient Monitoring (RPM) by Wearable IoT (WIoT), tracing and tracking, Personal Digital
Twins (PDTs), and risk prediction to encounter COVID-19 [15].

When collecting information from visitors in any closed area, there is an emergent need
to transmit such data in a reliable and secure system to avoid loss or damage. Although
various research has been proposed for tracking COVID-19 cases, the topic is still in need
of further investigations in terms of gathering information to track possibly infected people
and whether the collected data is reliable and accurate or not. Consequently, an efficient
tracking system based on deep learning is proposed. The main goal of the proposed
model is to assure that the received signal is accurate and efficient to facilitate tracking and
increase the contagion control. The contributions of this article are summarized as follows:

• An efficient, reliable, and secure method is developed for transmitting suspected
COVID-19 infected identification information through the proposed approach.

• An analytical model was formulated using an optimization problem to ascertain the
reliability, efficiency, and security of a suspected COVID-19 infected identification
information transmission.

• Based on the proposed approach, an efficient and reliable transmission system is
designed using a one-dimensional convolutional neural network (1D-CNN) deep
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learning model, to predict the suitable transmission distance between an RFID reader
and base station (BS) accurately.

• The proposed approach aims to enhance the transmission performance of the RFID
sensor, which carries COVID-19 information. This is achieved through determining
the optimum required transmission distance RFID reader and BS where the data will
be stored.

• The proposed deep learning model is compared to state-of-the-art benchmark methods
and provides a marked improvement in results.

• The proposed approach is investigated in terms of overall achievable data rate under
different conditions, such as path loss exponent, RFID transmission power, interference
transmission power, and different signal-to-interference-plus-noise ratio (SINRth)
values. Based on these parameters, the whole network can be optimized in different
environmental conditions.

The remainder of the article is organized as follows: In Section 2, the materials and
methods will be presented. In Section 3, the experimental results will be reported. The
discussion of all the results and limitations will be presented in Section 4. Finally, the paper
will be concluded in Section 5.

2. Materials and Methods

Using wireless technologies, such as IoT and fifth-generation (5G), the number of
infected and uninfected people can be easily estimated and besieged [12]. Such technologies
can be used to predict suspected COVID-19 cases, infected areas, and the percentage of
virus spread [15,16]. Different types of wearable sensors [17] are commonly used to detect
whether or not people are suspected of being infected with the virus based on signs such
as temperature, blood oxygen, and coughing patterns [11,15]. Cameras, IoT sensors, and
RFID sensors can track whether or not people are wearing masks and bound to a safe
distance to avoid the infection, especially in closed areas such as malls, schools, universities,
companies, and hotels [7,11].

In this section, the proposed idea is first presented, followed by a discussion of the
security and privacy measures taken to ensure the reduction of possible vulnerabilities in
the proposed system. The mathematical derivation representing the system model and
problem formulation is then explained. Following this, a proposed deep learning model is
presented, which learns from the simulation data and outputs an optimal distance to send
data between an RFID reader and a base station. The data generation simulation will then
be presented, followed by an analysis of the presented deep learning model.

2.1. Proposed Tracking System

The proposed model aims to predict and track any COVID-19 patient to avoid or
control infection spread. For safety considerations, people should avoid the intersection
between crowded areas, confined spaces, and close contact with other people as shown
in Figure 1. Inevitably, many people may not be able to avoid all these conditions at the
same time and possibly get infected if they are not following the required precautions. The
proposed model is designed to be deployed in any closed area such as malls, hotels, schools,
hospitals and companies, where RFID is used to detect and track any COVID cases.

For efficient and accurate tracking, it is assumed that people are wearing an RFID tag
when entering any closed area, which will be connected to an RFID reader. The role of
an RFID reader is to collect data required for COVID-19 detection continuously such as
temperature, blood oxygen, and sensing the distance between any two people as shown in
Figure 2.

Two different scenarios are considered:

• If the data show a suspected infected person, the action will be taken immediately
through the base station to request isolation of the target person and start tracking
people who were in contact with him, if any;
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• If the data show a situation that might indicate a possible virus spread, for example, a
person who is not wearing a mask and the safety distance between him and any other
person is less than the required COVID-19 safety distance, the data of this person
should be stored in the database for at least one week more than the incubation period
declared by the WHO until it is confirmed that there are no COVID-19 cases reported.
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If any COVID-19 cases are reported, all the people who were in contact should be
tracked and isolated until it is confirmed that they are safe. The following probabilities are
considered to help detect those to be tracked:

• P(A) is the probability that the person is not wearing a mask.
• P(B) is the probability that the distance is less than the defined safety distance.
• P(C) is the probability that at least one of the two persons has a fever.
• P(D) is the probability that at least one of the two persons has low blood oxygen.
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• P(E) is the probability that two close persons are wearing masks.
• P(F) is the probability that the contact distance is more than the safety distance.

