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Myocardial ischemia-related disorders constitute a major health problem, being a leading

cause of death in the world. Upon ischemia, tissue remodeling processes come

into play, comprising a series of inter-dependent stages, including inflammation, cell

proliferation and repair. Neovessel formation during late phases of remodeling provides

oxygen supply, together with cellular and soluble components necessary for an efficient

myocardial reconstruction. Immune system plays a central role in processes aimed at

repairing ischemic myocardium, mainly in inflammatory and angiogenesis phases. In

addition to cellular components and soluble mediators as chemokines and cytokines,

the immune system acts in a paracrine fashion through small extracellular vesicles

(EVs) release. These vesicular structures participate in multiple biological processes, and

transmit information through bioactive cargoes from one cell to another. Cell therapy has

been employed in an attempt to improve the outcome of these patients, through the

promotion of tissue regeneration and angiogenesis. However, clinical trials have shown

variable results, which put into question the actual applicability of cell-based therapies.

Paracrine factors secreted by engrafted cells partially mediate tissue repair, and this

knowledge has led to the hypothesis that small EVs may become a useful tool for cell-free

myocardial infarction therapy. Current small EVs engineering strategies allow delivery of

specific content to selected cell types, thus revealing the singular properties of these

vesicles for myocardial ischemia treatment.

Keywords: small EVs, tissue remodeling, myocardial infarction, immune system, angiogenesis

INTRODUCTION

Regenerative medicine is focused on repairing damaged or malfunctioning tissue through both
cellular and non-cellular therapies, such as tissue engineering or treatments based on biomaterials.
This biological strategy is applicable to a wide spectrum of processes, including wound healing
(1), neurological conditions (2), bone disorders (3), and ischemic cardiovascular diseases (4). One
feature common to all these conditions is the involvement of tissue regeneration and remodeling
in their termination phase.
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Myocardial infarction (MI) is the most common cause of
early death in adults worldwide (5). It results from an imbalance
between oxygen supply and demand, usually due to the occlusion
of a coronary artery. Despite success in reducing early mortality,
late morbidity and mortality in the form of heart failure (HF) are
still an unmet clinical problem. HF after MI is the consequence
of a non-optimal myocardial repair. After ischemia, a step-
by-step myocardial remodeling takes place involving two main
phases: an inflammatory phase, where recruited inflammatory
cells clear the wound of tissue debris and prepare the tissue
for the next phase, and the proliferative and reparative phase,
where inflammation resolves, angiogenesis is induced, fibroblasts
activated, and fibrosis takes place with scar formation (6).
These highly orchestrated phases may seem to occur separately,
but they actually overlap with a coordinated interplay between
immune cells, fibroplasia and angiogenesis in order to provide
an efficient microvascular perfusion of the remodeled heart, thus
ensuring its subsequent repair and functionality (6) (Figure 1).
Throughout the last decades, researchers have made efforts
to promote myocardial repair by acting at different steps of
the process, as is the case of angiogenesis (7). Indeed, the
promotion of angiogenesis in MI patients seeks to improve
the microcirculation by promoting new capillary and collateral
arterial vessel formation, thus rescuing the myocardium at
early stages post-MI and preventing long-term left ventricular
remodeling and transition to HF (8–10).

Extracellular vesicles (EVs) are membranous vesicles involved
in intercellular communication, released to the extracellular
environment by different types of living cells under normal or
pathological conditions. They can be classified into three main
groups based on their biological origin, size and composition:
microvesicles, apoptotic bodies and exosomes. Exosomes, here
referred to as small EVs, are nanosized (50–150 nm) EVs
of endocytic origin (11), which may act as a vehicle to
transfer bioactive cargoes (proteins, lipids or nucleic acids) from
one cell to another, either allowing or enhancing functional
communication between cells (12, 13). Loading of these
molecules into small EVs is not a random process; on the
contrary, these vesicles are enriched with specific contents, thus
revealing the existence of sorting mechanisms that selectively
regulate small EVs load (14). Uptake of small EVs is mediated by
direct interaction. Binding of small EVs to the plasma membrane
of recipient cells is mainly driven by adhesionmolecules involved
in cell-to-cell interaction, but there are other small EVsmolecules
that specifically act as receptors for their selective binding and
engulfment. To deliver their cargo, small EVs may either fuse
with plasma membrane of recipient cells or be internalized by
endocytosis, pinocytosis or phagocytosis (15).

Small EVs participate in a number of biological processes,
which include organogenesis (16), vascular regulation (17) and
immune responses (18). In these processes, cells from different
origin release small EVs to generate an intricate signaling
network, which reciprocally regulates cellular functions. In this
review, we offer a perspective on the interaction between immune
system and angiogenesis, and examine the functional role and
potential application of immune system-derived small EVs in the
promotion of neovascularization after MI.

INTERPLAY BETWEEN IMMUNE
RESPONSE AND ANGIOGENESIS IN
TISSUE REMODELING AFTER MI

Immune Response in the Infarcted
Myocardium
During inflammatory phase, the first cells recruited to the

injured site are neutrophils, which migrate in response to signals

as damage-associated molecular patterns (DAMPs), cytokines,

chemokines, endogenous lipid mediators (prostaglandin E2,
leukotriene B4), histamine and complement components (19–

21). Emigrant neutrophils release proteolytic enzymes and

reactive oxygen species at their arrival to the infarcted site

and damage local cells (22). Another key role of neutrophils

in cardiac repair is the release of chemotactic factors such as
azurocidin, IL-37 and cathepsin G that recruit and accumulate
splenic monocytes in the infarcted myocardium (21, 23, 24).

