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Abstract

Cancer cells often employ developmental cues for advantageous growth and metastasis. Here, we report that an axon
guidance molecule, Sema3E, is highly expressed in human high-grade ovarian endometrioid carcinoma, but not low-grade
or other ovarian epithelial tumors, and facilitates tumor progression. Unlike its known angiogenic activity, Sema3E acted
through Plexin-D1 receptors to augment cell migratory ability and concomitant epithelial-to-mesenchymal transition (EMT).
Sema3E-induced EMT in ovarian endometrioid cancer cells was dependent on nuclear localization of Snail1 through
activation of phosphatidylinositol-3-kinase and ERK/MAPK. RNAi-mediated knockdown of Sema3E, Plexin-D1 or Snail1 in
Sema3E-expressing tumor cells resulted in compromised cell motility, concurrent reversion of EMT and diminished nuclear
localization of Snail1. By contrast, forced retention of Snail1 within the nucleus of Sema3E-negative tumor cells induced EMT
and enhanced cell motility. These results show that in addition to the angiogenic effects of Sema3E on tumor vascular
endothelium, an EMT strategy could be exploited by Sema3E/Plexin-D1 signaling in tumor cells to promote cellular
invasion/migration.
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Introduction

Malignant progression of a tumor often involves acquisition of

enhanced migratory ability in cancer cells for local invasion and

distant metastasis, both of which are the main determinants for

clinical morbidity and mortality. Similar biological processes occur

throughout normal embryonic development, as well as in certain

physiological conditions such as wound healing [1,2]. Insight from

developmental biology could therefore help us understand the

invasive nature of malignant progression of a tumor.

Semaphorins (Sema) are a large family of secreted and

membrane-associated proteins that provide environmental cues

to mediate diverse developmental processes including neuronal

cell migration, axon guidance, vasculogenesis, branching morpho-

genesis, and cardiac organogenesis [3–8]. Semaphorins bind

plexin and/or neuropilin receptors to transduce intracellular

signals. At present, five classes of semaphorins, two neuropilins and

four families of plexins are identified in mammals [6]. Recent

evidence also suggests semaphorin/plexin signaling is involved in

tumorigenesis [9–11]. However, their roles are quite diverse and

depend on the specific tumor context and the composition of

semaphorins, plexins, and their intracellular signal responsive

elements. Semaphorin/plexin signaling can either promote or

inhibit tumor growth by directly regulating cell migration or cell

apoptosis. Semaphorin/plexin signaling can also indirectly control

tumor invasive growth through regulation of angiogenesis or

tumor immunity [10,12–16].

In a screen of class 3 semaphorins in tumor tissue arrays (some

examples are shown in Fig. S1C), we identified Sema3E as

specifically expressed in high-grade ovarian endometrioid carci-

noma, a subtype of epithelial ovarian cancers (Fig. 1). Clinically,

most diagnoses of high-grade ovarian cancer have poor-prognosis

with tumor metastasis and are refractory to chemotherapy

underscoring the need to thoroughly understand the pathogenesis

of epithelial ovarian cancers and their progression [17]. Using a

human ovarian endometrioid carcinoma cell line and derived

sublines with different invasive/migratory capabilities [18], we

investigated the interrelation of Sema3E molecular and cellular

signaling mechanisms and tumor invasiveness. We report here that

Sema3E from tumor cells can act on themselves through Plexin-

D1 to induce EMT and concomitantly facilitate cell migration and

malignant progression.

Results

Sema3E is over-expressed in high-grade ovarian
endometrioid carcinoma

Based on preliminary immuno-screening results, we investigated

in detail the expression of Sema3E and its receptors, Plexin-D1

and Neuropilin-1 (Npn1), in human ovarian endometrioid

carcinomas. Tumor samples were obtained from 40 patients

diagnosed as primary ovarian endometrioid carcinoma at National

Taiwan University Hospital from 1995–2002. In addition to the

primary tumor, 9 cases had lymph node metastasis, and matching
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pairs of primary tumor and metastatic iliac lymph node were

available in 7 cases. Among these 40 tumor samples, 25 were

diagnosed as high-grade ovarian endometrioid carcinoma, and in

all cases a significant level of Sema3E protein and transcript was

detected. Sema3E expression was independent of patients’ age and

tumor stage, but was significantly correlated with tumor grade

(Table 1, and Fig. 1A, bottom panels). By contrast, most cases with

low-grade ovarian endometrioid carcinoma exhibited barely

detectable Sema3E levels (Fig. 1A, top panels). Plexin-D1 and

Npn1, components of the Sema3E receptor, showed similar

degrees of immuno-labeling in low-grade and high-grade tumors

(Fig. 1B). Moreover, Sema3E was specifically over-expressed in

high-grade ovarian endometrioid carcinoma in that other types of

ovarian epithelial tumors including serous, mucinous and clear cell

tumors, low-grade and high-grade alike, did not express Sema3E

(Fig. 1C). These data indicate a strong correlation between

Sema3E expression and high-grade human ovarian endometrioid

carcinoma.

We then examined the expression of semaphorins and their

receptors in human ovarian endometrioid carcinoma cell lines. A

human ovarian endometrioid carcinoma (OEC) cell line designat-

ed as P0 was previously established from a 63-year-old female

patient with stage IIIc endometrioid carcinoma. A subline

designated as P4 was also established by selecting clones that

exhibited enhanced migratory/invasive ability assayed by trans-

well chamber and wound migration [18]. Contrary to the

differential migratory/invasive capacities of P0 and P4 cells, no

apparent difference in cell proliferation and apoptosis was

observed [18] (also see Fig. S2C, D, and E). Semi-quantitative

RT-PCR analyses by gel electrophoresis (Fig. 1D) or in real-time

(Fig. S2B) showed that among class 3 semaphorins levels of

Sema3E were significantly higher (.10-fold) in high-invasive/

migratory P4 cells compared with P0 cells. By contrast, Sema3F

generally regarded a tumor suppressor was down-regulated in P4

cells [10,19]. Although variable plexin and neuropilin expression

was observed, Plexin-D1 and Npn 1 were equally expressed in the

low-invasive P0 and high-invasive P4 cells (Figs. 1E and S2B).

RNA in situ hybridization analysis on cultured single ovarian

endometrioid cancer cells confirmed these results (Fig. S2A). This

suggests Sema3E expression in ovarian endometrioid cancer cells

could be involved in the acquisition of cellular invasive/migratory

ability.