The model presented in the following subsections assures that the above probabili-
ties are calculated based on reliable, efficient, and accurate data received from the RFID
reader. Table 1 shows an example of the action to be recommended based on the different
combinations of probabilities.

Table 1. Example of COVID-tracking actions based on the received data.

Conditions Action

P(A) & P(B) Received data should be stored in the database until it is confirmed that the target people are safe

P(A) & P(C) Immediate Isolation and tracking of all people who were in close contact

P(A) & P(D) Immediate Isolation and tracking of all people who were in close contact

P(A) & P(B) & P(C) Immediate Isolation and tracking of all people who were in close contact

P(A) & P(B) & P(D) Immediate Isolation and tracking of all people who were in close contact

P(A) & P(B) & P(C) & P(D) Immediate Isolation and tracking of all people who were in close contact

P(E) & P(B) There is no need to save the data

P(E) & P(C) For safety, save the data until it is confirmed that the target people are safe

P(E) & P(D) For safety, save the data until it is confirmed that the target people are safe

P(E) & P(B) & P(C) For safety, save the data until it is confirmed that the target people are safe

P(E) & P(B) & P(D) For safety, save the data until it is confirmed that the target people are safe

P(E) & P(B) & P(C) & P(D) For safety, save the data until it is confirmed that the target people are safe

P(E) & P(F) There is no need to save the data

P(E) & P(D) There is no need to save the data

P(E) & P(D) There is no need to save the data

P(E) & P(F) & P(C) There is no need to save the data

P(E) & P(F) & P(D) There is no need to save the data

P(E) & P(F) & P(C) & P(D) There is no need to save the data

Table 1 is considered as a guide for the proposed model to decide which data should
be sent and stored in the base station. At any closed area, a thousand people can be found;
then, if all the information is sent to any base station it may cause network overhead or
system failure. Therefore, the information that should be sent is only the information of the
people who did not satisfy the safety conditions as explained in Table 1. Based on deciding
which data should be sent, the proposed approach will be responsible for sending these
data in an efficient, reliable, and secure way to easily track any reported infected person
in time.

2.2. Security and Privacy Measures

Multiple studies have been conducted to investigate the security and privacy vul-
nerabilities occurring due to the deployment of RFIDs in diverse applications, especially
those involving the processing of personal information as in [18–21]. According to [20], the
use of RFID tags for tracking can suffer from diverse security and privacy attacks such as
fabrication, interception, modification, domination and interruption.

Fabrication attacks on RFIDs include attacks on entities (such as RFID tag switching,
RFID cloning, location attacks, and social engineering attacks) and attacks on packets
(replay attacks) [20]. In the proposed Covid-19 tracking system, fabrication attacks could
be conducted as follows: Since the information stored on RFID tags could be read from an
existing tag and cloned to a blank tag, RFIDs could suffer from tag cloning. A malicious
person could clone an RFID tag or even switch it with an old one, which could result
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in the wrong identification and tracking of potential virus carriers inside closed areas.
RFID cloning could be suppressed by the deployment of security chips and cryptographic
functions or physical unclonable functions [21]. Attacks on packets such as replay attacks
are a result of replaying old messages. Attackers could replay old messages to gain access
to previously visited places that might have access restrictions due to a limitation on
the number of admitted people for social distancing purposes. Replay attacks could be
thwarted by using authentication protocols to ensure data freshness [20].

Interception attacks on RFIDs include eavesdropping and object tracking [20]. Eaves-
dropping could allow attackers to learn sensitive information about people being tracked
in closed areas. Consequently, personal information revealing the identity and contact
information of the people wearing the RFID tags are not stored on the tags. Sensitive
information, such as personal identification details related to every RFID tag, is encrypted
and stored in data centers or BS and is only accessed by authorized trusted personnel when
needed. This personal information will only be stored for at least one week more than the
incubation period announced by the WHO.

Modification attacks might be conducted when an adversary modifies the function or
protocol of RFID readers [20]. This could prohibit readers from efficiently identifying tags
in their vicinity thus leading to unreliable tracking. One way to address this attack is to
use image processing algorithms to study camera feeds from video cameras covering the
same areas of the readers and compare the number of reported people with that identified
by the readers. In addition, since standard communication protocols are deployed for the
RFID tag readers, an RFID tag tracking security threat could result when an adversary
uses his/her reader to collect information from the nearby tags without the consent of
the tag holders [20,21]. Consequently, the security and privacy of the tag holder could
be compromised as his/her tag could be tracked at different locations in the closed area.
In [21], several approaches have been suggested for the protection against tag tracking
such as probabilistic encryption and the use of hash chains.

Domination attacks on RFID tags could target the cracking of the keys between the
tags and the readers, which may affect the efficiency of tracking inside closed areas. This
could be mitigated by the constant change of the keys or by the use of long keys [20].
Finally, interruption attacks include Denial of Service (DoS) attacks. In general, DoS attacks
could be defined as a strive to cease network services and resources for legitimate users
in computer systems or networks, which affect availability and reliability. This happens
when a device or server is under attack due to intentional false requests generated by an
attacker to flood the communication channel and consume all available bandwidth, which
prevents legitimate users from acquiring the requested services [22,23].

