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Abstract

Approximately 150 triatomine species are suspected to be infected with the Chagas para-

site, Trypanosoma cruzi, but they differ in the risk they pose to human populations. The larg-

est risk comes from species that have a domestic life cycle and these species have been

targeted by indoor residual spraying campaigns, which have been successful in many loca-

tions. It is now important to consider residual transmission that may be linked to persistent

populations of dominant vectors, or to secondary or minor vectors. The aim of this project

was to define the geographical distributions of the community of triatomine species across

the Chagas endemic region. Presence-only data with over 12, 000 observations of triato-

mine vectors were extracted from a public database and target-group background data

were generated to account for sampling bias in the presence data. Geostatistical regression

was then applied to estimate species distributions and fine-scale distribution maps were

generated for thirty triatomine vector species including those found within one or two coun-

tries and species that are more widely distributed from northern Argentina to Guatemala,

Bolivia to southern Mexico, and Mexico to the southern United States of America. The

results for Rhodnius pictipes, Panstrongylus geniculatus, Triatoma dimidiata, Triatoma ger-

staeckeri, and Triatoma infestans are presented in detail, including model predictions and

uncertainty in these predictions, and the model validation results for each of the 30 species

are presented in full. The predictive maps for all species are made publicly available so that

they can be used to assess the communities of vectors present within different regions of

the endemic zone. The maps are presented alongside key indicators for the capacity of

each species to transmit T. cruzi to humans. These indicators include infection prevalence,

evidence for human blood meals, and colonisation or invasion of homes. A summary of the

published evidence for these indicators shows that the majority of the 30 species mapped

by this study have the potential to transmit T. cruzi to humans.
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Author summary

The Pan American Health Organisation’s Strategy and Plan of Action for Chagas Disease

Prevention, Control and Care highlights the importance of eliminating those triatomine

vector species that colonise homes, and has had great success in many locations. Since

indoor residual spraying campaigns have targeted these species, their importance relative

to other vectors has diminished and their geographical distributions may also have

changed. It is now vital to consider the full community of vector species, including previ-

ously dominant vectors as well as secondary or minor vector species, in order to target

residual transmission to humans. Our aim was to define the geographical distributions of

the most commonly reported triatomine species in the Chagas endemic region from

northern Argentina and Chile to the southern United States of America. We extracted

reports of triatomine vector species observed at specific locations from a public database

and we used a geostatistical model to generate fine-scale predictive maps for thirty triato-

mine vector species. Data quality and data availability issues necessitate careful interpreta-

tion of the results, so (un)certainty intervals are presented alongside each map. We also

present these maps alongside a summary of the published evidence for key indicators

related to the capacity of each species to transmit the Chagas parasite to humans. This evi-

dence shows that most of the 30 species that we have mapped pose a potential threat to

human populations.

Introduction

American trypanosomiasis, or Chagas disease, is one of the 10 neglected diseases addressed by

the London Declaration, which calls for control and elimination of these devastating diseases

by 2020 [1]. It is a disease where vectorial transmission occurs from northern Argentina and

Chile to the southern United States of America, and a ‘Strategy and Plan of Action for Chagas

Disease Prevention, Control and Care’ has been set out by the Pan American Health Organisa-

tion (PAHO) [2]. This strategy includes the elimination of domestic vectors to prevent intra-

domiciliary transmission, as well as screening blood donors and pregnant women to prevent

transmission via blood donation or the placenta, and implementation of best practice in food

handling to prevent oral transmission. Our study focuses on the primary route of infection;

the contamination of a vector bite with faeces of that vector.

The Trypanosoma cruzi parasite is transmitted to humans by over 150 different vector spe-

cies from 18 different genera [3]. The transmission risk that each vector species poses is influ-

enced by how likely it is that the species in question will come into contact with humans. The

likelihood of human contact is influenced by short-distance movement (for example, whether

the species enters and/or colonises homes) and the larger-scale geographical distribution of

that species. Studies assessing vulnerability of individuals to Chagas disease have shown that,

while housing, ecotype and socio-economics are all relevant, triatomine presence is the most

important indicator [4]. Thus understanding the distribution of these vector species is vital to

both target control measures and to assess disease risk.

Before the current intervention era, five vector species were recognised as being dominant

in the transmission of T. cruzi to humans based on their habit of colonising houses, behaviour

(feeding-defecation interval) and widespread geographical distributions [5]. Since indoor

residual spraying (IRS) campaigns have successfully targeted these dominant species in many

locations, their importance relative to other vectors has diminished and their geographical
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distributions may also have changed [6]. It is now vital to understand the full community of

vector species, including previously dominant vectors as well as secondary or minor vector

species, in order to target residual transmission to humans [6–8].

Several studies have investigated species behaviours that influence short distance travel in

and around homes, such as host-seeking, aggregation and dispersal [9–19], but fewer studies

have considered the larger-scale geographical distributions of these species. The studies of geo-

graphical species distributions that have been conducted typically focus on a single country or

a region within a country [19–24]. One earlier study considered the distribution of triatomines

infected with a virus across South America, without distinguishing species [25], and previous

studies have mapped individual species across their ranges [26–31], but no studies have con-

sidered the geographical distributions of multiple, individual dominant and secondary vector

species across the Chagas endemic region from northern Argentina and Chile to the southern

United States of America. A lack of consistent region-wide information makes it harder to

construct an overview for the region as a whole or to compare areas within the endemic zone.