Two monocyte populations have been described in ischemic

myocardium of both mice and human: an inflammatory subset

Gr1+CCR2+ CX3CX1lo(Gr1high), and the resident monocyte

subset with a less inflammatory function Gr1− CCR2−
CX3CR1hiGr1low, corresponding to classical human monocytes
CD14hiCD16− and nonclassical monocytes CD14loCD16+,
respectively (25). Classical monocyte subset is recruited in the
early phase ofMI through the activation of theMCP-1/CCR2axis.
These cells display a phagocytic, proteolytic and inflammatory
function, by digesting the damaged tissue and clearing cellular
debris at the injury site (26) (Figure 1).

After this phase of degradation and digestion of injured cells,

new subsets of immune cells intervene, such as non-classical

monocytes (Gr1low) with anti-inflammatory properties, T-cell

subpopulations as regulatory T cells (TRegs), and macrophages
with anti-inflammatory phenotype which secrete transforming

growth factor (TGF)-β and IL-10. These cellular effectors and

molecular signals repress inflammation and enhance heart
healing through myofibroblasts accumulation, angiogenesis and
collagen deposition (27) (Figure 1).

As soon as necrotic cells and debris are removed by
the inflammatory cells, cells that play a crucial role in the
first phase of regeneration are then replaced by resident or
newly recruited Gr1low monocytes, lymphocytes and mast
cells that will coordinate the remodeling of the myocardium.
In fact, neutrophils have no longer an important role in
the proliferation phase and despite DAMPs, proinflammatory
cytokines, hypoxia and acidosis survival signals, neutrophils are
short-lived cells that rapidly undergo cell death (19, 28). Indeed,
late-stage and apoptotic neutrophils are essential for the end
of the inflammatory phase, as their transmigration is slowed
down by the release of pro-resolving mediators (such as lipid
mediators, annexin A1 and lactoferrin) and their phagocytosis
by macrophages is enhanced both by these mediators and
by the expression of eat-me signals (19, 21). Phagocytosis of
apoptotic neutrophils induces a pro-resolving M2 phenotype in
macrophages and the subsequent secretion of anti-inflammatory
and profibrotic cytokines such as IL-10 and TGF-β, which
suppress inflammation and enhance tissue repair (29) (Figure 1).
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FIGURE 1 | Tissue regeneration after myocardial infarction. After myocardial ischemia, remodeling process take place in order to reestablish tissue properties and

myocardial function. During remodeling, sequential interdependent phases occur, which include inflammation, proliferation and repair. Al later stages, angiogenesis

restores blood flow to ensure adequate tissue regeneration. Immune system is an essential player in tissue remodeling, and acts through the coordinated action with

other non-immune cellular components and released mediators.

Despite the well-established time frame of events during
cardiac remodeling after MI, a subset of cases shows a late
progressive ventricular dilatation andHFmainly due to a chronic
inflammation state of the myocardium (30). Accordingly, it has
been recently described that in chronic ischemic HF, there is
local and systemic expansion of proinflammatory macrophages,
dendritic cells (DC) and T cells with an impaired left ventricular
remodeling (31).

Angiogenic Response in the Infarcted
Myocardium
Angiogenesis is a highly orchestrated process that starts early
after inflammatory phase of MI. The main players in hypoxia-
driven angiogenesis are hypoxia-inducible factors (HIF). They
are expressed in cardiomyocytes, endothelial and inflammatory
cells early after MI, and may remain stable up to several weeks
after MI (32). Both HIF-1α and endothelial-specific HIF-2α
target proangiogenic genes such as VEGF (33), cyclooxygenase-2
(COX2) (34), the progenitor cell mobilizing chemokine Stromal
Cell-Derived Factor 1-alpha (SDF1-alpha or CXCL12) (35),
angiopoietins and others. Notably, several of these HIF-inducible
genes also play an important role in inflammation, indicating a
parallelism between inflammation and angiogenesis in ischemic-
tissue remodeling.

A number of growth factors are implicated in angiogenesis
promotion in the ischemic heart. Hence, an important increase
of VEGF and its receptor VEGFR2 takes place in the viable
border zone of myocardiocytes and in the area of forming

vessels, respectively (36, 37). VEGF-B may also play a role in
the induction of prosurvival signals that ensure the presence
and maturation of new vessels in the ischemic myocardium,
by providing anti-apoptotic signals in endothelial and mural
cells (38). Similarly, PDGF-A and -D expression increases in the
periphery of infarcted area, in parallel with the development of
angiogenic process (39).