When DoS attacks are conducted from different sources, this is considered a Dis-
tributed Denial of Service (DDoS) [23]. DDoS attacks target diverse organizations (ranging
from private to public governmental entities such as health and education) and could have
serious long-term damaging implications for businesses such as compromising reputation,
financial losses, the addition of operational costs, and possible loss of customers [22,23].
In RFID-based systems, DoS attacks could be carried out by applying noise interference
to jam the systems, block radio signals or tamper with the RFID tag (disabling the tag or
modifying the RFID tag data) [20,24].

Several mitigation techniques have been developed to deal with DoS attacks such
as the deployment of strong authentication mechanisms, the use of physical unclonable
functions (PUF) [25], the possible use of alarms triggered when a tag is being tampered
with, and the constant update of the RFID devices [20]. In [26], a comparative study has
been presented, which studies different RFID authentication protocols and highlights those
protocols which handle DoS attacks. As for the battery drainage due to DoS attacks, strong
authentication protocols will be deployed in the proposed system to try to reduce the
possibility of these attacks to the minimum. In addition, since this system is proposed
for an enclosed area, constant power supplies could be available to ensure that, even if
batteries are depleted, they can be easily recharged to keep the readers running.
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2.3. Analytical Model

The proposed analytical model assumes that there are N people in a closed area such
as a mall, shop, company, each of them is going to wear an RFID tag. An RFID reader
is going to continuously read the temperature, distance between any two users, if he is
wearing a mask or not. The number of users (N) that each RFID reader can read their
information can be calculated as follows:

N =

[
dTR
dsa f e

]2

∗ 4, (1)

where dTR, dsa f e are the default distances between RFID tag and RFID reader respec-
tively [27]. According to the WHO, the safety distance between any two users is considered
to be at least 1 m [28]. On the other hand, the centers for disease control (CDC) considers
the safety distance to be 6 feet (approximately 1.8 m) [9]. Accordingly, in the proposed
model, the safety distance is assumed to be 2 m. The distance between any RFID tag and
RFID reader can be expressed as [27]:

dTR =

√
PR Gtag Greader τ

PT
∗ λ

4π
(2)

where PR is the reader transmission power received, PT is the tag transmitted power. λ
is the wavelength of the Radio Frequency signal. Symbols Gtag and Greader are the gain of
tag-antenna and reader-antenna, respectively. τ is the transmission coefficient.

One of the important factors that should be addressed for the proposed approach is
network scalability. Scalability is defined as the ability of the network to handle a huge
number of users. In the proposed approach, there are multiple numbers of RFID readers,
which are uniformly distributed, covering all indoor space, to ensure scalability of the
network as the number of users increases and ensure that all RFID readers have the same
transmission power. Each RFID reader serves around a thousand people. For the proposed
approach, and based on Equation (1), it is assumed that each RFID reader will serve up
to 1089 users. Therefore, as the number of closed-area visitors increases (reaching its
peak especially during the holidays and special occasions), the densely distributed RFID
readers will be able to handle the huge number of tags without affecting their performance
efficiency. Additionally, in the proposed model, there are several base stations, each will
be responsible for receiving data from some, not all, RFID readers. Furthermore, if the
capacity increases and the number of RFID readers increases, then more base stations must
be deployed.

For the proposed model, a Rayleigh fading channel with additive white Gaussian noise
(AWGN) is considered. Additionally, the proposed model is subjected to a path loss and a
statistically mutually independent fading channel coefficient for all transmission links.

The proposed model aims to receive the maximum number of the reliable and efficient
required information to detect a possibility of an infected COVID-19 person and calculate
the probability of increasing infection. This goal is achieved by finding the optimum
required transmission distance between an RFID reader and BS under different environ-
mental and channel conditions. Consequently, the equation that expresses the aims of the
proposed model can be formulated as:

Max {RT}
s.t. pout ≤ 1−U

s.t. PR ≤ PRmax,

(3)

where RT is the overall system achievable data rate in bit/s. Symbols pout and U represent
the system outage probability and the required QoS, respectively. Parameters PR and PRmax
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represent the RFID reader transmission power and the maximum RFID reader transmission,
respectively. Symbols RT and pout can be expressed as [29]:

RT = B log2(SNRTR + SINRRBS) (4)

pout = poutTR + poutRBS − poutTR ∗ poutRBS, (5)

where SNRTR and SINRRBS are the signal-to-noise ratio between RFID tag and RFID
reader and the signal-to-interference-plus-noise ratio between an RFID reader and BS.
Symbols poutTR and poutRBS are the transmission link outage probability between RFID tag
and RFID reader and between an RFID reader and BS, respectively, which can be given
as [29,30]:

poutTR = p(SNRTR < γth) (6)

poutRBS = p(SINRRBS < βth) (7)