Figure 1. Differential expression of class 3 semaphorins,
neuropilins, and plexins in human ovarian epithelial cancers.
A, B. RNA in situ hybridization with antisense Sema3E probe and
immunohistochemistry with a polyclonal antibody against Sema3E show
differential expression of mRNA and protein respectively in cells
throughout tissue sections from high and low grade human ovarian
epithelial cancers. Hematoxylin and eosin staining (H&E) was performed
on adjacent sections to indicate general tissue cytoarchitecture. Scale bar,
20 mm. C. Immunohistochemistry shows a lack of Sema3E expression in
three different non-ovarian epithelial carcinomas. D, E. Semi-quantitative
RT-PCR analysis of class 3 semaphorin, neuropilin and plexin expression in
P0 and P4 OEC cells shows variable levels of expression. All density values
for PCR fragments are normalized to that of Gapdh for quantification.
doi:10.1371/journal.pone.0019396.g001

Table 1. Sema3E Expression Correlates Positively with High
Grade Ovarian Endometrioid Carcinoma.

Sema3E

Negative Positive Total P value*

Age

,55 y/o 7 (25%) 21 (75%) 28 0.589

.55 y/o 4 (33.3%) 8 (66.7%) 12 -

Stage

Low (I, II) 6 (33.3) 12 (66.7%) 18 0.455

High (III, IV) 5 (22.7%) 17 (77.3%) 22 -

Tumor grade

Low 11 (84.6%) 2 (15.4%) 13 1.98218E-08

High 0 (0%) 27 (100%) 27 -

Lymph node metastasis

Negative - - 33 -

Positive 3 (42.8%) 4 (57.2%) 7 0.322

*Chi-square test.
doi:10.1371/journal.pone.0019396.t001
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The p61-Sema3E isoform is likely to act in an autocrine
manner through Plexin-D1 to enhance the invasive/
migratory ability of ovarian endometrioid cancer cells in
vitro in a concentration-dependent manner

To investigate the role of Sema3E in mediating invasiveness

and/or migratory ability during tumor progression, we performed

gain and loss of function studies in OEC cells. First, we over-

expressed Sema3E in parental Sema3E-negative, low-invasive P0

cells. These stable cell lines (designated P0-3E-1, P0-3E-3 and P0-

3E-10) exhibited variable degrees of Sema3E expression as

measured by semi-quantitative RT-PCR, immunoblotting, and

RNA in situ hybridization (Fig. 2A). Second, Sema3E expression in

highly invasive P4 cells was stably knocked down by RNAi-

mediated depletion. We obtained two clones, designated P4/

si3E-1 and P4/si3E-2 targeted by different RNAi sequences that

showed 75%,90% decrease in Sema3E compared to parental P4

cells (Fig. 2B, right panels). Control OEC clones were transfected

either with empty-vector (-mock) or scrambled RNAi sequences

(-control). Flow cytometry analysis and trypan blue exclusion

experiments indicated that cell viability and proliferation were not

altered in P0-3E and P4/si3E clones (Fig. S2C and D).

The invasive/migratory abilities of OEC clones were evaluated

by in vitro wound-healing, 3-dimensional (3D)-matrigel migration,

and transwell chamber invasion assays. In the wound-healing assay,

P4-mock and P0-3E-1 cells started to fill the wound as early as

4 hours after the scratch, whereas P0-mock cells exhibited slow

motility even after 16 hours. The P0-3E clones migrated in a

Sema3E dose-dependent manner such that the P0-3E-1 and P0-

3E-9 cells, expressing relatively high amounts of Sema3E, moved

faster and farther than the P0-3E-3 and P0-3E-10 cells, which

expressed lower amounts of Sema3E (Fig. 2C and F). Conversely,

depletion of Sema3E in P4 cells slowed down the migratory velocity

and distance (Fig. 2E and F). Similar changes were observed in the

matrigel migration assay and the transwell chamber invasion assay:

P4 and P0-3E-1 cells exhibited a significantly greater invasive

potential compared with P0-3E-10, P4/si3E or parental P0 cells

where Sema3E levels are reduced or absent (Figs. 2G, H and S2E).

Therefore, over-expression of Sema3E in low-invasive OEC cells

enhances cellular migratory and invasive abilities in vitro in a does-

dependent manner, and knockdown of Sema3E diminishes the

migratory/invasive abilities in high-invasive OEC cells.

Sema3E binds directly with Plexin-D1 to transduce intracellular

signal during embryonic or tumor angiogenesis [20]. We

determined whether Plexin-D1 in OEC cells is required for

Sema3E mediated migratory/invasive ability that is unrelated to

angiogenesis. Two stable knockdown clones, P0-3E/siD1-1 and P0-

3E/siD1-2, were generated by RNAi targeting of separate Plexin-

D1 sequences which reduced Plexin-D1 levels by 85%–95% as

determined by western blotting (Fig. 2B, left panels). Knockdown of

Plexin-D1 affected neither the expression of Sema3E, nor the

viability or proliferation of cells (Figs. 2B, S2C and S2D). However,

the invasive/migratory phenotype conferred by over-expression of

Sema3E was reversed by loss of Plexin-D1 (Fig. 2D, F, G, H). These

results suggest that Sema3E confers a migratory ability to OEC

cells through Plexin-D1 in an autocrine manner.

Full-length class 3 semaphorin proteins are subject to convertase-

mediated cleavage, thereby generating multiple isoforms with

differential activities [15,21]. In breast cancer cells, p87-Sema3E

protein is cleaved by furin into p61 and p26 isoforms, and it is p61-

Sema3E that induces angiogenesis for invasive growth [15]. When

performing Sema3E immunoblotting in the Sema3E-expressing

OEC cells, we noticed that a p61-sized band instead of the full-

length p87-Sema3E was detected, even though all P0-3E clones

were transfected with a full-length Sema3E cDNA construct

(Fig. 2A). We examined whether this p61-protein corresponded to

furin-processed Sema3E. Immunoblotting showed that furin was

present in all OEC cells (Fig. S3A). When furin activity was

inhibited by decanoyl-RVKR-chloromethylketone, expression of

p61-Sema3E was significantly reduced while full-sized p87-Sema3E

became evident (Fig. S3B). Moreover, Sema3E-mediated migrato-

ry/invasive activities were compromised in the presence of furin

inhibitor (Fig. 2I). To examine the possibility that p61-Sema3E

alone is sufficient for promoting the migratory/invasive ability of

OEC cells conferred by Sema3E, we established P0-3Ep61 clones

that expressed only the p61-Sema3E isoform. Both in vitro (Figs. 2J,

S3C and S3D) and in vivo (Fig. 3C) studies demonstrated that

expression of p61-Sema3E alone was sufficient to promote

migratory/invasive ability in OEC cells. RNAi-mediated knock-

down of Plexin-D1 in OEC cells stably expressed p61-Sema3E

diminished migratory ability conferred by p61-Sema3E (data not

shown). For unknown reasons, we could not generate OEC cells

stably expressing mutant p87-Sema3E resistant to furin cleavage.