The data recording presence of a species are often sparse and suffer from sampling bias,

which makes inter-region comparison of these records difficult. The aim of this study is to use

statistical models to produce a comprehensive set of maps predicting the distributions of tria-

tomine vector species while taking into account the limitations of the data. We use an extensive

database of reported occurrences of each species, and data on environmental variables that are

likely to influence species presence, and we build species distribution models to improve our

current understanding of the spatial distribution of vectorial transmission of T. cruzi.

Materials and methods

Study area

The study area was defined as the Chagas endemic region, which extends from northern

Argentina and Chile to the southern United States of America. The study area for each individ-

ual species was defined as the area encompassing all reports of that species since the year 2000

plus a buffer zone of 5 degrees (approximately 300km).

Species occurrence and background points

The primary source of vector species data was a database of vector occurrence locations, which

was supplemented with additional species presence points derived from a database of infec-

tions in vector species. Data on vector occurrence was extracted from DataTri, a publicly avail-

able database that reports the presence of a given triatomine species, the date of collection (if

available) and geographical coordinates for each collection [32]. Additional vector occurrence

data was added using a database of T. cruzi infections in triatomines that also provided the vec-

tor species found, the date of collection (if available) and geographical coordinates for each col-

lection [33]. Any data points from DataTri that were duplicated in the second data set were

removed before vector occurrence data from the infections database was added to the DataTri

data set. Data points before the year 2000 were removed because the aim was to investigate vec-

tor distributions in the current era.

The available vector occurrence data is usually referred to as presence only data. Techniques

for modelling such data often involve augmenting the presence data with pseudo-absence or

background points, which requires a source of appropriate background data [34–36].

Here we use a target-group background (TGB) approach by choosing background data that

exhibits similar sampling bias as the occurrence data [37]. This approach can reduce the bias

introduced by preferential sampling of the presence locations. It was successfully used to map

geographical distributions of malaria hosts and vectors [38] and predict infection risk zones of
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yellow fever [39]. In simulation studies this method also performed well when compared to

approaches using presence-absence data [37, 40]. As with all models of presence-only data, the

maps produced using the TGB approach represent relative rather than absolute probabilities

of species occurrence.

We constructed one TGB dataset for each vector species as outlined below and illustrated

in Fig 1 for Panstrongylus megistus:

1. The presence locations of vector species k = 1, . . ., K (target-group) were extracted from the

database and a convex hull containing all presence locations was constructed (panel (A) in

Fig 1).

2. This hull was extended by a constant width of 5 degrees in all directions to allow for uncer-

tainty with respect to the range of the species being modelled (extended hull; panel (B) in

Fig 1).

3. The presence locations of all other species within the extended hull were defined as back-

ground points (blue dots in panel (C) of Fig 1).

4. Duplicate observations at the same site and the same year were removed.

5. At the modelling stage, the background points were weighted such that their total weight is

equal to the number of presence observations (cf. [37, 38]).

The weighting of background points means that if presence and background points were

randomly distributed the predicted relative probability would be about 0.5. Thus probabilities

> 0.5 indicate that it is likelier to observe presence than background, rather than an absolute

probability of occurrence.

For some species, only few observations were available in the dataset. It was suggested that

approximately five [42] or ten [43–45] events (presences) per predictor are required to reliably

fit a logistic regression. Given that we use up to 30 predictors, this would imply a sample size

of n� 150 and� 300, respectively. In our data, 14 and and 9 species fulfilled this (approxi-

mate) requirement. For completeness, we fit models for all species with n> 50, but obviously

Fig 1. Construction of background points. Illustration of the construction of background points using the TGB approach for species Panstrongylus megistus.
Panel (A): A convex hull is constructed around the presence locations of the species. Panel (B): The hull is extended by a fixed width of 5 degrees (extended hull).
Panel (C): Background points are added using presence locations of all other species within the extended hull. Panel (D): Blocks of width wk are allocated randomly

across the extended hull. The observations in blocks numbered 1-4 are used as training data, and the observations in blocks numbered 5 are assigned to the test

data. One fold consists of all blocks sharing the same number. Figure created by the authors using R package tmap [41].

https://doi.org/10.1371/journal.pntd.0008411.g001
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results must be interpreted with care as the sample size (number of presence observations)

decreases (see Results section). Species with fewer than fifty observations in the training and

test data were not modelled, however, their presence locations were used as background points

for the species that were modelled.

Environmental variables

Previous work has shown that vector distributions are influenced by climate, land cover types

and rural/urban classifications [19–24]. Environmental variables for these three data types

were obtained at a resolution of 5 × 5 kilometres. The climatic variables used were land surface
temperature (annual; day, night and diurnal difference) [46], two measures of surface moisture
(annual) [47], rainfall (annual) [48], elevation (static) and slope (static) [49]. The variables used

for land cover were the 16 IGBP land cover classes (annual) [50] and an enhanced vegetation
index [51]. Finally the variables used to distinguish rural, peri-urban and urban areas were

urban footprint (static) [52], nighttimelights (static) [53], human population (annual) [54] and

accessibility (static, based on road networks and distance to cities) [55]). Annual environmen-

tal variables were not always available for all time periods in which occurrence data was avail-

able. In this case, we instead used values from the closest year. A full description of each

variable is given in the supplement (Table A, S1 File).