SNRTR =
PT |hTR|2

σ2 (8)

SINRRBS =
PR|hRBS|2

PI |hIBS|2 + σ2
(9)

poutTR = 1− e
−γth(

σ2

PT |hTR |
2 ) (10)

poutRBS = 1− PR|hRBS|2

βth PI |hIBS|2 + PR|hRBS|2
e
−βth(

σ2

PR |hRBS |
2 ), (11)

where γth and βth represent the threshold signal-to-noise ratio between RFID tag and RFID
reader and the threshold signal-to-interference-plus-noise ratio between an RFID reader
and BS. PT and hTR are the RFID tag transmission power and channel gain coefficient
between RFID tag and RFID reader, respectively. σ2 denotes the variance of the Additive
White Gaussian Noise (AWGN) with zero mean. Parameters hRBS and hIBS are the channel
gain coefficients between an RFID reader and BS; and between any interfere device and BS,
respectively. Symbol PI is the interference transmission power.

Assuming βth σ2 � PR|hRBS|2, then Equation (11) can be written as [31]:

poutRBS = 1− PR|hRBS|2

βth PI |hIBS|2 + PR|hRBS|2
. (12)

Thus, Equation (5) can be written as:

pout = 1−
(

PR|hRBS|2

βth PI |hIBS|2 + PR|hRBS|2
e
−γth(

σ2

PT |hTR |
2 )
)

, (13)

where |hTR|2 and |hRBS|2 can be expressed as [32,33]:

|hTR|2 =
|hoTR|2

PLoTRdTRα
(14)

|hRBS|2 =
|hoRBS|2

PLoRBSdRBS
α

(15)

|hIBS|2 =
|hoIBS|2

PLoIBSdIBS
α

, (16)

where |hoTR|2, |hoRBS|2 and |hoIBS|2 follow a complex normal distribution CN~(0, 1). PLoTR,
PLoRBS and PLoIBS are the pathloss constant between RFID tag and RFID reader, between
RFID reader and BS, and between any interfering device and BS, respectively. dTR, dRBS and
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dIBS represent the distance between RFID tag and RFID reader, between RFID reader and BS,
and between interfering transmission devices and BS, respectively. α is the pathloss exponent.

Problem Formulation

In this section, the optimization problem of the proposed model is analyzed. The
main objective of the performance optimization of the proposed model is to maximize the
overall system data rate under different environmental conditions. To find the solution of
the optimization problem stated in Equation (3), the first-order optimality conditions can
now be investigated. The Lagrangian of the optimization problem can be calculated as:

l {RT , λ, µ} = RT + λ (1−U − pout) + µ (PRmax − PR). (17)

where λ and µ are the non-negative Lagrangian multipliers, by taking the derivative of
Equation (17) with respect to dRBS and PR. Then, the optimal solution of Equation (3) can
be solved as:

∂l{RT , λ, µ}
∂dRBS

= 0. (18)

λ =

 (PI |hIBS |2 βth PLoRBS dRBS
α+PR)

2
σ2∗Be

−γth(
σ2

PT |hTR |
2 )
 (

(PI |hIBS |2PLoRBS dRBS
α+σ2)

2
(σ2+PT |hTR |2)+PR σ2 (PI |hIBS |2PLoRBS dRBS

α+σ2)
)
 (19)

∂l{RT , λ, µ}
∂PR

= 0. (20)

µ =

(
σ2∗B

PRσ2+σ2(PI |hIBS |2PLoRBSdRBS
α+σ2)+PT |hTR |2(PI |hIBS |2PLoRBSdRBS

α+σ2)

)

−λ
e
−γth(

σ2

PT |hTR |
2 )

PI |hIBS |2βthPLoRBSdRBS
α

(PI |hIBS |2βthPLoRBSdRBS
−α+PR)

2

(21)

Equations (19) and (21) show the value of λ and µ that satisfy the constraint of the
optimization problem. Next the derivative of Equation (17) with respect to λ and µ, then
the optimal solution can be written as:

∂l{RT , λ, µ}
∂λ

= 0. (22)

dRBS =

 e
−γth(

σ2

PT |hTR |
2 )PR −UPR

PI |hIBS|2 βth PLoRBS


1
α

(23)

∂l{RT , λ, µ}
∂µ

= 0. (24)

PR = PRmax. (25)

Symbols dRBS and PR represent the optimum required distance between an RFID
reader and BS and the optimum required RFID transmission power, respectively, to receive
reliable and efficient data. The obtained results of the proposed approach using a numerical
and deep learning algorithm will be presented in Section 3.

2.4. Proposed Deep Learning Model

IoT systems are based on the presence of a vast number of sensors collecting infor-
mation all the time. The collected information needs to be efficiently transmitted from
each RFID reader to a base station for further processing. In real life, the transmission
of such data can be affected by environmental factors, such as signal-to-noise ratio, or
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sensor-related parameters such as the power of transmission. Therefore, determination
of the optimal distance according to which an RFID can send the data reliably to the base
station is needed. Since the factors affecting transmission could change, the presence of a
machine learning-based system helps to build an initial model that could then be updated
whenever needed [34,35]. According to the analytical equations presented in Section 2.3, in
the proposed system the variables U, PR, SINRth and dIBS could affect the optimal distance
dRBS of reliable data transmission between the RFID reader and the base station.

