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Abstract 

Identifying and validating genotype-guided drug combinations for a specific molecular subtype in cancer therapy represents an unmet medical 
need and is important in enhancing efficacy and reducing to xicity. Ho w e v er, the e xponential increase in combinatorial possibilities constrains 
the ability to identify and validate effective drug combinations. In this context, we have developed Onko_DrugCombScreen, an innovative tool 
aiming at advancing precision medicine based on identifying significant drug combination candidates in a target cancer cohort compared to 
a comparison cohort. Onko_DrugCombScreen, inspired by the molecular tumor board process, synergizes drug knowledgebase analysis with 
various statistical methodologies and data visualization techniques to pinpoint drug combination candidates. Validated through a TCG A-BR CA 

case st udy, Onko_Dr ugCombScreen has demonstrated its proficiency in discerning established dr ug combinations in a specific cancer type 
and in re v ealing potential no v el drug combinations. By enhancing the capability of drug combination disco v ery through drug knowledgebases, 
Onko_DrugCombScreen represents a significant advancement in personalized cancer treatment by identifying promising drug combinations, 
setting the stage for the development of more precise and potent combination treatments in cancer care. The Onko_DrugCombScreen Shiny 
app is a v ailable at https://rshin y.gw dg.de/apps/onk o _ drugcombscreen/. T he Git repository can be accessed at https://gitlab.gwdg.de/MedBioinf/ 
mtb/onko _ drugcombscreen . 
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ancer treatment is an intricate field, with the ongoing quest
o develop therapies that effectively target the disease while
inimizing side effects. Synergistic drug combinations aim

o reduce the concentration of each drug while achieving
he same therapeutic effect, thereby minimizing side effects.
his represents a key advancement in cancer therapy [ 1 ].
his approach aims to overcome the limitations of single-
gent treatments by improving efficacy and reducing the like-
ihood of drug resistance [ 2 ]. However, the task of identify-
ng optimal drug combinations is complicated by the signif-
cant variability in tumor types and patient responses, along
ith the complexities of cancer biology, the high dimension-
lity of data, and the number of drug combinations far be-
ond what is possible for clinical testing [ 3 , 4 ]. These chal-
enges make it difficult to predict which combinations are
ost likely to be effective in specific cancer molecular type

ohorts compared to other molecular subtypes, necessitat-
ng advanced computational tools and extensive experimen-
al validation to navigate the vast landscape of potential
rug combinations and tailor treatments to cohort patients’
eeds [ 5 ]. 
eceived: July 18, 2024. Revised: December 24, 2024. Editorial Decision: Januar
The Author(s) 2025. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
https: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commerc
riginal work is properly cited. For commercial re-use, please contact reprints@o
ermissions can be obtained through our RightsLink service via the Permissions l
ournals.permissions@oup.com. 
Molecular tumor boards (MTBs) are crucial in personaliz-
ing cancer treatment, integrating multidisciplinary expertise to
interpret genetic data and guide treatment decisions based on
a patient’s unique tumor characteristics [ 6–8 ]. Drawing inspi-
ration from the methodologies employed by MTBs, the uti-
lization of drug databases alongside detailed drug’s level of
evidence information emerges as a crucial strategy in advanc-
ing patient-specific treatment recommendations [ 6–8 ]. This
approach not only facilitates the identification of the most
suitable drugs for individual patients based on their genetic
profiles but also sets the foundation for drug combination pre-
diction based on patient cohorts. Applying statistical methods
based on drug databases to the set of recommended drugs for
these patient cohorts enables researchers and clinicians to pre-
dict more accurately effective drug combinations. This strat-
egy underscores a significant shift toward a data-driven and
evidence-based framework to optimize combination therapy
for cancer patients, leveraging the increasingly available ge-
netic and pharmacological data to enhance treatment efficacy
and patient outcomes. 