Different types of progenitor cells may act as a substrate for
generation of new cells in angiogenesis inMI. Several studies have
demonstrated proangiogenic and therapeutic effect of endothelial
progenitor cells (EPCs) in experimental models of MI; however,
the mechanisms involved are not well understood yet (40). Thus,
although EPCs differentiate into mature ECs, there is growing
evidence that their paracrine activity could play an important
role in the injured endothelium repair (41). In a mouse model
of MI, ischemic hearts injected with c-kit+ cardiac stem cells
(CSCs) display higher angiopoietin-like 2 expression and staining
for EC marker PECAM-1 in peri-infarct areas, suggesting that c-
kit+ cells can differentiate into ECs and promote angiogenesis
in vivo in these hypoxic sites (42). Other studies support this
function of CSCs on vascularization recovery after MI, not only
through differentiation into ECs, but also in a paracrine manner
by promoting the secretion of multiple pro-angiogenic growth
factors as VEGF, PDGF and HGF. (43). Mesenchymal stem cells
(MSC) and adipose tissue-derived stem cells have also shown a
proangiogenic potential after MI in experimental studies (44).
MSC enhance several key processes in angiogenesis by releasing
paracrine factors that stimulate vessel formation, differentiating
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into endothelial of vascular smooth muscle cell lineage, and
acting as perivascular cells (45). The proangiogenic function of
MSC has been related to both the release of soluble factors and
miRNA, notably miR-146a, which increases VEGF secretion in
MSCs leading to a reduction in fibrosis and enhancement of left
ventricular ejection fraction (45, 46).

Immune Regulation of Angiogenic
Response
As mentioned above, inflammation and angiogenesis are closely
inter-related processes. The immune system handles, along with
other cells and mediators, the correct and efficient repair of the
damaged heart, and more specifically an adequate angiogenesis
development. This is achieved by the concerted action of cellular
and molecular components (summarized in Table 1), which
display pleiotropic functions that modulate their respective
activities (67) (Figure 2).

Cells of myeloid lineage are the best described immune
regulators of angiogenesis. Specifically, monocytes/macrophages
exhibit well-know functions in vessel formation (68). A number
of studies suggest that recruitment of monocytes to ischemic
tissues takes place in two waves of infiltration: the first wave
attracts monocytes with M1 inflammatory phenotype, which
are subsequently replaced by a second wave, composed of
pro-angiogenic and regenerative M2-like macrophages (69, 70).
Macrophage-secreted Semaphorin 4A has been involved in
angiogenesis occurring after ischemic injury in the heart (71). M2
macrophages promote neovascularization through the release
of proangiogenic factors as FGF-2, insulin-like growth factor-
1 (IGF-1), monocyte chemotactic protein-1 (CCL2), placental
growth factor (PIGF) (72), and proteases as MMP-9 (73).
M1 macrophages may have a positive role in angiogenesis
as well, although to a different extent: both M1 and M2
macrophages produce MMP-9, but M2 macrophages display
a reduced expression of tissue inhibitor of metalloproteinase
1 (TIMP-1), so their angiogenesis-inducing capacity is higher
than that of the M1 macrophages (74). Additionally, M1
macrophages co-localize with endothelial tip cells and M2
macrophages with cell anastomosis sites, thus revealing a
potential interaction of M1 phenotype with tip cells and
a participation of M2 macrophages in cell fusion (75, 76).
Therefore, macrophage-EC contact seems to be important
in vascular morphogenesis. Furthermore, paracrine signaling
may participate in macrophage pro-angiogenic functions.
Activated ECs secrete angiopoietin-2 (Ang2), which binds
neighbor Tie2-expressing monocytes/macrophages, enhancing
their angiogenic potential (77). All these findings point to
monocytes/macrophages as key regulators of angiogenesis,
suggesting that there is a coordinated participation of both
subsets of macrophages in vessel formation. Hence, M1
macrophages sustain the initial tissue inflammation, remove
damaged tissue and finally begin angiogenic process and vessel
growth. They are subsequently replaced by M2 macrophages,
which display more pro-angiogenic capacities (Figure 2).

Neutrophils play an important role in angiogenesis through
different mechanisms. One is regulation of vascular repair

through AMP-activated protein kinase α2 (AMPKα2), a subunit
of AMPK protein, which promotes survival of neutrophils
in ischemic tissues as well as generation of pro-angiogenic
factors (such as VEGFA and VEGFB) (78). Aside, ischemic-
infiltrating neutrophils produce TIMP-1-free proMMP-9 that
proteolytically induces functional angiogenic activity (74)
through bioactive FGF-2 release (79). Furthermore, it has been
demonstrated that VEGFA released under ischemic conditions
promotes the recruitment of a specific subset of circulating
CD49d+ VEGFR1high CXCR4high neutrophils with high MMP-
9 expression levels, to facilitate rapid angiogenesis at hypoxic
areas (80, 81). Other stimuli lead to neutrophil recruitment. Thus,
CXCL1/macrophage inflammatory protein-2 (MIP-2) induces
neutrophil recruitment and release of active VEGFA, which in
turn activates the angiogenic cascade in tissues (82). Besides,
IL-8/CXCL8 induces recruitment of neutrophils, which secrete
VEGF and more IL-8, acting as a paracrine feedforward signal
that amplifies the angiogenic effect of this cell type. Infiltrating
neutrophils accumulate in “angiogenic hotspots,” specifically
localized at the tips of the sprouting vessels; and this recruitment
is directed by SDF-1 (CXCL12), a chemokine produced in the
proangiogenic niche (83). However, some evidences suggest that
neutrophils could secrete factors that restrain the angiogenic
process. For instance, neutrophils release neutrophil elastase,
a serine proteinase that cleaves plasminogen into angiostatin
(fragments one to three), which in turn inhibits VEGF and FGF-
2-mediated EC proliferation (84) (Figure 2). Despite the above
mentioned proangiogenic characteristics of neutrophils, they are
one of the major mediators of microvascular dysfunction after
MI, and promote ischemia reperfusion injury and no-reflow
phenomenon (10, 85).