Model evaluation

In the context of spatial analysis, data available for modelling often only encompasses few loca-

tions in areas for which predictions are generated. Therefore, the model is usually evaluated on

out of sample data to avoid over-fitting, to ensure transferability to new locations and to obtain

realistic estimates for the goodness of fit. Standard approaches to model evaluation, however,

can yield over-optimistic metrics of the model predictive ability unless the spatial nature of the

data (and the model) is taken into account [56–58]. To address these concerns, the data was

initially split randomly into train-test data (80%) and evaluation data (20%), stratified by spe-

cies. The latter dataset is not utilised during model building but later used to evaluate the mod-

els ability to interpolate and the final prediction. Additionally, the train-test data was split into

five folds. Following recommendations in [59] each fold consisted of multiple spatial blocks,

where the block size wk for species k = 1, . . ., K was set such that approximately 50 blocks (10

per fold) would cover the extended hull of that species and defined as wk ¼
ffiffiffiak
50

p
, where ak is

the area of the extended hull of species k. Fig 1 (panel (D)) depicts the resulting blocks and

folds for species Panstrongylus megistus. For each species, blocks one through four were

assigned to the training data, while blocks numbered five (grey shade) were only used to obtain

out-of-sample test errors. Allocation of blocks was spatially random to avoid systematic bias of

presence and background locations in any of the folds, but stratified with respect to species

presence such that the proportion of presence and background points was approximately

equal in all folds. The spatial blocking for all species considered in our analyses are provided in

[60]. Model performance was evaluated by the area under the receiver operator curve (AUC),

which measures the models ability to discriminate between presence and background points.

After model evaluation as reported in the Results section was complete, the best model was

refit on all data for the final prediction.

Modelling

To estimate the triatomine species distributions we fit a logistic regression to the target-group

background (TGB) data using a generalised additive model (GAM). This modelling framework
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is comprised of two components: observations (1) and a linear predictor (2). We consider a

Bernoulli process to model the background/presence (yk,t,i 2 {0, 1}) of each species k in year

t 2 {2000, . . ., 2016} at location si 2 Ek. Within this framework, we specify the Bernoulli model

yk;t;i � Bernoulliðpk;t;iÞ; i ¼ 1; . . . ; nk; ð1Þ

where i = 1, . . ., nk are the observations per species. For each species k = 1, . . ., K, we set a spa-

tial domain delimited by the extended hull Ek 2 R
2

formed by the spatial locations of the cor-

responding species (see Fig 1 for further detail). The relative probability of occurrence πk,t,i is

estimated by a logistic GAM with linear predictor (2)

Zk;t;i ¼ log
pk;t;i

1 � pk;t;i

 !

¼ b0 þ
XPk

p¼1

fk;pðxp;t;iÞ þ GPk;ið‘Þ; i ¼ 1; . . . ; nk; ð2Þ

where fk,p(xp,t,i) is the species specific, potentially non-linear, effect of the p-th covariate esti-

mated by a penalised thin-plate spline [61] and GPk,i(ℓ) is a two-dimensional, species-specific

Gaussian process (GP) with range parameter ℓ evaluated at location si (the smoothness param-

eter was set to 1.5). The number of covariates Pk can vary by species as some of them might not

have enough unique values within the spatial extent of the species to be relevant for analysis.

Here, covariates were only included if the number of unique values was at least twenty. The

correlation function of the GP was defined by C(x, x0) = ρ(||x − x0||), where ρ(d) = (1 + d/ℓ) exp

(−d/ℓ) is the simplified Matérn correlation function with range parameter ℓ =maxij||xi − xj|| as

suggested in [62] and implemented in [63].

The model was estimated by optimising the penalised restricted maximum likelihood

(REML) criterion (3)

DðcÞ þ gð�ðcÞ þ ��ðcÞÞ ð3Þ

using a double shrinkage approach where ψ is a vector of all coefficients associated with the

smooth functions f and GP, D(ψ) is the model deviance and ϕ(�) and ϕ�(�) are range space and

null space penalties of the model coefficients ψ [61, 64]. The first penalty (range space) controls

the smoothness of functions fk,p and GPk, while the second penalty (null space) enables the

removal of individual terms from the model entirely. The γ parameter can be used to globally

increase the penalty and thus to obtain smoother, sparser and therefore potentially more

robust models. Practical estimation was performed using techniques introduced in [65–67] to

increase computational speed and reduce memory requirements.

Six model specifications (Table 1) were considered for this analysis, varying by the defini-

tion of covariate effects in Eq 2 and whether the global GP term GPk,i(ℓ) was included. For

each species, the final model (out of the six candidate models in Table 1) was selected based on

its performance (AUC) on the test data (fold 5). Model 1 has no tuning parameters and was fit

Table 1. Model specifications considered in the analysis.