In recent decades, an increasing application of computa-
tional approaches has been developed for the prediction of
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Table 1. Contingency table for Fisher’s exact test analysis 

Target Comparison Row total 

Drug1 + Drug2 a b a + b 
Non-Drug1 + Drug2 c d c + d 
Column total a + c b + d a + b + c + d 

( n ) 

In this table, a represents the number of patients in the target tumor cohort 
receiving Drug1 + Drug2 co-recommendation, b is the number of compar- 
ison cohort patients receiving Drug1 + Drug2 co-recommendation, c is the 
number of patients in the target tumor cohort not receiving Drug1 + Drug2 
co-recommendation, and d is the number of comparison cohort patients not 
receiving Drug1 + Drug2 co-recommendation. 

 

 

drug combinations and their effects. Preuer et al. developed
DeepSynergy, a deep learning-based approach that accurately
predicts drug combination synergies for cancer treatments,
significantly surpassing traditional performance methods [ 9 ].
Similarly, Wang et al. introduced DeepDDS, a deep learn-
ing model that employs graph neural networks and attention
mechanisms to precisely predict and prioritize synergistic drug
combinations for cancer treatments, achieving the advantage
of enhanced interpretability through chemical substructure
analysis [ 10 ]. Cheng et al. demonstrated that a network-based
methodology, concentrating on the relative configuration of
drug–target modules in connection to disease modules, can
effectively prioritize potentially efficacious drug combinations
for complex diseases such as cancer [ 11 ]. GAECDS, presented
by Li et al., is an innovative approach combining graph au-
toencoders and convolutional neural networks to accurately
predict drug synergy, showing superior performance in iden-
tifying efficacious drug combinations [ 12 ]. Concurrently, nu-
merous classical machine learning (ML) models have also ex-
hibited performance comparable to deep learning methods,
demonstrating their robustness and utility in this complex do-
main. Gayvert et al. showcased that a random forest model,
utilizing single drug dose responses as features, could accu-
rately predict drug pair synergy and effectiveness in mutant
BRAF melanomas [ 13 ]. Janizek et al. introduced TreeCombo,
an XGBoost-based approach that leverages the power of gra-
dient boosting to improve predictive accuracy, outperform-
ing DeepSynergy by using drug physiochemical features and
cancer cell line gene expression data. The use of XGBoost,
which combines multiple decision trees to make robust pre-
dictions, demonstrated comparable efficacy to deep learning
on medium-scale datasets, while offering the additional bene-
fits of reduced complexity in hyperparameter tuning and en-
hanced interpretability through TreeSHAP, a feature attribu-
tion method that identifies the contribution of each variable
in a clear and consistent manner [ 14 ]. However, current pre-
clinical screenings primarily focus on the synergistic effects of
drug combinations, often overlooking key factors for clinical
success, such as potential toxicity and selective efficacy against
tumors [ 3 ]. At the same time, there is a clear lack of innovative
computational solutions to demonstrate their feasibility and
benefits in translational applications, especially in the field of
cancer, where there is an urgent need to identify combination
therapies suitable for specific cancer group patients based on
patient-specific biomarkers [ 15 , 16 ]. 

In this paper, we present an Onko_DrugCombScreen
Shiny app designed to address this gap in cancer therapy,
which could predict the significant drug combination can-
didates based on the target patient cohort statistical anal-
ysis against the comparison cohort. The primary goal of
Onko_DrugCombScreen extends beyond merely providing
treatment recommendations based on drug databases such as
GDKD [ 17 ], CIViC [ 18 ], and OncoKB [ 19 ]. It integrates sta-
tistical methods and data visualization to analyze recommen-
dations based on extensive drug databases within the target
cancer cohort and comparison cohort genetic data, thereby
uncovering potential drug combinations and mapping them
onto cell line data, providing a robust basis for clinical drug
screening. Based on the drug evidence levels in the knowledge
database for medications, one can directly ascertain whether
the variant mapping drugs are selective at the cancer types in
the target patient cohort, and the previous studies collected
in the database can save workload on drug toxicity analysis.
This brings renewed hope for the clinical translation of cancer- 
type-specific drug combination therapies. 