In this subsection, a proposed deep learning model is presented that is intended to
be used by the RFID readers to calculate the optimal distance to send the information re-
garding possible COVID-19 infected and people violating the minimum approved distance
given different environmental factors that would affect the reliability and efficiency of the
transmission. The proposed model was built using a 1D-CNN [36], which has recently been
employed in several applications concerning signal processing [37] and 5G IoT interference
avoidance [38].

The choice of using the 1D-CNN in the proposed model was based on multiple
advantages that were discussed in previous research [36–38]. For instance, a 1D-CNN
based model has low computational complexity which makes it easy to rapidly build and
deploy. This also makes it suitable for use in real-time and for applications that have a
limited power supply. Furthermore, the 1D-CNN based models have shown improved
results when compared to traditional deep learning models [38].

A grid search was performed to find the optimum deep learning model for the
proposed idea. The model was tested for different combinations of one or two or three
1D-CNN and fully connected hidden layers. Each 1D-CNN was experimented on with 32
or 64 or 128 filters having different kernel sizes and the fully connected layers for 32, 64,
and 128 nodes. Furthermore, a different number of training epochs ranging between 50
and 250 were tested. The best results were achieved by the model presented in Figure 3
and is to be explained as follows:
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Before the data are input to the deep learning model, it was scaled according to the
min-max normalization presented by the equation:

xnew =
x− xmin

xmax − xmin
, (26)

where xnew represents the normalized value, x is the value to be normalized, xmin and xmax
are the minimum and maximum values of x, respectively.

The proposed model starts with the four normalized variables that are to be collected,
at the time an RFID reader intends to send information to the BS thus needs to calculate
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the optimal distance to send it efficiently and reliably. The input data represent the
required QoS (U), transmission power (PR), a threshold signal-to-interference-plus-noise
ratio (SINRth) and distance between interfering transmitting devices and the base station
(dIBS). The data from the input layer are propagated through two hidden 1D CNNs. The
first 1D-CNN has 64 filters, a kernel of size 4, and the output is padded thus reserving the
matrix dimension to be input to the following 1D-CNN of 32 filters.

The output from the 1D-CNN layers is then input to a flattening layer, therefore
resizing it to suit the fully connected layers. The sequence of fully connected layers would
predict the regression value of the optimum distance (dRBS) required to best transmit the
information. The activation function adopted for all the hidden layers is the Rectified
Linear Unit (ReLU). ReLU outputs the same input values except for negative ones, which
are output as zero. Since the model is calculating a distance, the output value cannot be
negative. For the output layer, Parametric ReLU (PReLU) was adopted since it has an extra
parameter that is adaptively learned for negative values, thus finetuning the estimate for
distances close to zero. The model was trained for 200 epochs while applying the adaptive
moment estimation (Adam) optimization function [39], which adaptively optimizes the
learning process while using the mean absolute error loss function as a target.

The assessment of the proposed deep learning model and comparison to other bench-
marks were based on both the mean absolute error and the mean square error. The mean
absolute error (MAE) and the mean squared errors are calculated as:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (27)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (28)

where n is the total number of records and yi − ŷi is the difference between the actual and
the predicted values.

2.5. MATLAB Simulation

According to the proposed deep learning model presented in the previous section, the
parameters needed for training are U, PR, SINRth, dIBS, and dRBS. MATLAB simulation
was used to generate different values of the output distance using the optimized equations
presented in Section 2.3 while applying the parameters described in Table 2. The dataset
helps the deep learning model learn how to generate the optimal distance between an RFID
reader and a BS, given different situations in real-time.

Table 2. System parameters.

Parameter Value

PR 33 dBm [27]
PT −21 dBm [27,40]
B 10 KHz [41]
f 915 MHz [27]

Gtag Greader 0.8 [27]
PI 23 dBm [38]

γth and βth 20 dB
τ 0.8 [27]

Table 3 shows the statistical description of all the input and output variables in the
generated dataset. The range of the variables U, PR, SINRth and dIBS, as specified in
Table 3, were used in the MATLAB simulation as inputs and, accordingly, the values
of the variable (dRBS) were generated for all records based on the analysis presented in
Section 2.3. This resulted in a dataset of 90,288 unique records. Each record represented a
different combination of values for the input variables and the equivalent optimum output
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distance dRBS. The dataset generated is to be used by the initial deep learning model to
learn to calculate the optimum dRBS that will improve the reliability and efficiency of the
data transmission.

Table 3. The statistical description of the dataset.