Model

specification

Covariate effect definition GP

(global)

1 linear effects fk,p(xp) ≔ βk,p � xp No

2 Yes

3 fk;pðxpÞ≔
P10

m¼1
Bp;mðxpÞck;p;m, where Bp,m(xp) and ψk,p,m are spline basis functions

and coefficients

No

4 Yes

5 spatial (bivariate) varying coefficient model fk,p(xp) ≔ GPk,p(ℓ) � xp No

6 Yes

https://doi.org/10.1371/journal.pntd.0008411.t001
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directly to the complete training data (folds 1-4). Models 2 through 6 were first tuned with

respect to the global penalty γ 2 {1, . . ., 4} based on 4-fold cross-validation on folds 1 through

4. Based on the value of γ that yielded the highest average AUC, the models were refit on the

complete training data (blocks 1–4). These models were used to calculate the out-of-sample

extrapolation and interpolation error (see “Results” section for details). After model evaluation

the best model for each species was refit on all data (blocks 1 through 5 and the random hold-

out data) to create final predictions.

Implementation

All calculations were performed using the R language environment [68]. Thematic maps were

created using package tmap [41]. Data munging and pre-processing was performed using

packages dplyr [69] and tidyr [70]. Spatial cross-validation was set up using package blockCV

[71]. Package mgcv was used to fit the GAMs [63].

Vectorial capacity of the mapped species

For each triatomine species that was mapped, information related to its importance in trans-

mitting T. cruzi to humans was collated. The prevalence of infection with the T. cruzi parasite

was calculated using the data from an existing repository [33]. Collections of less than twenty

individuals of a species were excluded and the mean prevalence was calculated for all species

where the remaining number of collections exceeded ten. Relevant behavioural data for each

vector species was extracted from the published literature.

Results

Species distributions

A total of 30 species were mapped. Triatoma infestans is predicted to occur from northern

Argentina and Chile to southern Bolivia and Peru, overlapping in part with the predictions for

Triatoma guaysayana, although T. guaysayana isn’t predicted in Peru. Panstrongylatus lutzi,
Psammolestes tertius, Rhodnius nasutus, Rhodnius neglectus, Triatoma brasiliensis and Tria-
toma psuedomaculata are all predicted to primarily occur within Brazil. Triatoma sordida is

predicted to occur in Brazil, Paraguay and Bolivia while Triatoma rubrovaria is mainly pre-

dicted to occur in Uruguay. Eratyrus mucronatus, Panstrongylatus geniculatus, Panstrongylatus
rufotuberculatus, Rhodnius pictipes and Rhodnius robustus are predicted to overlap to differing

degrees across a broad area that encompasses northern Bolivia and Peru, northwestern Brazil,

Ecuador, Colombia, Venezuela, Guyana, Suriname and French Guiana. Triatoma maculata
predictions are restricted to the northern part of this area, while Rhodnius prolixus is predicted

even further north in Colombia and Venezuela, and Panstrongylatus chinai is only predicted at

the far west of this area within Peru and Ecuador. The predicted distributions of Panstrongyla-
tus geniculatus, Panstrongylatus rufotuberculatus, Rhodnius pallescens and Triatoma dimidiate
all extend from northern South America to Central America. Triatoma barberi, Triatoma long-
ipennis, Triatoma mazzotti, Triatoma Mexicana and Triatoma pallidipennis were all predicted

to occur in Mexico only. Triatoma gerstaeckeri, Triatoma protracta and Triatoma rubida were

predicted to occur from northern Mexico to the southern United States of America and Tria-
toma sanguisuga was predicted to occur exclusively in the southern United States of America.

A summary for all species that were modelled is provided in Table 2, including the specifi-

cation of the model selected on training data as well as the AUC of this model evaluated on test

data (fold 5) and the AUC obtained on the 20% randomly selected hold-out data (denoted by

AUC�). The former is an indicator of the model’s transferability and ability to predict into new
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areas with potentially unseen covariate values or combinations, within the area that was mod-

elled (cf. Fig 1). This is important because this is precisely the goal of the TGB approach and

other modelling strategies that account for preferential sampling. The latter value indicates

how well the model interpolates.

The AUC values were all well above the 0.5 random classification threshold (mean: 0.85,

SD: 0.12), indicating the maps usefulness to identify areas of higher probability of presence rel-

ative to background points. The comparatively low AUC values for species T. brasiliensis and

T. pseudomaculata could be partially due to an overlap with many other species, thus making

Table 2. Summary table for all species considered in the analysis ordered by number of presence observations.