Lymphocytes have been shown to mediate neovascularization
as well. B lymphocytes infiltrating tumors contribute to
angiogenesis through STAT3-mediated production of pro-
angiogenic factors such as MMP-9 or CCL2 (86). Likewise,
both CD4+ and CD8+ T lymphocytes play an important role
in this process, together with other subpopulations as TReg
and Tγδ cells. CD4+ T lymphocyte-deficient mice demonstrate
impaired post-ischemic neovascularization, which is rescued
by CD4 reconstitution (87). Similarly, CD8+ T lymphocyte-
deficient mice also display defective blood flow recovery after
hindlimb ischemia, which recovers upon CD8+ infusion through
IL-16-mediated CD4+ and mononuclear cell recruitment (51).
However, lymphocytes may participate also in restraining
angiogenesis. It has been shown that lymphocytes (mostly
CD4+)-EC crosstalk mediates IL-12-dependent inhibition of
angiogenesis by reducing expression and activity of MMP-9
in vitro (88, 89); and in a mouse model of lung ischemia,
neovascularization is limited by both CD8+ andCD4+ effector T
cells through interferon gamma (IFNγ) secretion (90) (Figure 2).
Likewise, Tγδ cells are able to promote angiogenesis in tumors by
differentiating into IL-17 producing cells (91). Additionally, in
a model of oxygen-induced retinopathy, acute retinal ischemia
induces TReg recruitment, although this accumulation is not
enough to completely prevent vascular damage by itself; but
expanding TReg population by administrating IL-2/anti-IL2
monoclonal antibody complexes to mice, TRegs are able to
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TABLE 1 | Function of interleukins and chemokines in angiogenesis regulation.

Cytokine Function Mechanism References

Il-1β Pro-angiogenic Induction of VEGF production by tumor and stromal cells (47)

IL-2 Pro-angiogenic Increase of ROS levels and phosphorylation of Akt in ECs (48)

IL-6 Pro-angiogenic Upregulation of key angiogenesis-associated genes (49)

IL-8 Pro-angiogenic Promotion of Akt and GSK-3βser9 expression, inducing proliferation and inhibiting apoptosis in ECs (50)

IL-16 Pro-angiogenic Recruitment of pro-angiogenic T CD4+ and mononuclear cells (51)

IL-17 Pro-angiogenic Stimulation of VEGF production via STAT3 signaling pathway (52)

IL-19 Pro-angiogenic Promotion of EC proliferation, migration and tube-like formation

Induction of M2-phenotype macrophage polarization, synthesis of VEGF-A in macrophages and

reduction of IL-12 expression

(53)

IL-12 Anti-angiogenic Arrestment of EC cycle

Induction of activated NK cells infiltration

(50)

(54)

IFNγ Anti-angiogenic Reduction of VEGF and downregulation of Dll4 in ECs

Reduction of SDF-1/CXCR4 expression in ECs

(55)

(56)

CCL2 Pro-angiogenic Recruitment of macrophages with proangiogenic phenotype (57)

CXCL1 Pro-angiogenic Enhancement of ERK1/2 signaling in ECs, leading to a EGF expression and secretion (58)

CXCL6 Pro-angiogenic Induction of EC chemotaxis

Attraction of neutrophils loaded with MMP-9

(59)

CXCL12 Pro-angiogenic Enhancement of EC

proliferation, migration, and adhesion via activation of the CXCR4 pathway

(60)

CX3CL1 Pro-angiogenic Recruitment of CD11b+CX3CR1+ proangiogenic macrophages (61)

CXCL4 Anti-angiogenic Inhibition of EC adhesion to matrix proteins (62)

CXCL9 Anti-angiogenic Inhibition of blood vessel formation by interacting with VEGF and preventing its binding to ECs (63)

CXCL10 Anti-angiogenic Antiproliferative effect on EC as result of its affinity for GAGs and the resultant displacement of growth

factors from the cell surface

(64)

CXCL14 Anti-angiogenic Inhibition of angiogenic ligands (IL-8, bFGF) by direct interaction, avoiding their binding to high affinity

receptors

(65)

CXCL11 Receptor dependent action Signaling through CXCR3 has been found to have anti-angiogenic effects, while signaling through the

CXCR7 is most likely to be pro-angiogenic.

(66)

reduce retinopathy (92). Furthermore, Natural Killer (NK) cells
are involved in angiogenesis regulation as well. In a model
of murine hindlimb ischemia, depletion of NK1.1-expressing
cells led to defective perfusion recovery and collateral blood
vessels growth (93). Moreover, IFNγ synthesis is increased in
tumor-infiltrating NK and CD4+ T cells, and this may be
responsible for production of tumor necrosis factor superfamily-
15 (TNFSF15) by ECs, a cytokine that inhibits their proliferation
and differentiation (94). In conclusion, lymphocytes may act as
positive or negative regulators of neovascularization, frequently
through the secretion of cytokines and soluble factors that
operate in different steps of the angiogenic process.