U PR SINRth dIBS dRBS

Number of records 90,288 90,288 90,288 90,288 90,288
Mean 0.920 23.698 15.471 122.831 12.862

Standard Deviation 0.158 11.010 6.433 68.597 17.061
Minimum 0.100 0.000 0.000 1.000 0.001
Maximum 0.999 33.000 20.000 250.000 129.721

In addition, Figure 4 shows the Pearson correlation of the variables. The figure shows
that the distance to be calculated (dRBS) is not highly correlated with any of the input
variables thus making it challenging to predict with minimum error.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 12 of 21 
 

 

The dataset helps the deep learning model learn how to generate the optimal distance 
between an RFID reader and a BS, given different situations in real-time. 

Table 2. System parameters. 

Parameter Value 
PR 33 dBm [27] 
PT −21 dBm [27,40] 
B 10 KHz [41] 
f 915 MHz [27] 

Gtag Greader 0.8 [27] 
PI 23 dBm [38] 

γth and βth 20 dB τ 0.8 [27] 

Table 3 shows the statistical description of all the input and output variables in the 
generated dataset. The range of the variables 𝑈, 𝑃ோ, SINRth and 𝑑ூ஻ௌ, as specified in Table 
3, were used in the MATLAB simulation as inputs and, accordingly, the values of the var-
iable (𝑑ோ஻ௌ) were generated for all records based on the analysis presented in Section 2.3. 
This resulted in a dataset of 90,288 unique records. Each record represented a different 
combination of values for the input variables and the equivalent optimum output distance 𝑑ோ஻ௌ. The dataset generated is to be used by the initial deep learning model to learn to 
calculate the optimum 𝑑ோ஻ௌ that will improve the reliability and efficiency of the data 
transmission.  

In addition, Figure 4 shows the Pearson correlation of the variables. The figure shows 
that the distance to be calculated (𝑑ோ஻ௌ) is not highly correlated with any of the input 
variables thus making it challenging to predict with minimum error. 

Table 3. The statistical description of the dataset. 

 𝑼 𝑷𝑹 SINRth 𝒅𝑰𝑩𝑺 𝒅𝑹𝑩𝑺 
Number of records 90,288 90,288 90,288 90,288 90,288 

Mean 0.920 23.698 15.471 122.831 12.862 
Standard Deviation 0.158 11.010 6.433 68.597 17.061 

Minimum 0.100 0.000 0.000 1.000 0.001 
Maximum 0.999 33.000 20.000 250.000 129.721 

 
Figure 4. Pearson correlation of all variables. 

  

Figure 4. Pearson correlation of all variables.

2.6. Deep Learning Model Assessment

The proposed deep learning model was assessed based on an average of 10-cross
validation experiments, where the same splits were used for comparing the results of
different benchmarks to assure a fair comparison. The data input to the benchmarks
were also normalized using min-max normalization, similar to the proposed model. The
benchmarks used were linear regression (LR), Adaboost regression (Ada), support vector
regressor (SVR), and multilayer perceptron regressor (MLP). The Ada, SVR, and MLP
were first tested independently in a grid search to learn optimal parameters for them, thus
assuring that the comparison with the proposed model is fair. The optimal parameters
generated for Ada were a learning rate of 0.1, exponential loss, and 150 estimators. For the
SVR, the optimal parameters generated were a radial basis function kernel and gamma
equal to 50. Finally, the MLP produced the best results using a ReLU activation, alpha of
0.0001, adaptive learning rate, and Adam optimizer.

The average of the MAE and MSE for the 10 folds results on each benchmark are
represented in Table 4. The results show that the proposed 1D-CNN model outperforms all
other benchmarks in terms of both the MAE and MSE, where the proposed model achieved
the least MAE of 0.18 m and MSE of 0.09 on the testing data.
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Table 4. Results of average 10-fold cross-validation for the benchmarks and the proposed model.

MAE MSE

Train Test Train Test

LR 6.05 6.05 81.67 81.68
Ada 5.03 5.04 42.1 42.36
SVR 1.16 1.16 7.74 7.75
MLP 1.09 1.09 3.71 3.73

Proposed model 0.18 0.18 0.09 0.09

Another experiment was performed to assess the proposed model using two-thirds
training and one-third testing data splits. Figure 5 shows the mean absolute error resulting
from both the training and validation datasets. The figure assumes that the model is not
overfitted to the data and that the results hardly change after the 50th epoch, thus it was
sufficient to stop the training at 200 epochs. The results obtained from the one-third testing
will be used in the analytical results presented in the following section.
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3. Results