Therefore, we tested conditioned media from COS cells transiently

transfected with either p61-Sema3E or p87-Sema3E on cellular

motility of Sema3E-negative/Plexin-D1-positive P0 cells. Indeed,

exogenous p61-Sema3E-conditioned medium dose-dependently

promoted cell migration and this effect was weakened when

Sema3E was depleted from the medium by pre-incubation with

anti-Sema3E antibody (Fig. S3E and F). When unprocessed p87-

Sema3E-conditioned medium was applied, no enhancement in cell

migration was observed (data not shown). Collectively, these data

indicate that p61-Sema3E, but not full-length p87-Sema3E,

promotes a Plexin-D1 dependent migratory ability in OEC cells.

Sema3E/Plexin-D1 signaling promotes metastasis of
ovarian endometrioid cancer in vivo

We next evaluated the in vivo metastatic capacity of OEC cells

with different Sema3E/Plexin-D1 activity in NOD/SCID mice.

Intravenous injection of Sema3E-negative P0 cells at no time

resulted in tumor metastasis in any organ examined at 8 weeks

after cell intravenous injection. By contrast, injection of Sema3E-

expressing OEC clones caused metastatic tumor growth in the

lung as evidenced by an increase of total lung weight (Fig. 3C),

gross intrapulmonary hemorrhage (Fig. 3A, top panels), and the

presence of microscopic tumor nests near the vascular trees

(Fig. 3A, bottom panels). The pulmonary tumors originated from

the injected OEC cells as demonstrated by positive immunoreac-

tivity for human Sema3E and cytokeratin (markers for human

cells), but not TTF-1, a marker for pneumocytes (Fig. 3B). In

addition, a Sema3E dose-dependent and Plexin-D1-dependent

metastatic effect was observed. A higher percentage of pulmonary

micro-metastases developed in mice injected with OEC cells

expressing high levels of Sema3E (P0-3E-1, P0-3Ep61, P4 cells),

while cells with low Sema3E/Plexin-D1 activity (P0-3E-10, P4/

si3E, P0-3E-1/siD1) had a lower percentage of tumors (Fig. 3C).

Also, p61-Sema3E alone was able to confer pulmonary micro-

metastasis on parental P0 cells in vivo (Fig. 3C). All together, these

results demonstrate that p61-Sema3E through Plexin-D1 signaling

is responsible for conferring a dose-dependent stimulation of

pulmonary metastatic growth of OEC cells.

Sema3E/Plexin-D1 signaling alters the dynamic of single
OEC cell morphology, consistent with a change in cell
motility

We observed changes in OEC cellular morphology that

correlated with the activity of Sema3E/Plexin-D1 signaling. Cells

Sema3E Promotes Tumor Progression by EMT
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with high Sema3E expression and rapid cell motility such as P0-

3E-1 and P4 cells were usually spindle-shaped with a bi-polar or

multi-angular fibroblastoid appearance (Fig. 4A and B), while P0,

P0-3E-10, P4/si3E, and P0-3E-1/siD1 cells which had low

Sema3E/Plexin-D1 activity and low migratory ability, maintained

a higher percentage of round shapes with a cobblestone-like

appearance (Fig. 4A and B). We examined this correlation in

detail, by tracing individual OEC cell migration routes and

performing time-lapse photography during the wound-healing

assay. In contrast to impressions generated from steady-state

images, time-lapse photography revealed a dynamic pattern of

cytomorphological cycling between round, bipolar and multian-

gular shapes that was observed for all OEC cells examined

(Fig. 4C). We found that Sema3E/Plexin-D1 activity significantly

influenced the time OEC cells were observed in a round shape.

Thus, P0 and P0-3E-1/siD1 maintained a round morphology for

longer than P4 and P0-3E-1 cells which rapidly transitioned

through round shape and progressed quickly into a polarized

spindle shape (Fig. 4C and E). Furthermore, single cell tracing

revealed that OEC cells with Sema3E/Plexin-D1 signaling tended

to keep moving in one direction for a long distance, but cells with

low-Sema3E/Plexin-D1 activity frequently paused and changed

their migratory path (Fig. 4D). As a consequence, P4 and P0-3E-1

cells could move quickly in one direction for a long distance,

whereas P0 and P0-3E-1/siD1 cells stalled, constantly changed

directions, and were unable to move far in one direction (Fig. 4D).

This correlates well with the overall migratory abilities of different

Seam3E-expressing OEC cells in the wound-healing assay. More

intriguingly, the cytomorphological transition from round to

spindle shape that is highly associated with the acquisition of cell

motility resembles the phenomenon of so-called epithelial-to-

mesenchymal transition (EMT) [22], suggesting that Sema3E/

Plexin-D1 signaling in OEC cells could be involved in the EMT

process.

Sema3E/Plexin-D1 signals through PI3K and MAPK to
induce nuclear Snail1 translocation and epithelial-to-
mesenchymal transition

During EMT, cells often lose their epithelial molecular markers

and acquire markers of mesenchymal cells [23–26]. We thus

examined the molecular profile of different OEC clones to

determine whether Sema3E-induced morphological changes were

associated with an EMT event. E-cadherin, an epithelial marker,

was down-regulated in Sema3E-expressing OEC cells in a

Sema3E-concentration-dependent manner, whereas mesenchymal

markers vimentin and fibronectin were upregulated (Fig. 5A, B,

and data not shown). By contrast, RNAi-knockdown of Plexin-D1

in Sema3E-expressing cells abolished Sema3E-induced molecular

changes characteristic of EMT (Fig. 5A and C). Similar Sema3E-

associated changes of EMT markers were observed when cells

were examined by confocal immuno-fluorescent microscopy

(Figs. 5C and S4A). In addition, immunostaining for filamentous

actin in Sema3E-expressing cells identified filopodia and lamelli-

Figure 3. Sema3E/Plexin-D1 signaling mediates metastatic
growth of ovarian endometrioid cancer cells in vivo. A. Gross
and microscopic changes in lungs after intravenous (i.v.) injection into
NOD/SCID mice of OEC cell lines expressing different Sema3E/Plexin-D1
activities. Arrowhead indicates microscopic tumor nests near the
vascular tree. Scale bar, 50 mm. B. Immunohistochemistry of Sema3E,
cytokeratin, and TTF1 in pulmonary metastatic tumors of NOD/SCID
mice i.v. injected with P0-3E-1 cells. C. Summary of in vivo metastatic
experimental results. The number of mice with micro-metastatic
tumorous lesion of the lung (left to the slash) versus the total number
of mice examined (right to the slash) is shown. Average lung weight
differed between groups (*, P,0.05, Student’s t-test).
doi:10.1371/journal.pone.0019396.g003