Materials and methods 

Fisher’s exact test in cancer subtype 

recommendations 

Besides predicting single drugs, clinicians and researchers are 
interested in determining whether two drugs are simultane- 
ously recommended for the target tumor type and exhibit sig- 
nificant differences compared to the comparison tumor group.
Here, we defined co-recommended drugs as candidate drug 
combinations that are presented in the Drug_comb column 

in the DrugComb analysis table. We then counted the number 
of patients in the target tumor cohort and the comparison co- 
hort for each candidate drug combination. Subsequently, we 
used these four counts to construct a contingency table (Ta- 
ble 1 ) and performed a Fisher’s exact test for each candidate 
drug combination. By analyzing the P -value and odds ratio 

that are circled with a red rectangle in Fig. 1 results obtained 

from Fisher’s exact test, we can determine whether the occur- 
rence of a candidate drug combination is significantly different 
and assess the magnitude of this difference. The P -values were 
adjusted using the Benjamini–Hochberg method, as reflected 

in the adjust_p.value column, to account for multiple hy- 
pothesis testing and control the false discovery rate. Addition- 
ally, we report drug combination candidate recommendations 
for cell line data in the final four columns in the DrugComb 

analysis table to assist with wet-lab validation (Fig. 1 ). 
Here, Fisher’s exact test serves as a robust statistical method 

to determine the significance of the association between the 
candidate drug combination and the tumor type. Fisher’s ex- 
act test is particularly suitable for small sample sizes and for 
datasets where the assumptions of chi-squared tests are not 
met. 

Drug level of evidence 

Here, we adopted the MTB drug’s level of evidence category 
approach proposed by Perera-Bel et al. [ 6 ]. As shown in Table 
2 . “A”signifies evidence for the same cancer type, while “B”in- 
dicates evidence for any other cancer type. Horizontally, Level 
1 represents evidence supported by regulatory agencies or clin- 
ical guidelines. Level 2 includes evidence from clinical trials.
Finally, Level 3 consists of preclinical trial evidence. There- 
fore, based on the different target cancer types of drugs and 

their respective clinical evidence, six levels of drug evidence 
are derived: A1, A2, A3, B1, B2, and B3. With this drug level 
of evidence, the selection of recommended drugs for specific 
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Figure 1. A “drug co-recommendation” refers to the recommendation of two drugs for a single patient, exemplified as Drug1 + Drug2. The bar plot 
illustrates the counts of such co-recommendations within the target cancer subtype cohort compared to the comparison cancer subtype cohort, leading 
to the construction of the contingency table on the right. Fisher’s exact test was applied to each drug co-recommendation to assess statistical 
significance, resulting in the DrugComb analysis table displayed below. The percentage column ( percentage ) indicates the proportion of drug 
co-recommendations, with the P -value and adjusted P -value columns ( p.value , adjust_p.value ) reflecting the significance level. The odds ratio 
( oddsRatio ) provides a measure of the effect size in comparison to the control group. The final four columns offer details on the cell line drug 
recommendation status, including specific cell line IDs ( individual_id ) used for wet-lab validation. 

Table 2. Drugs obtained from the drug knowledge database are classified 
into clinically rele v ant categories using a system of six levels of evidence 

Approved Clinical Preclinical 

Same cancer A1 A2 A3 
Other cancer B1 B2 B3 
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ancer types and their clinical strength can be clearly defined,
hich can guide the clinical decision. 

nalysis tools 

nko_DrugCombScreen was implemented using R (v.4.3.1)
nd R Shiny (v.1.8.0). This Shiny app integrated a variety of R
rogramming language packages for comprehensive bioinfor-
atics analysis. For parsing and generating data structures, we
tilized readxl v1.4.1 [ 20 , 21 ]. To facilitate data manipulation
nd transformation, we employed packages such as reshape2
1.4.4 [ 22 ], tidyr v1.2.1 [ 21 ], and dplyr v1.0.10 [ 23 ]. We ap-
lied packages such as maftools v2.12.0 [ 24 ], clusterProfiler
4.4.4 [ 25 ], and VariantAnnotation v1.42.1 [ 26 ] for the anal-
sis of somatic variants, functional profiles of genes. For data
isualization, we used packages such as circlize v0.4.15 [ 27 ]
or circular visualizations, ggalluvial v0.12.3 [ 28 , 29 ] for al-
uvial diagrams, ggrepel v0.9.2 [ 30 ] for label clarity, Com-
lexHeatmap v2.12.1 [ 31 ] for sophisticated heatmaps, and
gplot2 v3.4.0 [ 32 ] for creating customizable static plots. 