In this section, the results achieved by both the numerical analysis and the deep
learning model are presented and thoroughly explained. The results obtained from the
two-third training and one-third testing split experiment presented in Section 2.5 are
compared with the analytical results obtained from the mathematical derivations presented
in Section 2.3. Figure 6 depicts the overall probability of suspected infections versus the
required transmitted records, which will be transmitted, saved, and tracked through the
proposed model. Figure 7 shows the interference distance between an RFID reader and any
transmitting device within a closed area (such as malls, schools, universities, companies,
and hotels) versus the required distance between an RFID reader and BS. For the same
network conditions stated in Figure 7, Figure 8 depicts the required distance between an
RFID reader and a BS with different required system SINRth. The proposed approach is
evaluated again, in Figure 9, in terms of the required distance between an RFID reader
and a BS but versus the system-required QoS. Assuming that the dIBS is 100 m and the
RFID reader transmission power (PR) is 33 dBm. The effect of an RFID reader transmission
power on the system performance is shown in Figure 10.
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The overall system data rate is one of the parameters that should be investigated
as it reflects the quality and the performance of the system. Assuming the same system
parameters stated in Figure 10, Figure 11 shows the effect of the RFID transmission power
(PR) on the overall system data rate. Figure 12 evaluates the presented COVID-19 tracking
system from a different aspect. In this figure, it is assumed that there are two different QoS
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values: 0.99 and 0.999 with two different PR: lowest PR (0 dBm) and highest PR (33 dBm)
and with SINRth equal to 20 dB. Figure 13 depicts how the proposed approach can enhance
the system performance.
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4. Discussion

For the proposed model, as mentioned in Section 2.3, there could be up to 1089 people
detected by one RFID reader at a time. The number of the transmitted records depends on
the percentage of possibly infected visitors based on the overall probability of satisfactory
and unsatisfactory conditions. Figure 6 depicts the number of required transmitted records
that should be sent, saved, and tracked. As shown in Figure 6, it is worth mentioning that
the required saved data increases when the overall probability of suspected visitors in the
area covered by an RFID reader not following the required safety precaution increases.
For example, when 5% of visitors in an area did not satisfy the precaution conditions,
then the reader will send around 55 records to be stored at the base station. However, if
this percentage is increased to 20% then the reader has to send around 218 records to the
base station for storing the data for future tracking if necessary. Additionally, if all the
visitors did not satisfy the required precaution conditions, therefore 100% unsatisfactory
conditions, then 1089 records should be sent and stored at the base station.

Assuming that the reader power is 33 dBm [27] and the required system QoS equals
0.9, it can be observed from Figure 7. That, to achieve the highest reliable and efficient data
about any COVID-19 case, the RFID reader must be allocated at a specific distance. This
distance is determined based on the network parameters, for example, when the SINRth
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is 0 dB along with an interference distance between an RFID reader and any transmitting
device of 150 m, therefore the distance between an RFID reader and BS to obtain reliable
information should be approximately 61.62 m. This was deduced using the analytical
model and also calculated using the deep learning model. However, when SINRth is 20 dB
along with an interference distance of 150 m, the distance between an RFID reader and BS
to obtain reliable information should be approximately 19.5 m using a numerical and deep
learning algorithm. It is worth mentioning that the increase in SINRth requires a decrease
in the distance between RFID and BS to achieve reliable data, which is a crucial issue
for tracking infected people and helps decrease the probability of increasing COVID-19
infection cases.

From Figure 8, it can be observed that, for both the numerical and deep learning
models, increasing the required SINRth decreases the required distance between an RFID
reader and a BS to receive reliable and efficient information. For example, when the
interference distance between an RFID and any transmitting devices (dIBS) is 50 m and
SINRth is 6 dB, then the required distance between an RFID reader and a BS should be in
the range of 8.95 m. However, the required distance between an RFID reader and a BS is
4.49 m if SINRth is 18 dB. Additionally, it can be mentioned that if the interference distances
between an RFID reader and any transmitting devices decreases, the required distance
between an RFID and a BS must decrease. For example, if dIBS is 50 m or 250 m and SINRth
is 8 dB, then the required distance between an RFID reader and a BS is in the range of
7.79 m or 81.56 m, respectively. On the other hand, if SINRth is 20 dB, the required distance
between an RFID reader and a BS will be approximately 11.1 m if dIBS is 100 m and is 4.49 m
when dIBS 40.08 m. This is caused by the fact that increasing the interference distance leads
to increasing the unreliability of receiving message due to receiving unwanted information.
Under these circumstances, it is important to adapt the RFID distance with the position of
BS, as during this pandemic and to allow feasible and accurate tracking the system should
receive accurate data.

It can be seen from the result presented in Figure 9, that increasing the required
system QoS decreases the required transmission distance between an RFID reader and a BS.
Additionally, it can be noticed that increasing the QoS with SINRth increasing dramatically
decreases the required distance between an RFID reader and a BS, as this is considered
as a very high network requirement that should be obtained with the minimum required
distance to overcome the loss that could happen due to a long transmission distance. As it
can be mentioned from Figure 9, for the five assumed SINRth which are 0, 5, 10, 15, and
20 dB if the required QoS is 0.9, the required transmission distance between an RFID reader
and a BS will be approximately 11.13 m, 14.29 m, 19.09 m, 25.31 m and 34.47, respectively,
using numerical and using the deep learning model. This result is correlated with the
results obtained previously, which showed that to achieve a high system performance,
the distance between an RFID reader and a BS should be adapted based on the system
requirement and channel conditions.