SMALL EVS IN ANGIOGENESIS

Cells belonging to either non-immune or immune compartments
contribute to angiogenesis development through the delivery of
small EVs, which act in a paracrinemanner and trigger functional
responses in neighboring cells (Figure 3).

ECs-derived microvesicles contain β1-integrin, MMP-2 and
MMP-9; and their addition to human umbilical vein endothelial
cells (HUVEC) stimulates formation of capillary-like structures
in vitro (95). Interestingly, Dll4 is incorporated into EC-
derived small EVs and can be transferred from one cell to
another in a paracrine manner, thus inhibiting Notch receptor

signaling and enhancing vessel growth and branching (96).
Likewise, EC-derived small EVs contain miRNAs such as miR-
214, which promotes angiogenesis both in vitro and in vivo
by suppressing cell cycle arrest (97). miR-126-3p has also
been identified as an important player in endothelial repair
cell migration, proliferation and regeneration by inhibiting
EVH1 domain-containing protein1 (SPRED1) and promoting
Ras/MAPK signaling (98). Furthermore, small EVs derived from
human EPCs induce angiogenesis by the horizontal mRNA
transfer of genes such as BCL-XL, CFL1, CTNNB1, EDF1,
MAPKAPK2, and eNOS (99) (Figure 3).

MSCs are another source of small EVs with pro-angiogenic

potential (Figure 3). MSC-derived small EVs induce the
formation of new vessels in the infarcted myocardium, inhibit

cardiac remodeling and preserve the ejection function of the

damaged heart (100, 101). In addition to this, a comparative study
of small EVs and MSCs therapy revealed that small EVs injection
was more effective and improved cardiac fibrosis, inflammation
and cardiac performance (102). Regarding angiogenesis, in vivo
studies have shown that small EVs from MSCs overexpressing
Akt enhance neovascularization with a subsequent improvement
of LVEF (103). Similar results were obtained with MSCs
overexpressing HIF-1α. Indeed, these small EVs contain Jagged1,
and induce angiogenesis in ECs both in vitro and in vivo by
activating Notch signaling (104). In a renal ischemia-reperfusion
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FIGURE 2 | Regulation of angiogenesis by cellular compartment of immune system. Immune system participates in angiogenesis development after myocardial

ischemia, through cellular and soluble components. Myeloid and lymphoid cells may operate as positive or negative regulators of angiogenesis, through the secretion

of cytokines and soluble factors which act at different stages of the process. Monocytes act in two subsequent waves of infiltration, composed respectively by M1and

M2-like cells. M1 macrophages co-localize with endothelial tip cells and display a mild pro-angiogenic phenotype, whereas M2 cells are located close to EC

anastomosis, and possess potent pro-angiogenic properties. Neutrophils are recruited to hypoxic areas by chemoattractant cytokines, and accumulate in so-called

“angiogenic hotspots” at vascular tips. Neutrophils mainly exert proangiogenic actions by the production of soluble factors and metalloproteinases, although these

cells may act as negative regulators of this process, trough elastase release. Lymphocytes also play an important role in angiogenesis, either directly by the secretion

of pro- and anti-angiogenic mediators, or by regulating the activity of other cell types as macrophages and different lymphocyte subsets.

model, treatment with umbilical cord MSC-derived small EVs
improved capillary density by inducing VEGF elevation in a
HIF1α independent manner (105). Small EVs derived from
MSCs also transfer miRNAs as miR-125a to ECs, thus promoting
angiogenesis (106, 107).

Other adult stem cells, as CSC, secrete small EVs enriched
with cytokines and chemokines (TCA-3, SDF1), vascular growth
factors (VEGF, erythropoietin, bFGF, osteopontin, SCF) and
cardiac differentiation factors (Activin A, Dkk homolog-1, TGF-
β) (108). In addition, CSCs derived small EVs analysis revealed
high levels of miR-210, miR132 and miR-146a-3p that enhance
anti-apoptotic and pro-angiogenic activity (Figure 3). This seems
to be mediated by activation of their downstream targets such
as ephrin A3, PTP1b and RasGaP-p120, that eventually leads
to augmented cardiac function (109). Similarly, a study showed
that bone marrow-derived CD34+ cells secreted small EVs with
pro-angiogenic activity in ischemic cardiac tissue, mainly due
to the delivery of pro-angiogenic microRNAs such as 130a and
126 (110).

Immune system-derived EVs originate from lymphocytes,
monocytes/macrophages or neutrophils, and their selective
cargo and surface biomolecules modulate neovascularization by
different mechanisms. Several studies have been conducted to
assess the effect of immune system-derived EVs in angiogenesis,
however the specific role of small EVs in this process has
not been exhaustively addressed. Lymphocytes constitute an
important source of EVs that may exert pro- or anti-angiogenic