ata source 

he harmonized drug database, derived from open-source
rug knowledge databases, including GDKD [ 17 ], CIViC [ 18 ],
nd OncoKB [ 19 ], utilizes the DrugBank Vocabulary dataset
rom DrugBank [ 33 ] to standardize drug synonyms. TCGA-
BRCA data and breast cancer cell line data used in the case
study were collected from UCSC Xena hubs [ 34 ]. 

Results 

Case study: application and validation using 

TCGA-BRCA data 

Dataset selection and processing 
In this case study, the Onko_DrugCombScreen was applied to
the TCGA-BRCA dataset to validate its efficacy in identify-
ing effective drug combinations for breast cancer. The TCGA-
BRCA dataset, derived from the TCGA Pan-Cancer (PAN-
CAN) initiative, was chosen for its comprehensive genetic pro-
filing, including extensive data on copy number variations,
single nucleotide variations, and molecular subtype profiles
[ 35 ]. This dataset provides a broad coverage of genetic varia-
tions, making it an ideal resource for this analysis. Addition-
ally, cell line data from the Cancer Cell Line Encyclopedia
(Breast) were incorporated to complement the analysis [ 36 ].
All of the above datasets are available in UCSC Xena hubs
[ 34 ]. 

In the preprocessing phase, somatic mutation data from
the PANCAN was converted into a compatible CSV file
for analysis by the Onko_DrugCombScreen. This process
involved filtering the dataset to isolate BRCA cancer data
and further stratifying it into molecular subtypes: luminal
A / B, HER2+, normal-like, and basal-like. In this case study,
we used normal-like breast cancer as the comparison co-
hort, and HER2+ and basal-like subtypes as the target co-
horts, respectively, to analyze and validate the efficacy of
Onko_DrugCombScreen. Additionally, by integrating cell line
data, Onko_DrugCombScreen provided guidance on suitable
cell lines for subsequent experimental validation. 
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Validation and results 
The drug co-recommendation comparison analysis re-
vealed significant disparities between the three BRCA
subtypes (HER2+ and basal-like) and the normal-like
BRCA data. Significant drug co-recommendations extracted
from Onko_DrugCombScreen were compared with combina-
tional therapies in Wang and Minden’s review [ 37 ], as well as
FDA-approved drug combinations, to validate the effective-
ness. As Supplementary Table S1 shows, the “adjust_p.value”
and “OR” (odds ratio), obtained from the Fisher’s exact test,
indicate the significance and magnitude of the drug com-
bination in the target cohort compared to the comparison
cohort, and the “Percentage” depicts the proportion of the
drug combination recommended in the target cohort. Set-
ting the threshold at adjust _ p . value lt; . 05 , OR > 1, and Per-
centage > 50% retains around 30% of the significant can-
didate drug combinations (30 250 / 111 987 in HER2+ ver-
sus normal-like and 48 348 / 112 069 in basal-like versus
normal-like). Notably, these stringent criteria preserved al-
most all approved and clinical trial drug combinations, in-
cluding the approved combinational therapy of pertuzumab
+ trastuzumab for the HER2+ subtype and pembrolizumab +
paclitaxel for triple-negative breast cancer. These results high-
light Onko_DrugCombScreen’s accuracy in identifying clini-
cally relevant drug combinations, confirming its effectiveness.
Besides, upon comparison with the DrugComb.org database
[ 38 ], it was found that none of the approved and currently
in clinical trial drug combinations of breast cancer had any
recorded synergy scores. 

The validation analysis demonstrates that
the Onko_DrugCombScreen is adept at identifying es-
tablished breast cancer drug combinations in the BRCA
subtypes such as HER2+ and basal-like when compared to
normal-like BRCA subtype. This finding not only validates
the tool’s effectiveness but also highlights its potential in
discovering novel drug combinations for various cancer
types. Consequently, the case study accentuates the utility
of the Onko_DrugCombScreen in providing targeted and
efficacious drug recommendations. 