Figure 10 describes how RFID transmission power affects the required distance be-
tween an RFID reader and a BS to receive reliable data about rquired COVID-19 information.
In this scenario, the network parameters are assumed as follows: dIBS is 110 m and SINRth
is 20 dB and there are two different QoS requirements. As can be depicted from Figure 10,
increasing the RFID transmission power results in an increase in the required transmission
distance between an RFID reader and BS, as increasing the transmission power should
overcome the effect of other different parameters that may affect the transmission reliability
such as interference and path loss. Under this circumstance, it is important to assure that
the data received by the BS is sent by the maximum allowed power for the RFID, as this
could affect the quality of the received information.

As can be observed from Figure 11, increasing the RFID transmission power increases
the overall system data rate for the numerical and the deep learning model results. This
figure ascertains the result obtained in Figure 9; to achieve reliable and efficient COVID-19
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information, the RFID reader applied for this mission should have a maximum transmis-
sion power.

It can be concluded from Figure 12 and from the results obtained from the numerical
and deep learning model that, to achieve the highest system QoS, the interference distance
should be predicted to allocate the RFID reader at a suitable distance from the BS. This
distance must be determined based on the RFID reader transmission power. For example,
assuming the worst-case scenario, which is having an interference distance (dIBS) of 50 m
and the required QoS of 0.999, then the required distance between an RFID reader and a BS
should be less than 1 m when the transmission power (PR) is 0 dBm, while it is required to
be 1.16 m when PR is 33 dBm. On the other hand, when the interference distance increases
for example becomes 250 m, then the required distance between an RFID reader and a BS
is 1.91 m for PR equals 0 dBm and between 12.42–13.11 m for PR equals 33 dBm.

Figure 13 shows how the estimated required transmission distance between an RFID
reader and a BS enhances the overall system data rate. Additionally, it can be noticed, based
on the assumed interference distance and SINRth, that increasing the required distance
between an RFID reader and a BS increases the overall system data rate. This result reflects
the effectiveness of the proposed approach based on the prediction of the required distance
between an RFID reader and a BS increases the amount of received data per second. This is
an important issue that should be taken into consideration, as increasing the amount of
receiving data per second shows that the system overcomes any harmful received signal
due to the channel conditions.

It can be concluded from the results obtained in Figures 6–13 that adapting the
required distance between an RFID reader and a BS for the given transmission conditions,
such as interference distance (dIBS), channel quality in terms of α and an RFID reader
transmission power (PR), enhances the system performance and increases the effectiveness
and accuracy of the received COVID-19 information. The proposed approach provides
effective guidance for deciding when and how the RFID reader should communicate with
the BS to send COVID-19 information and whether this information is going to be stored
or not. Therefore, based on the presented results, the enhancement of the communication
performance between an RFID reader and a BS can be achieved by adaptively indicating
the appropriate transmission distance between an RFID reader and a BS under different
network and channel conditions.

Despite the good results obtained from the proposed approach, there is still some
limitation that should be addressed. One of the important issues that should be addressed
is the power limitation of WSN and the difficulties of recharging or changing batteries.
Additionally, network failure or system overhead could happen when the amount of sent
data increases.

5. Conclusions

A reliable, efficient, accurate, and secured data transmission system was proposed for
COVID-19 cases’ prediction and tracking using analytical and deep learning techniques.
First, the proposed tracking system was described and explained based on different con-
ditions. Then, the optimum required distance between an RFID reader and a BS, where
the data should be handled, is calculated using the Lagrange optimization technique and
simulated using MATLAB. A proposed deep learning model is trained using the generated
simulations and is compared by way of several 10-fold cross-validation experiments with
several benchmarks. Next, the analytics of the results of the required position of the RFID
reader with respect to the BS to achieve reliable, efficient, and accurate data. It has been
shown from the obtained results from analytical and deep learning that the proposed
approach can exhibit the best performance under the different channel and environmental
conditions. The effect of using the probability conditions on the number of transmitted
record for storage has been explained and showed in graph. The problem of receiving
accurate and reliable data by adapting the distance between an RFID reader and a BS
under different parameters was discussed and solved using the Lagrange optimization
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technique and deep learning. Additionally, the effect of having different required SINRth
and RFID transmission power on adapting the distance between an RFID reader and a BS
was investigated. It has been proven that increasing the required SINRth leads to decreas-
ing the required distance between an RFID reader and a BS. Moreover, it has been shown
that increasing the RFID transmission power enhances the required system performance
and increases the required distance between an RFID reader and a BS. Moreover, it has
been proven that the proposed approach provides effective guidance for indicating how
the communication between an RFID reader and a BS should be. Therefore, based on
the presented results, indicating the appropriate transmission distance between an RFID
reader and a BS leads to enhancing the required system performance and assuring that the
received data are accurate, reliable, efficient, and secure to facilitate the COVID-tracking
and detection.
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