Figure 2. Sema3E mediates the invasive/migratory ability of OEC cells in vitro in a Sema3E-p61/Plexin-D1 dose-dependent manner.
A. Modified P0 cell lines (P0-3E-x) express variable levels of Sema3E as measured by semi-quantitative RT-PCR analysis (left top) and Western blotting
(left bottom). Expression values were normalized to Gapdh and œ-Tubulin for mRNA and protein, respectively. RNA in situ hybridization probes by
Sema3E in P0-3E-1 compared with P0 cells (right). B. Western blotting of Sema3E and Plexin-D1 in P4/si3E clones (RNAi-1, -2 for targeting two
different sequences of Sema3E) and P0-3E-1/siD1 clones (RNAi-1, -2 for targeting two different sequences of Plexin-D1). C, D, E, F. Brightfield
photomicrographs from wound-healing migration assays of various P0-3E (C), P0-3E-1/siD1 (D), and P4/si3E (E) cell lines at the beginning (0 h) and
16 hours after surface scratch. Wound edges were marked with white lines (0 h) or black lines (16 h). Scale bar, 0.5 mm. A summary of the average
migrating velocity (mm/h) for each clone is plotted (F) with standard deviation (n$12). *, P,0.05, paired t-test. G, H. Representative images (G) and
graph summary (H) of the transwell chamber invasion assay (n$6). Scale bar, 30 mm. I. The furin inhibitor, decanoyl-RVKR-chloromethylketone, alters
migratory ability of P0-3E-1 cells in wound-healing and transwell chamber migration assays. DMSO was used as a control. White line, 0 h in wound-
healing process; black line, 16 h after surface scratch. **, P,0.005, *, P,0.05, paired t-test, n = 5. Scale bar, 0.5 mm. J. Transwell chamber invasion
assay for P0 cells stably expressing p61-Sema3E isoform (P0-3Ep61-1 and P0-3Ep61-2) compared with P0-3E-1 cells and P0 cells. **, P,0.005, paired t-
test, n = 4. Scale bar, 0.3 mm.
doi:10.1371/journal.pone.0019396.g002
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podia formation typical of EMT-induced cytoskeletal changes, but

this was not observed in cells with low Sema3E/Plexin-D1

expression (Fig. 5C, top panels).

A major regulator of EMT during embryonic development and

tumor progression is the Snail family of zinc finger transcription

factors, of which Snail (Snail1) and Slug (Snail2) are the most

intensively studied [27–29]. Many epithelial cancer cells induce

EMT via up-regulation of Snail1 mediated transcription [22].

However, Sema3E expression in OEC cells did not alter mRNA

or protein levels of Snail1 (or Snail2 and Twist) (Fig. 5A and B).

The function of Snail1 could alternatively be modulated by its

subcellular localization so that nuclear translocation of cytosolic

Snail1 is required for accessibility of target promoters [30,31]. We

examined whether Sema3E/Plexin-D1 signal modulated the

subcellular localization of Snail1 in OEC cells. Immuno-

fluorescent microscopy revealed a mixed population of OEC cells

with Snail1 either predominantly located in the nucleus, or in the

cytoplasm. However, nuclear localization of Snail1 correlated

positively with Sema3E/Plexin-D1 activity. In cells with high

Sema3E/Plexin-D1 activity such as P0-3E-1 cells, most exhibited

predominant nuclear localization of Snail1 (64%68% [mean 6

standard deviation of three experiments]), whereas most cells with

low Sema3E/Plexin-D1 activity displayed a predominantly

cytosolic distribution of Snail1 (for example: P0, 78%66%

cytosolic Snail1 localization) (Fig. 5D). In addition, immunohisto-

chemistry of Snail1 in human ovarian endometrioid carcinomas

revealed that high-grade tumors had a higher percentage of cancer

cells with nuclear Snail1 and low-grade tumors had predominantly

cytosolic Snail1 localization (Fig. 5E). By contrast, no Snail1

expression was observed in endometriosis cyst-lining cells (Fig. 5E).

Figure 4. Sema3E/Plexin-D1 activity alters the cytomorphology of ovarian endometrioid cancer cells. A. Representative images of three
distinct cell shapes of OEC cells as round, bi-polar and multi-angular. B. Quantification of the percentage of each morphology in an overall population
(n$400) of OEC clones with variable activity of Sema3E/Plexin-D1. C, D, E. Time-lapse tracing (up to 200 minutes with 20-min tracing intervals) of the
morphological dynamics of single OEC cells in a wound-healing process (C). Single OEC migratory paths were plotted (D). Arrows indicate the start of
each tracing, and colored dots indicate the position of the traced cell at each time point. Each step in the migratory sequence was labeled with the
numbers same as those in (C). The bar graph in (E) summarized average time-interval spent by each OEC cell on each distinct cell shape. *, P,0.05,
paired t-test.
doi:10.1371/journal.pone.0019396.g004
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Figure 5. Sema3E/Plexin-D1 mediated epithelial-to-mesenchymal transition depends on nuclear translocation of Snail1. A, B.
Expression of cellular markers of EMT correlates with levels of Sema3E/Plexin-D1 activity in modified OEC cells as measured by semi-quantitative RT-
PCR (A) and Western blotting (B). By contrast, members of the Snail family transcription factors that regulate developmental EMT are uniformly
expressed in modified OEC cell lines. Signal intensities were normalized to Gapdh (A) or œ-Tubulin (B), respectively, and are indicated as ratios. C, D.
Confocal microscopy of OEC cells shows a shift from epithelial (E-cadherin) to mesenchymal (Vimentin) marker expression and a distinct nuclear
translocation of Snail1 in modified OEC cells exhibiting greater Sema3E/Plexin-D1 activity. Immunoreactivity for filamentous actin, and nuclear DAPI
staining were used as general markers of cell morphology. Scale bar, 20 mm. E. Nuclear localization of Snail1 is associated with high grade of human
OEC tissue, but not low-grade human OEC tissues. Snail1 was not detected in ovarian endometriosis. Scale bar, 10 mm. F. E-cadherin promoter
activity, measured by normalized luciferase expression in modified OEC lines, is down-regulated in cells with high Sema3E/Plexin-D1 signaling. This is

Sema3E Promotes Tumor Progression by EMT
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These observations suggest that Sema3E/Plexin-D1 signaling in

ovarian endometrioid cancer cells may induce EMT through

nuclear translocation of Snail1.