Data analysis workflow of Onko_DrugCombScreen 

The data analysis workflow of Onko_DrugCombScreen is de-
picted in Fig. 2 : Variant data such as single nucleotide variants
(SNVs) and copy number variants (CNVs) from both the can-
cer subtype cohort and the comparison cancer subtype cohort
are preprocessed and converted into variant tables compati-
ble with Onko_DrugCombScreen. These patient variant data
are then mapped to public drug databases (CIViC, GDKD,
OncoKb) after integration with variant interpretation anno-
tations and drug evidence levels for drug recommendations.
The resulting drug recommendations are subjected to statis-
tical analysis, focusing on the statistical differences in drug
combination candidates observed between the target cancer
subtype group and the comparison cancer subtype group. To
identify drug combination candidates that are significantly
and frequently recommended in the target group compared
to the comparison group, Fisher’s exact test is applied. Subse-
quently, the selected drug combination candidates undergo an
integrated analysis with cell line data to identify available cell
line samples, facilitating wet-lab validation. Additionally, all
analysis results are visualized, making the findings clearer and
more intuitive. The integration of these processes is crucial for
confirming drug combination recommendations for the can- 
cer type of interest. The final validation stage may include 
conducting wet-lab drug screenings to confirm the analysis re- 
sults and deepen the understanding of the underlying biolog- 
ical mechanisms (Fig. 2 ). To assist users in becoming famil- 
iar with the analysis workflow of Onko_DrugCombScreen,
Supplementary File S1 is provided as a test dataset for prac- 
tice and exploration. 

Data preprocessing 
SNVs and CNVs are typically stored in formats such as VCF,
MAF, TXT, or Excel. A preprocessing step is necessary to con- 
vert these various formats into CSV format (Fig. 2 ). These data 
frames are then suitable for use in the knowledge-based drug 
recommendation analysis within Onko_DrugCombScreen. To 

assist users, we have provided an example preprocessing 
script along with a detailed instruction markdown file for the 
TCGA-BRCA case study in the GitLab repository under the 
“test_data” directory. Users can modify the provided example 
preprocessing script according to their needs to convert their 
own variant data into a compatible input format (Fig. 2 ). 

Matching rule between variant annotations in patients’ data 
and database 
Due to the different annotation descriptions of variants in the 
three drug databases (GDKD [ 17 ], CIViC [ 18 ], and OncoKB 

[ 19 ]) and original patients’ variant data, we harmonized the 
three drug databases and designed a matching rule based on 

the interpretation of biological significance (Table 3 ). All vari- 
ant classes or effects map to the biological interpretations of 
“loss, ” “gain, ” or “mutation. ” W e can then associate the orig- 
inal variants (Table 4 ) with the information in the knowledge 
database based on biological interpretations and obtain the 
relevant target drug information. 

Drug recommendation annotation 

After the matching rule is defined, the drug knowledge-based 

analysis was performed to export the drug recommendation 

tables across all target and comparison subtype data. How- 
ever, due to discrepancies in drug nomenclature across the 
three drug databases, we employed the “DrugBank Vocabu- 
lary”dataset from DrugBank to standardize synonymous drug 
names. Subsequently, each drug name was annotated to its fi- 
nal drug class. This annotation is stored in the columns “Ori- 
gin_Drug_Name” and “Classified_Drug_Name” of the Drug- 
Comb analysis table. Additionally, other useful information 

such as variant type is annotated in the “mutType” column,
and variant match status—which indicates whether the amino 

acid change in the raw data exactly matches the database 
records or not—is saved in the “Match_Sign” column. 

Data visualization 

Onko_DrugCombScreen provides a variety of charts for vi- 
sual analysis results, allowing users to understand data more 
intuitively (Fig. 3 ). The application integrates multiple plotting 
functions, including volcano plots, heatmaps, Circos plots, al- 
luvial diagrams, UpSet plots, and bar charts. These visual- 
ization tools help to easily identify recommended drugs or 
candidate drug combinations for subsequent wet-lab analysis 
and validation. Users can configure settings in the left panel 
of Onko_DrugCombScreen and customize the resolution for 
PDF file export. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf004#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf004#supplementary-data
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Figure 2. The workflow for Onko_DrugCombScreen drug combination data analysis. After the recommendation process based on drug knowledge, 
SNVs and CNVs are merged into an annotated drug table. Following statistical analysis and integration of cell line data, the final DrugComb analysis table 
will be used for visualization and wet-lab validation. 