species n presence (test) n background (test) Selected model (γ) AUC AUC�

Triatoma infestans 2499 (430) 4458 (896) 5 (3) 0.96 0.97

Triatoma dimidiata� 1186 (154) 2883 (787) 6 (4) 0.97 0.93

Panstrongylus megistus 968 (213) 3409 (827) 6 (1) 0.83 0.89

Triatoma brasiliensis 820 (151) 1989 (346) 2 (1) 0.69 0.81

Triatoma sordida� 809 (139) 4919 (768) 5 (2) 0.83 0.89

Triatoma pseudomaculata 804 (239) 3100 (687) 4 (1) 0.73 0.81

Triatoma barberi 455 (56) 2161 (612) 4 (1) 0.88 0.92

Triatoma mexicana 430 (44) 2046 (456) 6 (2) 0.92 0.96

Rhodnius prolixus 319 (42) 962 (229) 4 (2) 0.64 0.85

Panstrongylus geniculatus 282 (39) 6425 (824) 3 (1) 0.87 0.82

Triatoma longipennis� 282 (25) 1974 (324) 2 (2) 0.97 0.95

Triatoma gerstaeckeri 280 (91) 2480 (482) 2 (1) 0.85 0.96

Triatoma protracta 269 (42) 2092 (212) 6 (1) 0.89 0.97

Triatoma pallidipennis� 256 (15) 2286 (265) 2 (2) 0.96 0.96

Panstrongylus lutzi 136 (8) 2965 (609) 1 (–) 0.78 0.92

Rhodnius pictipes 130 (25) 3542 (940) 5 (1) 0.91 0.91

Triatoma rubida 126 (23) 1913 (388) 4 (1) 0.98 0.95

Rhodnius neglectus 122 (18) 3993 (655) 4 (1) 0.93 0.95

Triatoma mazzottii� 105 (7) 2531 (581) 4 (1) 0.8 –

Rhodnius pallescens 93 (21) 898 (202) 2 (1) 0.78 0.89

Triatoma guasayana� 92 (8) 2761 (493) 1 (–) 0.52 0.75

Triatoma rubrovaria 92 (11) 572 (227) 3 (1) 1.00 0.95

Rhodnius robustus 90 (22) 3395 (915) 4 (1) 0.97 0.94

Triatoma sanguisuga 89 (17) 701 (173) 5 (2) 1.00 0.92

Psammolestes tertius 75 (17) 3969 (825) 2 (3) 0.79 0.90

Eratyrus mucronatus� 67 (13) 2495 (656) 5 (4) 0.80 0.84

Triatoma maculata 65 (10) 907 (169) 5 (3) 0.8 0.80

Panstrongylus chinai 57 (7) 209 (53) 4 (1) 0.8 –

Rhodnius nasutus 56 (10) 2178 (423) 2 (1) 0.90 0.83

Panstrongylus rufotuberculatus� 55 (13) 3262 (608) 3 (3) 0.66 0.61

Summary table for thirty species for which predictive maps were created, ordered by number of occurrence observations. Species highlighted in bold are shown in Figs 2

and 3, rasters of all 30 species (including 95% CI) and map images are given in [72] and [73], respectively. Asterisks (�) mark species for which the block width wk used

to construct spatial blocking was smaller than a preliminary estimation of the range of spatial auto-correlation, thus estimated AUC values might be overoptimistic in

these cases. Column “Selected model” indicates the model specification that was selected based on its performance on the training data and refers to the model

specifications defined in Table 1. If applicable, γ indicates the value of the selected global penalty multiplier (cf. Eq (3)). The reported AUC value was calculated on the

test data set (fold 5 in Fig 1). The AUC� value was calculated on the 20% hold-out data (not spatially blocked). Entries “–” indicate that there were not enough

observations and/or unique predicted values in the hold-out data for calculation.

https://doi.org/10.1371/journal.pntd.0008411.t002
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it difficult to discriminate between presence and background. The AUC� values were on aver-

age higher and had a lower variance (mean: 0.88, SD: 0.08) but generally consistent with the

AUC values obtained on the spatial hold-out test data (fold 5). The predicted values (including

95% CI) in raster format for all species listed in Table 2 are given in [72], (.gri file format).

Respective visualisations, i.e. map images, are available from [73].

Predicted distributions of four example species. In this section, we present the results for

four diverse species that provide examples from different genera including dominant and sec-

ondary vectors with domestic, peri-domestic and sylvatic habits. In addition, we provide detailed

discussion of the results for one of the most important of these vectors, T. infestans, in the fol-

lowing section. Together distributions of these species cover most of the endemic region from

northern Argentina and Chile to the south of the United States. Predictions are presented along-

side bivariate maps that display prediction and (un)certainty in one map. To do so, predictions

and uncertainty (defined by the width of confidence intervals) are divided into intervals (here

[0, .25), [.25, .5), [.5, .75), [.75, 1], and [0, .075), [.075, .15), [.15, .3), [3, 1], respectively. The cut

off for uncertainty was chosen because a CI width of� .3 means that the upper and lower CIs

fall into different categories of the probability intervals. The legend in the bivariate maps indi-

cates which colours correspond to which combination of prediction and uncertainty.

Triatoma gerstaeckeri colonises homes and kennels and is known to bite humans (S2 File).

The predicted distribution of this species from the southern USA through much of Mexico is

shown in Fig 2a. Uncertainty in these predictions is high at the northern boundaries of this

species where sampling is particularly sparse (Fig 2b and [60]). Triatoma dimidiata colonises

homes, as well as sylvatic and peri-domestic habitats (S2 File), and is a dominant vector of T.
cruzi. It’s distribution predicted using data for the time period from 2000 onwards ranges

from southern Mexico through Central America into northern Venezuela and Colombia (Fig

2c and 2d). Predictions are high with low uncertainty in Central America whereas predictions

are lower with higher uncertainty in northern Venezuela and Colombia. It is important to

note that the block width for this species is smaller than an estimation of the range of spatial

auto-correlation, thus the AUC values may be optimistic. Rhodnius pictipes colonises palm

trees and has been implicated in the contamination of products for human consumption (S2

File). The predicted distribution of R. pictipes in northern Brazil and Bolivia, French Guiana,

Suriname, Guyana, Venezuela, Colombia, Ecuador and Peru is shown in Fig 2e. It is important

to note the areas of high uncertainty within the region of higher predicted probability of pres-

ence for this sylvatic species (Fig 2f). The confidence intervals for this species are higher than

those seen for Panstrongylus geniculatus in the same region, which reflects the lower volume of

data available for R. pictipes. Panstrongylus geniculatus colonises trees and rodent nests, has

been found in urban areas, and is known to bite humans (S2 File). Its predicted distribution,

which overlaps with that of R. pictipes in South America and extends further north as far as

Honduras in Central America, is shown in Fig 2g. The uncertainty in these predictions is typi-

cally low but is higher at the fringes of the area where the predicted relative probability of pres-

ence is high (Fig 2h).

