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Abstract: Intestinal metaplasia (IM) is an intermediate step in the progression from premalignant
to malignant stages of gastric cancer (GC). The Popeye domain containing (POPDC) gene family
encodes three transmembrane proteins, POPDC1, POPDC2, and POPDC3, initially described in
muscles and later in epithelial and other cells, where they function in cell–cell interaction, and
cell migration. POPDC1 and POPDC3 downregulation was described in several tumors, including
colon and gastric cancers. We questioned whether IM-to-GC transition involves POPDC gene
dysregulation. Gastric endoscopic biopsies of normal, IM, and GC patients were examined for
expression levels of POPDC1-3 and several suggested IM biomarkers, using immunohistochemistry
and qPCR. Immunostaining indicated lower POPDC1 and POPDC3 labeling in IM compared with
normal tissues. Significantly lower POPDC1 and POPDC3 mRNA levels were measured in IM and
GC biopsies and in GC-derived cell lines. The reduction in focal IM was smaller than in extensive
IM that resembled GC tissues. POPDC1 and POPDC3 transcript levels were highly correlated with
each other and inversely correlated with LGR5, OLFM4, CDX2, and several mucin transcripts. The
association of POPDC1 and POPDC3 downregulation with IM-to-GC transition implicates a role in
tumor suppression and highlights them as potential biomarkers for GC progression and prospective
treatment targets.

Keywords: gastric intestinal metaplasia; gastric cancer; POPDC1 (BVES); POPDC3

1. Introduction

Recent global statistics rank gastric cancer (GC) fifth for incidence and third for cancer-
related mortality worldwide and a major world health concern [1]. The disease is frequently
associated with poor prognosis due to late detection when curative treatment is limited [1,2].
GC evolves through slow progressing multistep alterations that include chronic gastritis,
gastric intestinal metaplasia (IM), dysplasia, and early and advanced gastric cancer. IM is
characterized by replacement of normal gastric mucosa by intestinal epithelium in response
to chronic gastric inflammation. IM is present in approximately one-fourth (19–30%) of
individuals worldwide and is characterized by gastric lesions of small intestinal-specific
phenotype where goblet cells and enterocytes replace gastric mucosa cells [3–5]. The fact
that most IM cases do not progress into GC indicates that the transition from gastric pre-
malignancy to malignancy is complex and involves diverse factors. Available information
associates the de novo expression of caudal homeobox transcription factors 1 and 2 (CDX1,
CDX2) and mucin 2 (MUC2) with IM development [6–10], and the increased expression of
intestinal stem cell (ISC) markers, including LGR5, OLFM4, and EPHB2, with IM-related
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gastric tumorigenesis [6,11]. The identification of additional players in the process remains
of major importance for the understanding of IM to GC transition and the introduction of
suitable biomarkers for early detection and improved therapeutic approaches.

The Popeye domain containing (POPDC) gene family comprises three transmembrane
cyclic AMP effector proteins encoding POPDC1 (also named blood vessel epicardial sub-
stance, BVES), POPDC2 and POPDC3. POPDC proteins, originally discovered in muscles,
are present in several cell types including epithelial cells [12,13]. The POPDC proteins play
an important role in striated muscle homeostasis, such as skeletal muscle regeneration
and the control of heart rhythm, heart stress signaling, and heart cell survival [14–17]. In
epithelial cells, POPDC proteins function in cell-cell interaction and affect cell adhesion,
proliferation and migration [15,18]. In several tissues including the stomach, downregula-
tion of POPDC1 and POPDC3 expression via DNA promoter hypermethylation has been
shown to enhance tumorigenesis and promote cell proliferation, migration, invasion, and
metastasis that correlate with disease progression and clinical outcome [19–22]. POPDC1
and POPDC3 likely function as tumor suppressors and the reported inverse relationship
between POPDC1 levels and c-Myc expression and Wnt signaling may link POPDC1 under-
expression to intestinal stem cell programming and malignant tumor growth [23–30]. We
questioned whether and how POPDC genes are reprogrammed upon the transition from
IM to GC and investigated their expression profile relative to genes of known association
with gastric tumorigenic alterations.