Table 3. Biological interpretation of variant annotations in drug 
databases 

Database Variant Interpretation 

GDKD / CIViC / OncoKB “splice” Loss 
GDKD / CIViC / OncoKB “delins” Loss 
GDKD / CIViC / OncoKB “ins” Insertion 
GDKD / CIViC “del” Deletion 
GDKD “indel” Loss 
GDKD / CIViC “fs” Loss 
GDKD / CIViC / OncoKB “deletion” Loss 
GDKD / CIViC / OncoKB “amplification” Gain 
GDKD mut Mutation 
GDKD any Mutation 
CIViC loss / loss-of- 

function 
Loss 

CIViC “mutation” Mutation 
CIViC “ˆexpression” Gain 
CIViC “Overexpression” Gain 
CIViC “Underexpression” Loss 
OncoKB Truncating 

mutations 
Loss 

OncoKB Oncogenic 
mutations 

Mutation 

CIViC “FRAMESHIFT” Loss 
CIViC “FRAME SHIFT” Loss 
OncoKB / CIViC Exon 17 mutations Mutation (exact 

match) 
CIViC Exon 19 deletion Loss (exact match) 
CIViC Exon 14 skipping 

mutation 
Mutation (exact 
match) 

D

D  

b  

O  

a  

b  

Table 4. Biological interpretation of variant annotations in patients’ vari- 
ants 

Variant Interpretation 

In_Frame_Ins Insertion (exact match) 
In_Frame_Del Deletion (exact match) 
Frame_Shift_Ins Loss 
Frame_Shift_Del Loss 
Splice_site Loss 
amplification Gain 
deletion Loss 
Missense_Mutation Mutation 
Nonsense_Mutation Loss 
Nonstop_Mutation Exact match 
Translation_Start_Site Exact match 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iscussion 

rug combinations are widely recognized for their
enefits in cancer therapy. Here, we developed the
nko_DrugCombScreen Shiny app integrated statistical

nalysis to identify the most significant candidate drug com-
inations for a target tumor type cohort. We utilized drug
knowledgebase recommendations derived from mutation
data of the targeted cancer patient cohort and the compar-
ison cohort to identify drug co-recommendations. This is
complemented by integrating cell line data to assist in the val-
idation of biological experiments. Onko_DrugCombScreen’s
ability to identify effective drug combinations, as demon-
strated in the TCGA-BRCA case study, suggests a promising
way toward more tumor type tailored and effective cancer
combination therapy. 

In contrast to current computational methods that
mainly focus on synergy and dose–response matrices,
Onko_DrugCombScreen is a drug knowledge-based analy-
sis approach. It not only provides therapeutic recommenda-
tions but also offers guidance for clinical research, thereby in-
tegrating more closely with clinical applications. Moreover,
all drug recommendations can be traced back to patient ge-
netics and variants through the visual alluvial diagram of
Onko_DrugCombScreen. Utilizing the drug database that is
also employed by the MTB-Report [ 6 ], each recommended
drug’s level of evidence and response are explicitly defined.
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Figure 3. Visualization of the Onko_DrugCombScreen. ( A ) Volcano plot identifying significant drug combinations. ( B ) Circos plot depicting the most 
proportional drug co-recommendations. ( C ) Alluvial diagram tracing mutations back to recommended single drugs. ( D ) UpSet plot showing the 
top-recommended single drugs and their intersections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This clarity effectively aids in addressing issues of selectivity
in the recommended drug combinations, issues that are of-
ten overlooked in previous methods. Moreover, the utiliza-
tion of drug databases for the recommendation of candidate
drug combinations based on patient gene mutation profiles
can potentially reduce the effort required for toxicity analy-
sis [ 39 , 40 ]. These databases provide valuable information on
the relationships between individual drugs and specific gene
mutations or molecular targets, which can guide the selection
of drug combinations with potentially favorable efficacy pro-
files. Furthermore, the drugs included in these databases are
often approved or under clinical trials, meaning that their tox-
icity profiles have been extensively studied and characterized
[ 41 , 42 ]. These existing safety data can serve as a foundation
for assessing the toxicity of drug combinations, as it provides
insights into the common adverse events, dose-limiting tox-
icities, and recommended dosing schedules of the individual
drugs. By leveraging this information, researchers can stream-
line the toxicity assessment process and make more informed
decisions when designing drug combination studies. However,
the toxicity of a drug combination is not simply the sum of
individual drug toxicities. Comprehensive safety assessments
are still necessary, considering factors such as drug–drug inter-
actions, dosing, scheduling, and specific patient populations. 