Distribution of Triatoma infestans. Arguably, the most important T. cruzi vector species

is T. infestansmaking it a key target for indoor residual spraying campaigns that have the

potential to alter the distribution of this predominantly domestic species. Intervention cover-

age data was not available to our models so it is particularly important to consider the uncer-

tainty in the predictions for T. infestans. Fig 3 shows the predicted probabilities for this vector

species using data from the year 2000 onwards (left panel) alongside a bivariate map that high-

lights the (un)certainty of the estimation (right panel). The model predicts areas of high rela-

tive probabilities of presence with higher certainty in southern Bolivia, northern Chile and

northwestern Argentina, which aligns well with the observed presence points. The uncertainty
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Fig 2. Predicted relative probability of occurrence. Predictions for 4 selected species at a resolution of 5 × 5 km

within the respective extended hull of species occurrence (left panel) and bivariate map (right panel), where darker

colours indicate higher predicted probabilities while the transition from white/pink to turquoise/blue indicates

increased uncertainty. Row 1 (A, B): Triatoma gerstaeckeri; row 2 (C, D): Triatoma dimidiata; row 3 (E, F): Rhodnius
pictipes; row 4 (G, H): Panstrongylus geniculatus. Figure created by the authors using R package tmap [41].

https://doi.org/10.1371/journal.pntd.0008411.g002
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is usually high in unsampled areas, e.g., along the border of Argentina and Chile, and eastern

parts of Paraguay. Low probabilities of occurrence are predicted in Brazil and northeastern

Paraguay, with varying levels of certainty.

Ranking importance of the environmental variables

Caution is needed when drawing conclusions from information on which environmental vari-

ables were selected by each model because i) many of these variables are highly correlated, for

example temperature, rainfall, surface wetness and elevation, and ii) some important variables

may not have been made available to the models as discussed above. It is, however, interesting

to note the three variables selected as most important by each species model and these rank-

ings are given in Table D, S3 File. Forest cover was one of the three most important variables

for three species and Eratyrus mucronatus, Panstrongylus rufotuberculatus and Rhodnius
pictipes are all known to colonise trees (S2 File). Eight other species models selected other vege-

tation cover variables as important and variables that define the urban-rural gradient (urbani-

city, accessibility and human population) were selected as being among the most important by

seven species models. Looking across all species models (Table E and Figure A, S3 File), the

most important variables for predicting T. cruzi vector species distributions were temperature,

the Gaussian process (the spatial component), evergreen broadleaf forest cover, the vegetation

index, rainfall and elevation, followed by variables defining the urban-rural gradient and other

types of vegetation cover. Nine land cover classes were never selected by any model. Unsur-

prisingly these were water, needleleaf forest cover, built up areas (information that was pro-

vided to the model by other variables that were selected), snow and ice, barren areas and

unclassified land (which is a rare occurrence in the land cover data). For most species there are

rarely single covariates with a contribution of more than 50%, meaning that each prediction is

comprised of smaller contributions from many variables (Figure A, S3 File).

Vectorial capacity of the mapped species

The current state of knowledge on factors related to the capacity of each of the mapped species

to transmit T. cruzi to humans (vectorial capacity) is summarised in Table 3. Specifically,

Fig 3. Left panel: Final predicted map for T.infestans. Right panel: A bivariate map of the predictions that indicates

areas of high vs. low probabilities together with the model uncertainty. Darker colours indicate higher predicted

probability. Transitions from white/pink to turquoise/blue indicate higher uncertainty.

https://doi.org/10.1371/journal.pntd.0008411.g003
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mean infection prevalence, confirmation of human blood meals in natural vector populations,

and confirmation of colonisation or invasion of homes (including in urban areas) are listed.

Less information is available on the feeding-defecation interval or defecation location for each

species, and these values may be influenced by the different experimental conditions used, so

these variables are not included in Table 3 but sources of evidence are listed in the supplement

(Table B, S2 File). The 30 most commonly reported species mapped here encompass the five

most important dominant vectors that frequently colonise homes (P. megistus, R. prolixus, T.
brasiliensis, T. dimidiata and T. infestans) as well as species that often colonise peridomestic

habitats such as chicken coops, rats nests, boundary walls, wood piles, palm trees, and livestock

housing. These species encompass a range of mean T. cruzi infection prevalences from 0.8% in

T. sordida to 55.6% in T. longipennis, although for 13 of the most commonly reported species

there was insufficient data to generate a reliable mean infection prevalence value. In addition

Table 3. Infection prevalence and behaviour of selected species.