To determine whether Snail1 is a downstream responsive

element for Sema3E/Plexin-D1 signaling in OEC cells within the

context of EMT and cell motility, we tested whether the

transcriptional down-regulation of the epithelial cell marker E-

cadherin in response to Sema3E/Plexin-D1 signaling depends on

Snail1. As shown in Fig. 5F, luciferase promoter activity assay

showed that cells with high Sema3E/Plexin-D1 activity exhibited

repressed promoter activity of E-cadherin (for example, compare

P0-3E-1 cells with P03E/siD1 or P0 cells). By contrast, mutation in

E-box (a target recognized by Snail1) or RNAi-knockdown of

Snail1 resulted in loss of repression in E-cadherin promoter

activity conferred by Sema3E/Plexin-D1. In addition, knockdown

of Snail2 in P0-3E-1 cells could not disinhibit the repressed

promoter activity of E-cadherin (Fig. 5F). We also found that

RNAi-knockdown of Snail1 in Sema3E-expressing cells caused the

spindle-shaped cells tansformed into rounder shape and the

expressions of E-cadherin and Vimentin concomitantly reverted

(Fig. 5G and I), indicating that Snail1 is required for Sema3E-

induced EMT. In addition, the enhanced migratory ability

conferred by Sema3E in P0-3E-1 cells was diminished when

Snail1 was RNAi-depleted but unaltered by RNAi-depletion of

Snail2 (Fig. 5H). On the contrary, forced retention of Snail1

within the nucleus by leptomycin B treatment in Sema3E-negative

P0 cells increased cell migratory ability and resulted in

transformation into spindle-shaped cells (Fig. 5J and K). This

suggests that Snail1 translocation into the nucleus functions

downstream of Sema3E signaling to mediate cell morphology

and motility. Time-lapse tracing of Snail1 subcellular localization

versus cell morphology and migratory velocity revealed a

correlation between Snail1 nuclear localization and spindle cell

shape as well as with increased migratory velocity (Fig. S4B, C and

D). Collectively, these studies indicate that Sema3E/Plexin-D1

signaling in ovarian endometrioid cancer cells could regulate

Snail1 translocation to the nucleus in order to induce EMT and

concomitantly augment cell motility.

The intracellular signaling pathway(s) that might regulate

Sema3E/Plexin-D1 mediated translocation of Snail1 and subse-

quent EMT in OEC cells was investigated by testing the effect of

several well-known kinase inhibitors on cell motility and Snail1

subcellular localization. Inhibition of p38 mitogen-activated

protein kinase (SB203580), protein kinase C (GF109203X), and

Jun N-terminal kinase (SP600125) in Sema3E-expressing OEC

cells had no effect on Sema3E-augmented cell migration or on

Snail1 nuclear localization. By contrast, inhibition of phosphati-

dylinositol-3-kinase (PI3K) (LY294002 and wortmannin) or

extracellular signal-regulated kinase (ERK)/mitogen activated

protein kinase (MAPK) (PD98059) activity resulted in cytosolic

retention of Snail1 and a concomitant decrease in migratory

ability conferred by Sema3E (Fig. 6A, B and C). Immuno-blotting

also demonstrated that Sema3E expression correlated with

phosphorylated ERK1/ERK2 expression, which diminished upon

PD98059 treatment (Fig. 6D). These studies suggest that activated

PI3K and ERK/MAPK are the main intracellular signaling

components transducing Sema3E/Plexin-D1 mediated Snail1

nuclear translocation.

Discussion

Semaphorin/plexin signaling has been broadly linked with

tumor growth and metastasis. Here, we demonstrated a strong

association between Sema3E expression and high-grade human

ovarian endometrioid carcinoma. Moreover, we uncovered an

unexpected functional link between Sema3E/Plexin-D1 signaling

and epithelial-to-mesenchymal transition, and provided a mech-

anistic explanation for the augmented cell motility conferred by

Sema3E from high-grade tumors. Although a similar pro-invasive

effect has been attributed to autocrine Sema3E/Plexin-D1

signaling in colon cancers and melanoma [32], no effect on

EMT was reported. The utilization of multiple molecular and

cellular mechanisms to achieve a common biological effect using

the same ligand-receptor interaction might be attributed to the

complexity of semaphorin/plexin family member interactions and

intracellular signaling pathways utilized by these molecules.

Semaphorins and their receptors are recognized as major

regulators of cellular morphology and migration involved in

various developmental and pathological processes. During embry-

onic development, they participate in neuronal and non-neuronal

cell migration to regulate neural development, heart formation,

vasculature formation, and development of the immune system

[6]. Specifically, Sema3E/Plexin-D1 signaling regulates endothe-

lial migration involved in heart and vessel formation, and guides

the trajectory of descending axonal tracts in developing forebrain

[20,33–36]. In the immune system, Sema3E/Plexin-D1 interac-

tion controls migration of positively selected thymocytes into

medulla and consequently affects thymic corticomedullary archi-

tecture [37]. During tumorigenesis, opposing biological effects of

Sema3E/Plexin-D1 signaling have also been reported depending

on cellular context. For example, expression of Sema3E in prostate

cancers and metastatic melanoma inhibits adhesion and motility of

cancer cells [38,39]. By contrast, Sema3E/Plexin-D1 signaling in

colorectal cancers increases cellular invasiveness and metastasis

[32]. In addition, although Sema3E in embryonic somites is

known to repel Plexin-D1-expressing endothelial cells during

vasculogenesis, both anti-angiogenic and pro-angiogenic effects of

Sema3E have been reported in cancer cells. For example, down-

regulation of Sema3E in melanoma facilitates tumor angiogenesis

for distant metastasis [38], while Sema3E overexpression in

mammary adenocarcinoma promotes peri-tumor local endothelial

cell migration for invasive growth and lung metastasis [15]. The

biological effects of Sema3E/Plexin-D1 signaling are clearly

diverse and highly dependent on the exact nature of the myriad

intracellular signaling pathways available during tumorigenesis. In

ovarian endometrial carcinomas, we have provided a previously

unknown mechanism of Sema3E/Plexin-D1 signaling that

facilitates tumor progression through Snail1-medidated EMT.

Semaphorin/plexin intracellular signaling is highly context-

dependent. An emerging picture suggests that semaphorin/plexin

interactions trigger crosstalk among multiple intracellular signaling

pathways including small GTPases, integrin, MAPK and PI3K/

Akt/GSK-3b axes, all of which could lead to cytoskeletal

dependent on Snail1 translocation since knockdown of Snail1 or a mutated E-box prevents transcriptional repression. Error bars show s.e.m., n = 9.
**, P,0.01, *, P,0.05, paired t-test. G. Western blots illustrate RNAi-mediated knockdown of Snail1 in Sema-3E expressing P0-3E-1 cells via lenti-viral
infection. H. Knockdown of Snail1 expression in P0-3E-1 cells decreases migration in wound healing assay. I. Knockdown of Snail1 in P0-3E-1 cells
induces a shift from spindle shaped, vimentin positive to a rounded, E-cadherin positive cellular morphology. Scale bar, 10 mm. J, K.
Pharmacologically-induced retention of nuclear Snail1 by leptomycin B (20 ng/ml) increases migratory ability and induces a spindle shaped cellular
morphology in P0 cells. Scale bar, 10 mm.
doi:10.1371/journal.pone.0019396.g005
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rearrangement and affect cell motility [6,7,40]. Consistent with

this idea, we show that the cellular EMT induced by Sema3E/

Plexin-D1 in ovarian endometrioid carcinoma cells occurs at least

partially through PI3K and ERK/MAPK mediated nuclear

translocation of Snail1. The involvement of ERK/MAPK activity

supports the notion that activation of ERK/MAPK is a hub for

multiple semaphorin signaling pathways, as evidenced by previous

studies of Sema3A/Plexin-A1, Sema4D/Plexin-B1, and Sema7A

signaling [41–43]. Activation of ErbB2/Neu kinase is also required

for pro-invasive/metastatic activity in tumor cells [32], and we

found that ErbB2 transcripts were significantly changed in

Sema3E-positive OEC cells in gene profiling via RNA microarray

analysis (data not shown). It is therefore likely that Sema3E/

Plexin-D1 signaling couples with ErbB2 to regulate MAPK

activity in endometrioid cancer cells, as has been shown previously

for Sema4D/Plexin-B1 signaling in hipoccampal neurons and

HEK293 cells [43]. PI3K has recently been shown to be a main

switch for Sema3E/Plexin-D1 signaling in cortical neurons [44].