effects depending on stimuli involved in their production
(Figure 3). When lymphocytes undergo activation before
apoptosis, they release proangiogenic microvesicles. Thus,
in vitro experiments show that treatment of T cells with
phytohemagglutinin, phorbol ester and actinomycin D induces
production of microvesicles, so-called lymphocyte microparticles
(LMPs), which lead to the formation of capillary-like structures.
This pro-angiogenic effect is mediated by increasing cell
adhesion and promoting expression of ICAM-1, Rho A
and VEGF, through activation of Sonic Hedgehog (Shh)
pathway (111). In a mouse model of ischemia-reperfusion,
microvesicles from T lymphocytes carrying Shh are involved
in restoration of endothelial function by NO production
(112). Similarly, in a model of hindlimb ischemia, EVs
harboring Shh promote post ischemic neovascularization by
enhancing vascular density (113). HUVECs can internalize
EVs from T lymphocytes, a process that modifies HUVEC
gene expression profile, including modulation of some
angiogenic-related genes as netrin-4, and increases tube
length (114). Conversely, lymphocytes treated with actinomycin
D without previous activation produce anti-angiogenic LMPs,
through a mechanism not well-defined yet. Thus, these
microvesicles suppress neovessel formation in rat choroidal
explants by increasing mRNA levels of pigment epithelium-
derived factor (PEDF), nerve growth factor (NGF) and p75
neurotropin receptor (p75NRP) (115). Likewise, in a model
of corneal neovascularization, LMPs reduce angiogenesis
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and inhibit human ECs proliferation, survival and migration
by inducing reactive ROS and interfering with VEGFR-2
pathway (116). Moreover, LMPs produced after treatment with
actinomycin D alter the expression of pro-angiogenic factors
in macrophages through CD36-mediated signal transduction
pathways (117).

Microvesicles derived from monocytes and macrophages
participate in angiogenesis regulation as well (Figure 3).
Transfer of miR-150 to ECs by monocyte-derived microvesicles
enhances neovascularization in in vivo and in vitro models
by downregulating c-Myb (118) and enhancing ECs migration
(119). In addition, CD40 Ligand+ (CD40L) microvesicles

originated from atherosclerotic lesions stimulate EC proliferation
and neovessel formation in vivo. Most of these microparticles
express CD14 on their surface, suggesting that they are mainly
of monocytic origin (120). However, the role of myeloid-derived
small EVs in neovascularization is controversial. In an in vitro
assay with HUVECs, small EVs derived from monocytes adhere
to these ECs stimulating them and enhancing tube formation,
but also inducing apoptosis (121). In another study, small
EVs derived from macrophages modulate integrin-β1 trafficking
by enhancing its internalization and degradation in ECs, thus
impairing their migration (122). Furthermore, similar to LMPs
after actinomycin D treatment, monocyte-derived EVs inhibit

FIGURE 3 | Small EVs in angiogenesis regulation. Cells from immune (lymphocytes, macrophages, neutrophils) and non-immune (cardiac and mesenchymal stem

cells, endothelial cells) compartments release small EVs containing bioactive cargos (miRNAs, mRNAs, cytokines, signaling molecules), which modulate endothelial

functions in a paracrine manner, positively or negatively regulating neovascularization. Depending on their activation state, lymphocytes may produce small EVs with

either pro- or antiangiogenic effect. Similarly, small EVs derived from activated macrophages and neutrophils display different functional properties. Thus, a highly

complex network of vesicles with potential opposite functions may be released during angiogenic process in response to immune cell activation and

microenvironmental conditions.

TABLE 2 | Main advantages of Small EVs over cell-based therapies.

Cells Small EVs References

Size + + – (149–151)

Immunogenicity + – –

Permeability to physiological barriers + – +

Loading with specific therapeutic agents – + (152)

Targeting to selected tissues/cell types + – +

Safety + – + (153)

Storage & shipping Complex (cryogenic) Simple (regular freeezing/lyophilization) (154, 155)

Complexity of clinical application High (thawing, shear stress upon injection) Low (156, 157)

Frontiers in Immunology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 2799

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sánchez-Alonso et al. Exosome Regulation of Angiogenesis

tube formation and migration in microvascular ECs through
CD36 signaling. However, this inhibitory effect decreases when
small EVs are isolated by differential centrifugation from other
EVs, since small EVs-containing fraction inhibits EC migration
to a lesser extent than small EVs-depleted EVs (123). In addition
to monocyte/macrophage-derived EVs, EVs from DCs can
also mediate neovascularization. DC-derived small EVs harbor
active MMP-9 (124), a pro-angiogenic factor that acts in ECM
remodeling to allow neovessel formation.

Finally, neutrophils also secrete small EVs in a
stimulus-dependent manner. When stimulated with

N-Formylmethionyl-leucyl-phenylalanine (fMLP), they secrete
small EVs with anti-inflammatory potential, which up-regulate
EC-protective factors as ANGPTL4 or CD55. On the contrary,
neutrophils pre-incubated with a HUVEC monolayer before
addition of fMLP produce a population of small EVs that display
a pro-inflammatory, anti-apoptotic phenotype (125).

This experimental evidence highlights that leukocyte-derived
EVs can generate both pro- and anti-angiogenic effects, which
may be due to different cellular origin or microenvironment.
Moreover, diverse EVs subpopulations, such as small EVs and
other microvesicles, seem to play distinct roles in promoting

TABLE 3 | Overview of main strategies for small EVs engineering.

Type Subtype Mechanism Advantages Limitations References

Cell

modifications

Genetic

modification

Transgene expression

induction in the parent cell

for further small EVs loading

that include specific surface

receptors

– Imaging visualization of

small EVs distribution after

small EVs systemic

administration.