2. Results
2.1. Details of Tissue Specimens

A cohort of 80 archived endoscopic antral gastric biopsies was recruited at the Rabin
Medical Center Pathology Department that included gastric IM (N = 40), gastric cancer
(N = 20) and gastric normal tissues (N = 20) as assessed by an expert gastro-pathologist,
based on H&E-staining. The IM specimens were categorized as focal IM, when IM mor-
phology occupied less than 30% of the biopsy area (N = 22) or extensive IM when biopsy
area was greater (N = 18). The normal biopsies were of patients admitted to gastroscopy
according to clinical indications, such as iron deficiency anemia, weight loss, or epigastric
pain investigation. The cohort details including age, gender, and histology are summarized
in Table 1. Note that the mean age of GC patients was 10 years higher than that of patients
with gastric IM and with normal histology.

Table 1. Demographic details of the study population.

Normal
Gastric IM

GC
Focal IM Extensive IM

Number 20 22 18 20

Age (Years ± SD) 69.5 ± 9.9 69.6 ± 10.1 66.7 ± 11.2 76.8 ± 9.9

Males (N %) 9 (45%) 12 (55%) 7 (39%) 10 (50%)

Females (N %) 11 (55%) 10 (45%) 11 (61%) 10 (50%)
IM = intestinal metaplasia; GC = gastric cancer.

Of the 80-patient cohort, 17 focal IM patients (77.3%), 14 extensive IM patients (77.7%),
and 8 normal tissue patients (40%) underwent endoscopic surveillance 1–2 years after the
index gastroscopy. Among these patients, 32% of the focal and the extensive IM cases
regressed to chronic atrophic gastritis. One focal IM patient progressed to extensive IM and
2 extensive IM patients reversed to focal IM. A single patient with extensive IM developed
GC stage 1 and underwent early gastrectomy. Two patients who had extensive IM with
high grade dysplasia underwent preventive partial gastrectomy. None of the normal gastric
tissue patients developed IM or GC. In this study, we did not analyze any of the endoscopic
follow-up tissues.
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2.2. POPDC Protein Distribution

Immunohistochemical (IHC) evaluation of POPDC1 and POPDC3 indicated lower
labeling in the luminal surface of gastric glands of IM, compared with normal gastric
tissues and normal adjacent tissues (Figure 1A). In all cases, Alcian blue/Periodic acid-
Schiff (AB/PAS) staining was performed that stained both acidic and neutral mucins
and delineated gastric tissue morphology and goblet cells in IM. Figure 1B represents a
transitional region from normal gastric tissue to IM.

Figure 1. Representative biopsy microsections. (A) The four tissue categories stained for mucins (AB/PAS, purple) and
immunostained for POPDC1 and POPDC3. The mucus in goblet cells in IM stain magenta for neutral mucins and bright
blue for acid mucin. The brown color represents protein immunolabeling of POPDC1 and POPDC3. Acidic mucins appear
in blue and neutral mucins in red; mixed mucins appear purple. The images shown are not serially overlapping. Note
reduced labeling intensity of POPDC1 and POPDC3 in the IM and GC tissues. X20 magnification. (B) A transitional region
from normal phenotype to IM (yellow asterisks). Left, POPDC1 immunolabeling; right, mucin AB/PAS staining. Note
typical morphology and reduced POPDC1 labeling in the IM region. The bar indicates 100 µm.
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2.3. POPDC mRNA Expression

To estimate the expression of POPDC genes in the different specimens we extracted
RNA from tissue microsections and quantified the relative amounts of POPDC mRNA
species using qPCR. As shown in Figure 2A–C, the mean levels of POPDC1 and POPDC3
transcripts were higher in normal and in focal IM tissues compared with extensive IM
and GC tissues that resembled each other. POPDC3 expression levels in focal IM were
significantly lower than in normal tissues. POPDC2 expression remained essentially
unchanged in the different gastric phenotypes. A statistically positive correlation was
observed between the transcript levels of POPDC1 and POPDC3 (Figure 2D).