Onko_DrugCombScreen also offers flexibility for applica-
tion across various cancer types beyond breast cancer, pro-
vided there is sufficient sample size and well-defined molec-
ular stratification within the target and comparison cohorts.
For example, in the TCGA-BRCA case study, the target co-
horts included 280 patients with the basal-like subtype and
82 patients with the HER2+ subtype, while the compari-
son cohort (normal-like subtype) consisted of 143 patients.
These cohort sizes provide adequate statistical power for
Fisher’s exact test [ 43 , 44 ], which remains robust even with 

smaller sample sizes, such as when the sample size is be- 
low 5. However, when any expected cell counts in a contin- 
gency table are very low, statistical interpretation may be- 
come limited. Therefore, we recommend caution when ana- 
lyzing smaller cohorts for drug combination candidate iden- 
tification, as reduced statistical robustness can affect result 
interpretation. The tool’s ability to analyze stratified cohorts 
makes it versatile across different cancer types, but its success 
depends on sufficient sample sizes and well-defined molecular 
subtypes. 

Looking forward, the potential for further development of 
Onko_DrugCombScreen is substantial. While the current ver- 
sion does not yet incorporate detailed drug synergy, dose–
response, or combination toxicity analyses, we recognize these 
as crucial factors for clinical implementation of combination 

therapies. Future iterations of Onko_DrugCombScreen could 

integrate drug synergy data from sources such as DrugComb 

[ 45 , 46 ], where available, and refine recommendations using 
dose–response metrics, particularly during validation in cell 
line or patient-derived model systems. Additionally, toxicity 
analysis can be streamlined by leveraging existing toxicity pro- 
files from drug knowledgebases, though a more comprehen- 
sive assessment of combination-specific toxicity will be nec- 
essary. To address these gaps, we propose a possible solution 

that incorporates artificial intelligence (AI) and ML techniques 
to enhance the tool’s capabilities. Specifically, ML models such 

as graph convolutional neural networks [ 47 ], random forest,
or boosted models could analyze large-scale patient variant 
data and drug interactions to more accurately predict com- 
bination efficacy and minimize adverse effects. By incorpo- 
rating these AI-driven approaches, Onko_DrugCombScreen 

will evolve into a more robust and clinically relevant tool,
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apable of offering precision-guided, synergistic drug combi-
ations tailored to individual patients. 

onclusion 

n conclusion, the Onko_DrugCombScreen Shiny app repre-
ents an innovative tool in the field of precision cancer therapy,
ffering a novel drug knowledge-based approach to drug com-
ination screening. This application leverages drug knowl-
dge database analysis along with advanced statistical and
isualization techniques to identify effective drug combina-
ions. It effectively utilizes drug recommendations from tar-
eted cancer cohort and comparison cohort, combined with
ell line data, to provide prominent drug co-recommendations
or targeted cancer type. Validated through a TCGA-BRCA
ase study, the application has demonstrated its potential in
ccurately identifying both existing and novel drug combina-
ions, aligning with the evolving field of precision oncology.
ooking ahead, the integration of AI and ML technologies
olds the promise of further enhancing its predictive capabil-
ties, making it a valuable tool in the quest for more targeted
nd effective cancer treatment approaches. 
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