This switch is regulated by another receptor, Npn-1. Thus,

Sema3E/Plexin-D1 signaling normally inhibits PI3K and results

in cortical axon repulsion, but at the presence of Npn-1, Plexin-D1

recruits yet another receptor VEGFR2 upon Sema3E binding and

then activates PI3K to promote cortical axon attraction and

outgrowth. Consistent with this observation, Npn-1 is present in

the OEC cells (Fig. 1) and is likely to regulate Sema3E/Plexin-D1

signaling by similar mechanisms. Taken together, our data provide

evidence suggesting that PI3K and ERK/MAPK signaling

pathways are involved in Sema3E/Plexin-D1-mediated EMT in

ovarian endometrioid carcinomas. Further studies are still

required to clarify whether other signaling pathways involving

integrin, Ras, and Rho family members are involved.

EMT is a strategy frequently exploited by cells for acquisition of

increased cell motility either in normal developmental processes or

during malignant progression of tumors [25,26]. Increasing

evidence indicates that induction and regulation of Snail family

members are critical for EMT to occur [29,31]. Numerous

extracellular signaling molecules including EGF, FGF, HGF,

BMPs, WNT, Notch, and TGF-b have been reported to regulate

the expression or activity of Snail family members in the context of

EMT [31]. Here, we show that Sema3E is capable of acting as an

EMT inducer through regulating intracellular Snail1 localization.

Consistent with our data, another semaphorin family member in

zebra fish, Sema3D, has been shown to regulate the cell cycle of

neural crest cells that undergo massive EMT during embryogen-

esis [45].

Why is Sema3E-mediated EMT so specific to high-grade

ovarian endometrioid carcinoma but not other ovarian epithelial

tumors? It is well known that human ovarian epithelial cancers

arise from the ovarian surface epithelium, which under normal

Figure 6. PI3K and ERK/MAPK signaling pathways mediate
regulation of Sema3E/Plexin-D1-induced EMT. A, Cell transwell
invasion assay of P0-3E-1 cells reveals a significant decrease in migratory

cell activity following pharmacological inhibition of PI3 kinase
(LY294002, or wortmannin) and ERK/MAPK (PD98059) but not p38
mitogen activated protein kinase (SB203580), PKC (GF109203X), or Jun-
N-terminal kinase (SP600125). Scale bar, 30 mm. **, P,0.01, *, P,0.05,
paired t-test. B. Confocal microscopy indicates that inhibitors of PI3
kinase and ERK/MAPK specifically prevent nuclear translocation of
Snail1 in P0-3E-1 cells. Vehicle alone (DMSO) had no obvious effect on
Snail1 translocation. Scale bar, 20 mm. C. Quantitative analysis of Snail1
nuclear translocation and normalized cellular migration in wound
healing assays following pharmacological block of intracellular signaling
pathways. **, P,0.01, *, P,0.05, paired t-test. D. Increased phosphor-
ylated ERK is associated with increased Sema3E/Plexin-D1 activity in P0-
3E21 cells compared with the parental P0 cell line. Inhibition of ERK/
MAPK signaling with PD98059 prevented ERK phosphorylation but did
not affect overall ERK expression levels or activation or levels of Akt.
doi:10.1371/journal.pone.0019396.g006
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conditions has limited growth potential but can undergo EMT

during physiological repair responses [46,47]. The importance of

EMT in normal ovarian physiology is not fully understood, but

recent studies have begun to elucidate EMT-associated events in

ovarian cancer development and progression. Factors such as

endothelin A receptor/endothelin-1 axis, autocrine BMP4 signal-

ing pathway, and 17ß-estradiol have been reported to trigger

EMT and promote tumor progression by up-regulating Snail1

activity in human ovarian cancer cells [48–50]. The diversity of

EMT-triggers in various tissue types of ovarian epithelial cancers,

including the Sema3E signaling pathway reported here, suggests

the existence of sub-populations of ovarian surface epithelium that

respond differentially toward growth factors and cytokines under

normal conditions, and may underline their specific susceptibilities

to different factors for malignant transformation and tumor

progression.

Materials and Methods

Case selection
A total of 40 cases diagnosed as ovarian endometrioid

carcinoma were identified after searching the pathological records

from January 1999 to December 2005 registered in National

Taiwan University Hospital (NTUH), Taipei, Taiwan. Additional

40 cases each for ovarian clear cell carcinoma, serous carcinoma

and mucinous carcinoma were also included for immunohisto-

chemistry studies. Tissue blocks were derived from the archives of

the Department of Pathology, NTUH, following the guidelines set

forth by Tissue Committee at NTUH. Selected demographic

information including age, sex, histological subtype and grade, and

outcome of survival for each patient included in this study was

retrieved from the hospital cancer registry as documented [18].

Antibodies and Chemicals
Rabbit polyclonal antisera against Sema3E or Plexin-D1 were

generated by immunizing rabbits with KLH-conjugated synthetic

peptides that correspond to a.a. (amino acids) 67–84 of human

Sema3E (NM_012431) or a.a. 191–204 of human Plexin-D1

(NM_015103), respectively (Sigma). The polyclonal antibodies

were purified by affinity chromatography (CNBr-activated Se-

pharose 4B beads, Amersham), and the antibody specificity was

examined by Western blotting and by tissue-immunohistochem-

istry (Fig. S1A, B, C). Other antibodies used include antibodies to

Snail1, Snail2 (Slug), GFP, ERK1+ERK2 (Abcam), phospho-

ERK1+ERK2 (Santa Cruz), Vimentin, E-Cadherin, Fibronectin

(BD Biosciences), Cytokeratin, œ-Tubulin (Oncogene), Myc (Invi-

trogen), and phospho-Akt(T308), phospho-Akt(S473), Furin (R&D

Systems). Chemicals used include Leptomycin B (Sigma), Furin

inhibitor I (Decanoyl-RVKR-CMK) (Calbiochem), GF109203X,

LY294002, Wortmannin (Merck), SB203580, SP600125, PD98059

(Biosource).