– Ability to target specific

organs

Requires high knowledge on

vesicle loaded protein

molecular biology.

(159)

(160)

(161)

Metabolic

labeling

Integration in the proteome,

lipidome, genome and

glycome of exogenous

metabolites

– Few side effects

– Applications for drug

conjugation, cell killing and

surface gelation.

– Biomolecules modification

in the entire cell

– Poor expertise on

bio-orthogonal chemistry

(162)

(163)

(164)

Uptake of

Exogenous

delivery

Introduction of exogenous

material to the cell by

incubation

– Dependent on the amount

of material delivered to the

cell

– Long-time exposures

– High concentration of

nanoparticles

(165)

(166)

Theranosomes production in vivo magnetic targeting. Dependent on macrophage

phagocytosis

(167)

(168)

Post-isolation

small EVs

modifications

Active loading

of small EVs

Membrane molecules

attachment by covalent

bonds using “click

chemistry”

– Rapid and efficient

– No modification on size,

structure and function of

small EVs.

Small EVs functionality

impairment by surface

chemical modifications

(169)

Extrusion High loading efficiency Membrane alteration (170)

(171)

Conjugation of native and

non-native small EVs

surface receptors with

magnetic nanoparticles

– High effectiveness and

specificity

– Small EVs functionality

modification

– Elimination of undesired

vesicles implicated in

pathological situations

Synthetic challenge (172)

(173)

Small EVs membrane

loading with hydrophilic

cargo after saponin

incubation

Incorporation of multiple

small lipophilic drugs

– Technical difficulties

– Toxicity

(174)

(170)

Electroporation or chemical

transfection of siRNA, small

molecule drugs and

superparamagnetic iron

oxide nanoparticles.

High efficiency Disruptive strategy that

endangers the integrity and

functionality of the EV

(175)

(161)

(176)

Passive

loading of

small EVs

Incubation with drugs Simple technique

No membrane compromise

Low efficiency (171)

(177)

Incubation of donor cells

and further secretion of drug

loaded small EVs

Possible drug citotoxicity (177)
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or inhibiting angiogenesis. Such differences may rely either on
diverse cargoes or on specific expression patterns of membrane
molecules in these EVs subsets. A detailed study of mechanisms
that regulate these functional differences may help to design
therapies that profit from small EVs-mediated paracrine effect to
foster tissue repair and angiogenesis in ischemic cardiac tissue.

SMALL EVS TREATMENT IN THE
INFARCTED MYOCARDIUM: NOVEL
THERAPY APPROACHES

Current therapies of MI mainly focus on macrovascular
reperfusion of the infarcted myocardium with thrombolytic
therapy, primary percutaneous coronary intervention and
coronary artery bypass grafting. Early reperfusion of the culprit
artery has proven to be the most successful therapy in reducing
mortality, being the gold standard (126). Indeed, early mortality
after MI has decreased over the last decades, from 20% in the
late 80’s to approximately 5–7% in contemporary series (127,
128). However, delayed HF secondary to inadequate cardiac
remodeling is still a challenge in therapeutic management of
MI. Angiogenesis plays an essential role in cardiac repair and
regeneration after ischemic heart disease; therefore, therapeutic
angiogenesis has been considered as a promising therapy
for patients suffering MI. Over the past decades, a variety
of strategies to promote therapeutic angiogenesis has been
evaluated. However, there is still a need to come up with
a balanced and targeted therapy that ensures an optimal
restoration of blood supply into the damaged myocardium in
order to enhance a correct tissue healing and prevent HF.

Both preclinical models (129, 130) and early human clinical
trials (131) demonstrated promising outcomes with strategies
consisting of administration of proangiogenic factors as VEGF;
however larger clinical trials using individual proangiogenic
factors showed mixed results (132, 133), thus indicating that
delivery of a single growth factor was not sufficient to support
a complete and mature angiogenesis in these patients.

After major failure of proangiogenic growth factors to show
any benefit in clinical trials, cell transplantation quickly became
the next frontier therapy for promoting angiogenesis and cardiac
regeneration (134, 135). Several stem cells have been used as
cellular sources to produce new cardiac cells such as endothelial
mesenchymal stem cells (EMCs), MSCs, and cardiac progenitor
cells (CPCs), showing safety and promising results (136, 137).
Several clinical trials have been launched to probe therapeutic
utility of progenitor cells from different sources in MI treatment,
with different outcomes (138–143). However, these results could
not be fully assigned to the exogenous cells, as it seems that
in mouse models nearly 90% of newly formed cardiomyocytes
and ECs are of endogenous origin and do not come from the
exogenous cells (144). Thus, paracrine factors secreted by cell
transplantation appear to mediate endogenous repair, through
modification of functions of neighboring cells. In this line
of evidence, a recent study demonstrated that intracoronary
injection of cardiac-derived stem cells (CDC)-secreted small
EVs reduced the number and modified the polarization state of

CD68+ macrophages in the infarcted myocardium, leading to
increased expression of anti-inflammatory genes such as Arg1,
IL4ra, Tgfb1, and Vegfa. In this study, RNA-Seq analysis of
macrophages primed with CDC small EVs showed enhanced
levels of miR-181b, which targets protein kinase C δ (145).
Another study showed that the most abundant RNA species in
CDC small EVs was a Y RNA fragment (EV-YF1), which was
transferred to macrophages. This transfer induced transcription
and secretion of the anti-inflammatory IL-10, thus promoting
protection of cardiomyocytes from oxidative stress and reducing
infarct size (146).