Species Mean percent infected (n) Human blood meals Colonises homes Invades home Urban areas

Eratyrus mucronatus NIF - yes yes -

Panstrongylus chinai yes - yes yes -

Panstrongylus geniculatus 7.6 (46) yes - yes yes

Panstrongylus lutzi 6.8 (27) yes - yes -

Panstrongylus megistus 8.3 (261) yes yes yes yes

Panstrongylus rufotuberculatus yes - yes yes -

Psammolestes tertius NIF - - - -

Rhodnius nasutus 8.5 (73) - - yes -

Rhodnius neglectus 4.0 (120) yes - yes yes

Rhodnius pallescens yes yes - yes -

Rhodnius pictipes 24.6 (36) yes - yes yes

Rhodnius prolixus 9.0 (10) yes yes yes -

Rhodnius robustus 25.9 (19) - - yes -

Triatoma barberi yes - yes yes yes

Triatoma brasiliensis 3.2 (918) yes yes yes -

Triatoma dimidiata 28.9 (24) yes yes yes -.

Triatoma gerstaeckeri yes yes yes yes -

Triatoma guasayana yes yes - yes -

Triatoma infestans 27.6 (61) yes yes yes -

Triatoma longipennis 55.6 (14) - yes yes yes

Triatoma maculata 18.4 (18) yes - yes yes

Triatoma mazzottii yes - - yes -

Triatoma mexicana yes - - yes -

Triatoma pallidipennis 4.8 (17) yes yes yes yes

Triatoma protracta yes - yes yes yes

Triatoma pseudomaculata 2.7 (988) yes yes yes yes

Triatoma rubida yes - yes yes yes

Triatoma rubrovaria 3.1 (17) - - yes yes

Triatoma sanguisuga yes yes - yes yes

Triatoma sordida 0.8 (1407) yes yes yes yes

The mean infection prevalence is given together with the number of triatomine collections that contributed to the mean. If there were insufficient data to calculate the

mean, i.e. fewer than 10 collections of� 20 individuals, then records of infected individuals (yes) or no infections found (NIF) are noted. Instances where there was no

evidence for a particular behaviour are denoted by “-”.

https://doi.org/10.1371/journal.pntd.0008411.t003
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to differences among the mean values for species, there is also considerable variation within

each species likely resulting from heterogeneities in factors such as intervention deployment

and local host species. When viewing the summaries in Table 3, it is important to note that not

all regions or species have been sampled or tested equally and a lack of published evidence for

a specific component of vectorial capacity cannot be taken as definitive evidence of its absence.

For example, no infections have been reported in Eratyrus mucronatus or Psammolestes tertius,
but only 28 and 143 individuals have been tested, respectively, compared to 335,467 T. sordida
individuals. In addition to the five important dominant vectors, there is evidence that many of

the species mapped in this work are potential vectors of T. cruzi. Almost all of the 28 species

that have been found to be infected with T. cruzi are known to invade homes, and at least 17

have been found to have fed on humans (Table 3). The sources of evidence—130 published

articles in total—are given in the supplement (Tables B and C, S2 File).

Discussion

This study models the contemporary geospatial distributions of the thirty most commonly

reported triatomine species and putative vectors of the T. cruzi parasite to humans. Our

approach allows the distributions of these different species to be compared, and to be overlaid,

which increases our understanding of the community of vector species at different locations in

the current intervention era.

Our aim was to consider the most commonly reported species in the Chagas endemic

zone. To provide policy makers, stakeholders and researchers with relevant information, we

included all species for which distribution maps could be reasonably estimated. However, as

can be seen from Table 2, the training (and test) data for many species contained fewer than

300 or even fewer than than 150 presence observations reported since the year 2000. AUC

values will tend to be less robust and potentially over- or under optimistic as sample size

decreases. In these instances it is particularly important to take into account the uncertainty of

the estimates as presented here. There are also locally important species for which maps could

not be produced because they are only found within areas where the relevant surveillance rec-

ords are not publicly available or because their range is limited so only small numbers of obser-

vations exist. For example, Rhodnius ecuadoriensis is an important vector in Ecuador [74] but

the databases used in this study only provided 11 and 23 records, respectively, for known col-

lection dates after the year 2000.

Earlier studies [19, 20, 22, 23, 25, 27, 28, 30, 31], most notably [24, 26], have modelled the

distributions of some of these species but often previous work has focused on specific regions,

states or countries. Additionally, comparisons with the previous work are limited because of

differences in methodology, datasets and spatial extent under consideration. Only visual com-

parison is possible in most cases because the predicted values generated by previous studies are

not openly available, precluding quantitative assessment of the different versions. Known T.
dimidiata presence locations are predicted by the model presented here, but with higher prob-

abilities for the locations in central America compared to Colombia and Ecuador. This may

imply differentiation between these populations, for example, the subspecies T. dimidiata capi-
tata is only found in Colombia, however, the subspecies T. dimidiata dimidiata is common to

central America and Ecuador [75]. Within Central America, our predictions align well with a

T. dimidiatamap published in 2010, predicting this species throughout Central America

extending up both the east and west coasts of Mexico [31]. This earlier map also provides a

main and maximum distribution for T. infestans. The main distribution from the 2010 map

(from La Rioja and northern Cordoba in Argentina up to Santa Cruz and southern Beni in

Bolivia, as well as an area around Moquega in Peru) falls within our area of highest predictions
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for occurrence with moderate certainty (Fig 3), but an area of higher certainty can be seen run-

ning directly west of the previously published main distribution in Argentina and Bolivia, join-

ing the main distribution predicted in Peru in the 2010 work. Comparisons with a T. infestans
map published in 2002 [30] demonstrate the dramatic changes in Brazil over the last decades.