Plasmid constructs
The full-length human Sema3E cDNA was purchased from

ATCC and was subcloned into either a pCMVtag, a pcDNA3.1/

Myc-His, or a pEGFP vector by conventional cloning technique.

The p61-Sema3E isoform (p61-Sema3E-Flag), which corresponds

to a.a. 32–560 of the full-length Sema3E, was PCR-generated and

subcloned in frame into the EcoRI and SalI sites of pCMVtag-

2A. Step-by-step site-directed mutagenesis was used to generate

pSema3E-p87(R557S, R559G, R560G)-GFP by synthesizing

primers flanking the designed mutation sites and following

the manufacture’s instructions (Stratagene). Human Plexin-D1,

Snail1, and Snail2 (Slug) cDNA constructs were generated by

PCR from human fetal cDNA library (Clontech) and subcloned

into the mammalian expression vectors. Plexin-D1-specific small

interfering RNA (siRNA-1: 59-TTTGAGCAGGTGGTGGCT-

39, nucleotide (nt) 5718-5736 from NM_015103, CDS; siRNA-2:

59-GGACTCGCTGAGCGTGCGGG-39, nt.4801-4820), Sema3E-

specific siRNA (siRNA-1: 59-AAGTATATTTCTTTTTTA-39,

nt.727-745 from NM_012431, CDS; siRNA-2: 59-TTCCAAAC-

CTGAGCATTACC-39, nt.2900-2920), and a nonspecific duplex

oligo (as a negative control) were synthesized and cloned into

pSUPER plasmid (OligoEngine). pLKO.1-shSnail1 plasmids tar-

geting five different sequences (NM_005985, CDS: nt.757-777;

nt.514-534; nt.504-524; nt.136-156; nt.108-128) and pLKO.1-

shSlug plasmids targeting four different sequences (NM_003068,

CDS: nt.1315-1335; nt.810-830; nt.865-885; nt.254-274) were

purchased and prepared from National RNAi Core facility,

Academia Sinica, Taiwan.

Cells lines, lentiviral infection, and plasmid transfection
The parental and established OEC stable cell lines were

maintained in complete media (DMEM plus 10% FBS and 1%

penicillin/streptomycin), with or without 500 mg/ml G418 at

37uC incubator inflated with 5% CO2. The plasmid was

introduced by lipofectAMINE2000 (Invitrogen). Cells were

infected with lentiviral preparation with MOI:120 plus 8 mg/ml

polybrene (Sigma).

Measurement of cell proliferation and viability
Cell proliferation curves were determined by counting viable

cells with trypan blue exclusion. Cell viability was determined

from the sub-G1 fraction in the flow cytometry by using

propidium iodide (Molecular Probes).

Semi-quantitative RT-PCR
Total cellular RNA from tissue or cells was isolated using

MaestroZolTM kit (MAESTROGEN), according to the manufac-

turer’s instructions. Then, cDNA was synthesized from total RNA

(5 mg) with oligo d(T) and SuperScript II reverse transcriptase

(Invitrogen). The primer sets used were: Sema3A (Genbank

accession number: NM_006080, nt.902-921, nt.1346-1328 and

nt.1929-1951, nt.2052-2032 for real-time PCR); Sema3B (NM_

001005914, nt.178-193, nt.775-755; nt.1489-1507, nt.1603-1584

for real-time PCR); Sema3C (NM_006379, nt.563-582, nt.1325-

1304; nt.569-588, nt.688-665 for real-time PCR); Sema3D (NM_

152754, nt.2059-2076, nt.2373-2355); Sema3E (NM_012431,

nt.1475-1495, nt.2031-2011; nt.1633-1658, nt.1754-1731 for real-

time PCR); Sema3F (NM_004186, nt.781-799, nt.909-892); Npn1

(NM_003873, nt.524-541, nt.1184-1174; nt.591-615, nt.704-685

for real-time PCR); Npn2 (NM_201267, nt.796-812, nt.1449-

1429); Plexin-A1 (NM_032242, nt.2519-2536, nt.3052-3034;

nt.7737-7759, nt.7879-7858 for real-time PCR); Plexin-A2 (NM_

025179, nt.4172-4190, nt.4736-4717); Plexin-A3 (NM_017514,

nt.2788-2805, nt.3102-3095); Plexin-B1 (NM_002673, nt.4285-

4302, nt.4640-4622); Plexin-C1(NM_005761, nt.3273-3291,

nt.3865-3847); Plexin-D1 (NM_015103, nt.4017-4034, nt.4474-

4456; nt.5018-5028, nt.5132-5108 for real-time PCR). The PCR

analyses were performed in two methods: (1) PCR analysis by gel

electrophoresis: The PCR amplification was done as follows:

denaturing at 94uC for 30 s, annealing at 55uC for 30 s, and

extension at 72uC for 45 s. The PCR products were resolved in gel

electrophoresis. The number of cycles was determined by pilot

experiments so that all amplifications took place within the linear

range. Parallel RT-PCR experiments were conducted using the

housekeeping gene GAPDH as an internal standard and all

expression values were expressed as a ratio of GAPDH levels. (2)
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PCR in real time: The real-time PCR was performed using ABI

PRISMH 7900HT Sequence Detection System in the presence of

the SYBRH Green Realtime PCR Master Mix (TOYOBO). Each

amplified sample was analyzed for homogeneity using dissociation

curve analysis. The relative expression value of each gene to

GAPDH was calculated using the SDS software v2.2 (Applied

Biosystems). Each reverse transcription and PCR assay was

performed at least in triplicate.

RNA in situ hybridization
RNA in situ hybridization with indicated DIG-labeled ribop-

robes was performed in tissue sections and cells as previously

described [51].

Wound-healing, 3D-matrigel invasive growth, and
transwell migration assays

For the wound-healing assay, cultured cells were wounded,

photographed each hour, and quantified as the average linear

migratory speed of the wound edges over 12,16 hours. The 3D-

matrigel invasion assay was done by placing a solidified cell cake

composed of aggregates of cells inside a 30 ml-volume of growth-

factor reduced Matrigel (Becton Dickinson) in one well of 4-well

plates covered with complete medium. After 48,60 hours,

radial migration distance from central cell aggregates was photo-

graphed and measured in at least triplicate experiments. Cell

invasion assay was performed in Boyden chambers containing

polycarbonate filters with 8 mm pore size and pre-coated with

Matrigel (Costar). Cells were placed in the upper wells of 24-

chambers at a density of 56104/100 ml complete medium for

48 hours, and those cells adherent to the bottom surface of the

filter were fixed, stained with crystal violet, and counted by light

microscopy.