These findings led to the idea that small EVs secreted by
different cell populations could become a potential therapeutic
tool to improve cardiac function after MI through tissue
remodeling and more precisely by promoting angiogenesis in the
damaged heart.

Small EVs have a biological signature that mimics the
phenotype of the cells that produced them (15). Hence,
there is growing interest in small EVs and their application
in the clinical context. Indeed, they play an important role
as transporters of paracrine factors in angiogenesis, immune
regulation, and tissue regeneration (147). This has led to
the notion that small EVs could become a delivering system
for regenerative therapeutic factors. Thus, administration of
CDC small EVs has shown the same benefits in infarcted
hearts of animal models with enhancement of angiogenesis and
promotion of cardiomyocytes survival and proliferation (148).
Moreover, despite concerns regarding standarization of isolation
procedures, small EVs offer clear advantages over cell-based
therapies (summarized in Table 2). Hence, these vesicles have
small size and low immunogenicity, are nontoxic, permeable
to physiological barriers and stable in blood (149–151). Indeed,
they can be preloaded with specific therapeutic agents as
well as protected from degradation and deactivation. Protein
changes on their surface ensure affinity to specific cell types,
thus enhancing efficient and selected target cell communication
(152). Cell modification is generally achieved either by hijacking
biosynthesis to favor the production of specific endogenous
material or by delivering exogenous species to the cytoplasmic
membrane (158). Main current small EVs engineering strategies
are summarized in Table 3.

Different strategies have been developed to enhance cardiac
capture and retention of small EVs: Systemic administration of
small EVs conjugated with a synthetic cardiac homing peptide
using a DOPE-NHS linker, shows reduced fibrosis and scar
size as well as increased cellular proliferation and angiogenesis
(178). Another attempt to target small EVs to the heart has
been performed using a fusion protein comprising synthetic
cardiac-targeting peptide (CTP)-Lamp2b, which is expressed in
small EVs membrane. This construct is expressed in small EVs-
producing cells through transfection, and stabilized in small
EVs membrane by the attachment of glycosylation sequences.
Delivery of these modified small EVs to the heart has shown
significant but mild results (179).

Small EVs derived from immune system have been also
engineered both endogenously and exogenously through
modifications aimed at improving their therapeutic potential,
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usually modifying their cargo. Small EVs derived from EL-4 cells
(mouse lymphoma cell line) were passively loaded with anti-
inflammatory curcumin, which led to increased drug stability
and delivery in a lipopolysaccharide (LPS)-induced septic shock
mouse model (174) and a LPS-induced brain inflammation
model (180). Additionally, siRNA against α-synuclein gene,
which generates pathological aggregates in Parkinson’s disease,
was loaded by electroporation into murine DCs small EVs; these
small EVs specifically target brain by expressing rabies virus
glycoprotein peptide (RVG)-Lamp2, where a downregulation of
α-synuclein was achieved (181, 182). Likewise, small EVs derived
from M12.4 murine B cell line were loaded with miR-155 by
electroporation and delivered to macrophages, thus suppressing
LPS-induced TNF-α production (183).

Both endogenous small EVs function in tissue repair and
angiogenesis, and the feasibility of small EVs modification to
optimize specific cargo loading and tissue targeting, highlight
the potential of these EVs in proangiogenic MI therapy.
However, further definition of the appropriate cellular source
and characterization of specific functional characteristics of
these vesicles is needed before their clinical application. Thus,
pleiotropic effects on angiogenesis of small EVs derived from
different types of immune cells with diverse activation states,
may represent a challenge for optimizing the production
of a suitable subset of vesicles. Similarly, most preclinical
studies have been conducted using cell lines; and a clear
advantage in terms of therapeutic efficacy, biosafety, and
clinical application of small EVs derived from cell lines over
those isolated from more physiological sources, has not been
established yet.

CONCLUDING REMARKS

When myocardial ischemia occurs, a tissue remodeling process
takes place that involves sequential interdependent stages. These
include an inflammatory phase and subsequent proliferative
and reparative phases, where inflammation terminates and
angiogenesis is induced. Immune system components are major
regulators of cardiac tissue remodeling, which is especially

remarkable in the case of angiogenesis. Some of these regulatory
functions may be carried out through the release of small

EVs loaded with bioactive molecules that act in a paracrine
manner in adjacent cells. Likewise, benefit associated to cell
therapy is in part mediated by paracrine factors including
small EVs. Indeed, small EVs features demonstrate a significant
advantage over cell-based therapies due to their stable physiology,
their low immunogenicity and safety profile, their storage
and application characteristics, and their ability to deliver
therapeutic cargoes selectively to the damaged cardiac cells.
These characteristics unveil the unique properties of small EVs
as tools for the development of selective cell-free therapies to
promote angiogenesis during tissue regeneration in the infarcted
myocardium. Further investigation is needed to identify the
optimum immune cell source and isolation conditions required
to obtain small EVs adequate for successful clinical application in
myocardial remodeling.
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