The area of lowest probability of occurrence with highest certainty in our current map aligns

with the area of absence in the 2002 map, whereas the areas in southwestern Brazil with low

probability of occurrence but higher uncertainty in our current map align with areas of species

presence in the 2002 map from Paraiba down to Mato Grosso do Sul and Rio Grande do Sul.

These areas, where this species is predicted to be no longer present by both the 2010 study [31]

and our current work, match PAHO reports of the Southern Cone Initiative (or INCOSUR).

Hernandez et al. [22] modelled the joint distribution of T. infestans andMepraia spinolai in

the Coquimbo, Valparaı́so and Metropolitana Regións of Chile, which are all regions where

our model predicted high relative probability of occurrence of this species. Ceccarelli et al. [25]

generated climatic suitability maps for infected T. infestans triatomines using two climatic

datasets, the Advanced Very High Resolution Radiometer onboard the National Oceanic and

Atmospheric Administration meteorological satellite series (AVHRR) and the WorldClim

dataset. Their AVHRR results are closest to our distribution maps but the studies cannot be

compared directly due to the different outcomes modelled, i.e. vector occurrence and infected

vector occurrence.

In general, our predicted maps show good agreement with respect to regions that highlight

higher vs. lower probabilities of occurrence when compared to earlier studies. Curtis-Robles

et al. [19] recently investigated the spatial distribution of, among others, T. gerstaeckeri,T. san-
guisuga and T. rubida within the state of Texas in the USA and their areas of species occur-

rence match our areas of high relative probability of occurrence with high certainty for these

three species within this region. Garza et al. [23] also mapped the distribution of T. gerstaeckeri
and predicted that the current distribution was largely restricted to Texas in the USA whereas

our predictions show high relative probability of occurrence with higher certainty in both

Texas and the neighbouring Mexican states of Coahuila, Nuevo Leon and Tamaulipas, in

agreement with the predictions made in 2015 by the Mexican Atlas of Triatomines [24]. The

most comprehensive collection of species distribution maps is provided by the Mexican Atlas

of Triatomines [24] which generated predictive maps for 19 species of which T. rubida, T.ger-
staeckeri, T. longipennis, T. mexicana, T. barberi, T. pallidipennis, T. mazzottii and T. protracta
were also modelled in our study. A visual comparison shows a reasonable alignment between

the predictions made by the Mexican Atlas of Triatomines and our results for these eight

species within Mexico. It is also interesting to note that our results for T. dimidiata, within

Mexico, most closely align to the Mexican Atlas of Triatomines’s results for haplogroup 2 of

this species [24].

Arboleda et al. [28] produced a predictive map of the geographical distribution of R. palles-
cens across Central and South America. Our two studies show broad agreement in Central

America but the earlier study predicts high environmental suitability for this species in areas

much further south than the region where we predict high probability of occurrence. This

result demonstrates a key difference in the two methods used because Arboleda et al. quanti-

fied associations with environmental variables only whereas we also incorporated a spatial

component (the Gaussian process) in our model. Consequently, the earlier study identified

locations that were predicted to be suitable much further south than any known reports of this

species. Parra-Henao et al. [20] also used ecological niche modelling, which they applied to P.
geniculatus, R. pallescens, R. prolixus and T. maculata in the Caribbean, Pacific, Eastern Plains,

Andean and Amazon regions of Colombia. The closest alignment between the results of their

study and ours can be seen for T. maculata. Both studies predict occurrence of this species in
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non-contiguous areas of northern Colombia; one from the Guarjira Peninsula heading south-

west, and another on the eastern slope of Eastern Cordillera towards the Orinoquı́a region.

Gurgel-Goncalves et al. [26] modelled the ecological niches of 16 triatomine species in

Brazil, of which 11 were also modelled in our study. Of these, a visual comparison shows that

there is good broad agreement between the 2012 study and our results within Brazil for ten of

these species (P. megistus, P. lutzi, R. nasutus, R. neglectus, R. pictipes, R. robustus, T. brasilien-
sis, T. pseudomaculata, T. rubrovaria, T. sordida), however, our results show a lower probabil-

ity of occurrence for P. geniculatus in southeast Brazil whereas the 2012 study predicts

presence across this region. Carbajal de la Fuente et al. [27] also modelled the potential geo-

graphic distribution of T. pseudomaculata in 2008 and again our results show good broad

agreement.

In conclusion, the maps generated by this study provide a robust summary of the contem-

porary distributions of the most commonly reported vector species across the Chagas endemic

zone. It is important that these maps are viewed within the context of the behaviour and vecto-

rial capacity of each of these species. Summaries of the literature published to-date are pro-

vided here and the earlier studies show that most of these triatomine species are potentially

important vectors of T. cruzi to humans. Each of the indicators of vectorial capacity summa-

rised at a species level here may vary within the range of the species, as well as between species

[76, 77]. It is therefore important to map spatial variation in these characteristics, as well as in

the species themselves, in order to identify where regions of high vectorial transmission risk

are likely to exist.
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