Western blotting, immunohistochemistry, time-lapsed
and confocal immunofluorescence microscopy

Western blot and immunohistochemistry and confocal mi-

croscopy were performed as described [51]. For numerical

counts of Snail1 subcellular localization, images were acquired

with Leica confocal microscopy and at least 400 cells in

randomly selected high-power field (4006) were counted for

each experiment. For time-lapsed recording, cells grown on 6-

well plates were enclosed in a chamber designed for continuous

video recording. In some assays, recombinant Sema3E (R&D)

was added to P0 cells. Effective optimal concentration (2 nM)

was experimentally titrated and determined. Images were

recorded once for every 5 mins with Leica DMIRB microscope

equipped with Photometrics CoolSNAP of CCD. Fluorescent

intensity and migration velocity were measured by Metamorph

version 7.5.6.

Luciferase assay
Human E-cadherin promoter (2178/+92) was cloned into the

pGL3-basic vector (Promega). Site-directed mutagenesis was used

to generate pGL3-E-cad-promoter (2178/+92) with mutated E-

box (269/264CAGGTG, 218/213 CACCTG, and +32/

+37CACCTG4 mutated as AACCTA) following the manufac-

ture’s instruction (Stratagene). Cells were seeded in 24-well plates

at the density of 36104 cells/well, and were co-transfected with

pGL3-control, or pGL3-basic, or pGL3-E-cadherin promoter plus

pRL-TK per well. Cell lysate was collected after 48 or 72 hours of

transfection. Expression of the firefly and Renilla luciferase was

assayed in accordance with Dual-LuciferaseH Reporter Assay

System (Promega).

Experimental lung metastasis
The OEC cells (26105) in 200 ml of PBS were injected into the

tail vein of female NOD/SCID mice (age: 6–8 weeks). Mice were

sacrificed between days 35,56 after injection and the organ were

formalin-fixed and subjected for morphology and immunohisto-

chemistry analysis.

Supporting Information

Figure S1 A, B. Generation and validation of anti-
human Sema3E and human Plexin-D1 antibodies. A

polyclonal antiserum against human Sema3E, Sema3E-O4, was

generated (A). This antiserum (1:500 dilution) recognizes Sema3E

transiently expressed in COS cells exactly at the same band

detected by a commercially purchased anti-Sema3E antibody,

Sema3E-T19. The immuno-intensity detected by Sema3E-O4 is

diminished in the presence of Sema3E-RNAi. Note that the size of

the band recognized by Sema3E-O4 and Sema3E-T19 indicates

the p61-Sema3E isoform fused to EGFP, suggesting cleavage of

the transfected full-length Sema3E (p87) in the COS cells. Besides,

cells transiently transfected with the vector p-Sema3Ep87(R557S,

R559G, R560G)-GFP expresses the un-cleaved Sema3E-p87 fused

to GFP. Asterisk: non-specific band detected by Sema3E-O4.

Arrowhead: non-specific band detected by Sema3E-T19. In (B),

the polyclonal anti-Plexin-D1 antisera specifically recognize Myc-

tagged Plexin-D1 expressed in COS cells by immunoblot. C.

Sema3E immunohistochemistry in human tissue arrays. Anti-

Sema3E antisera, not the pre-immune serum, recognize human

tumor cells in lung adenocarcinoma and invasive ductal

adenocarcinoma of the breast as reported before [15]. Normal

lung tissue and other epithelial cancers examined here such as

adenoid cystic carcinoma of salivary gland and renal cell

carcinoma (clear cell type) did not express Sema3E.

(TIF)

Figure S2 A. RNA in situ hybridization reveals more
Sema3E, less Sema3F, and comparable Plexin-D1 and
Npn1 transcripts in P4 cells than in P0 cells. Sense-control

for each probe was shown in the rectangle of the left lower corner.

Scale bar, 10 mm. B. mRNA expression of class 3 semaphorin,

Npn and plexin in P4 cells relative to P0 cells (shown by fold-

change) as revealed by real-time PCR. C. All constructed OEC

cell lines involving Sema3E/Plexin-D1 signaling activity shows

similar sub-G1 fraction and pattern of cell cycle progression in

flow cytometry using propidium iodide stain. D. Similar cell

proliferation curves are observed in all constructed OEC lines as

determined by trypan blue exclusion. E. Representative photo-

graphs of OEC cell aggregates with varying Sema3E/Plexin-D1

activity in 3D-Matrigel photographed after 63-h culture. P0-3E-1

cells migrate farther than P0 and P0-3E-10 cells, whereas RNAi-

knockdown of Plexin-D1 in P0-3E-1 cells (P0-3E-1/siD1) signifi-

cantly reduces the migration distance. The migratory ability of P4

cells is also diminished by RNAi-depletion of Sema3E (P4/si3E).

(TIF)

Figure S3 Furin-processed p61-Sema3E is required for
promoting the in vitro migratory/invasive ability of
OEC cells conferred by Sema3E. A. Furin is present in all

constructed OEC clones as evident by immunoblotting. B. The

furin inhibitor, decanoyl-RVKR-chloromethylketone, prevents the

full-sized p87-Sema3E from cleavage into p61 isoform in P0-3E-1

cells. C, D. P0 cells that stably expressed only the p61 isoform (P0-

3Ep61-1 and P0-3Ep61-2 cell lines) exhibit similar migration-

promoting effect comparable to P0-3E-1 cells in wound-healing

process. Scale bar, 0.5 mm; D, n = 12, **, P,0.005, paired t-test.
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E, F, G. Exogenous p61-Sema3E promotes migration of Sema3E-

negative-P0 cells in a dose-dependent manner. Representative

images in (E) and bar graph in (F)(n = 5) shows that p61-Sema3E-

conditioned media (Sema3E-p61-CM) accelerates P0 cell migra-

tion rate in the wound-healing process, which is concentration-

dependently attenuated when the Sema3E-p61-CM is serially-

diluted with mock-transfected conditioned media (Mock-CM) as

evident by Western blotting (G). The migration-promoting effect is

specifically blocked when the Sema3E-p61-CM is pretreated with

an anti-Sema3E antibody (anti-Sema3E), but not with a non-

specific antibody (anti-IgG Ab). Scale bar, 0.5 mm, **, P,0.005;

*, P,0.05, paired t-test.

(TIF)

Figure S4 A. Immunofluorescence of E-cadherin per-
formed in confluent cells shows membranous (cell
border) and cytoplasmic staining in P0 cells, but the
staining in P0-3E-1 cells (upper panels) is greatly
reduced. By contrast, vimentin-immunoreactivity is detected in

P0-3E-1 cells, but not in P0 cells (lower panels). Scale bar, 20 mm.

B, C, D. Time-lapse tracing of the sub-cellular localization of

GFP-tagged Snail1 protein transfected in high-Sema3E expressing

P0-3E-1 cells. Shown here is the result from a 2-hour recording

with 5-min time-lapse intervals. Note that nuclear localization of

Snail1 correlates with spindle morphology of the cell (B). The

decrease in the nuclear fluorescent intensity of Snail1 (C) correlates

well with slower cell motility (D).

(TIF)
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