Figure 2. Expression of POPDC genes in the four gastric biopsy categories. A (A–C), Expression levels of POPDC genes
in normal (•), focal IM (�), extensive IM (N), and GC (H) biopsies as measured by qPCR. (A) POPDC1, (B) POPDC2,
(C) POPDC3. Values of mRNA scores are in relative quantity (RQ) normalized to RPLP0. Mean ± SEM. * p < 0.05;
*** p < 0.001. (D) Correlation analysis between POPDC1 and POPDC3 in all the IM tissues. p < 0.001.

We next examined whether the expression levels of POPDC genes varied between
cell lines established from GC tumors and analyzed three GC cell lines of diverse origins
and phenotypes: (1) N87, derived from liver metastasis, well differentiated intestinal
type cells displaying in culture an epithelial monolayer [31]; (2) SNU719, derived from a
primary tumor, moderately-differentiated gastric adenocarcinoma cells [32]; (3), SNU16,
derived from metastatic ascites, poorly-differentiated adenocarcinoma cells growing in
culture as non-attached floating cells [31]. In the absence of normal gastric cells, we
normalized the transcript values of each POPDC gene to the corresponding mean values
obtained from 293T cells, a human embryonic kidney-derived cell line that maintains
normal epithelial morphology and expresses the three POPDC isogenes. The silencing of
POPDC1 in HEK293T cells increased their susceptibility to infection with enteropathogenic
bacteria similar to the increased sensitivity of colonic endothelial cells to bacterial infection
in POPDC1 null mice [27]. As shown in Figure 3, POPDC1 was practically undetected
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in any of the three GC cell lines. POPDC2 mRNA was observed in all the cell lines, yet
significantly lower expression levels were measured in the poorly differentiated floating
SNU16 cells. POPDC3 mRNA was absent in the less differentiated SNU719 and SNU16 cell
lines, but was evident in the well differentiated N87 intestinal type cells. Namely, POPDC1,
POPDC2, and POPDC3 are dysregulated differently in the various GC cell lines, partially
reflecting the degree of cell differentiation and malignancy.

Figure 3. Expression of POPDC genes in three GC cell lines. Results are presented as fold difference from 293T reference
cells. (A) POPDC1; (B) POPDC2; (C) POPDC3. Mean ± SEM; * p < 0.05 vs. 293T cells; *** p < 0.001 vs. N87 cells; &,
below detection.

2.4. Expression of Genes Associated with IM and GC Progression

We compared the expression patterns of POPDC1-3 with those of genes encoding
regulators of cell proliferation, cell cycle, adhesion, migration as well as mucins and
stem cell markers, all related to gastric cell growth and malignancy [11]. A heatmap
and bidirectional hierarchical clustering of gene expression within the four gastric tissue
categories ordered the specimens into several super clusters, which diverged further to
smaller clusters assembling each tissue category into several distinct groups along with
some category intermixing (not shown). A heatmap of the IM tissues only allocated the
specimens into five main clusters of which two clusters (15 samples) grouped focal IM
only, one cluster (13 samples) comprised extensive IM only and two additional clusters
(a total of 12 samples) included both focal and extensive IM (Figure 4). The analyzed genes
assembled into 6 main clusters allocating the POPDC transcripts to a distinct three-gene
cluster where POPDC1 and POPDC3 separated out from POPDC2 (Figure 4).
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Figure 4. A heatmap of gene expression and bidirectional hierarchical clustering of the IM tissues. Expression values of
POPDC1-3 and a selection of genes associated with IM and GC progression were analyzed. Color codes are from low
(blue) to high (red) expression values. Each row represents an individual tissue specimen categorized according to the
clinico-histological identification. Each column depicts a single gene as label at the bottom. The bidirectional hierarchical
clustering generated two dendrograms: (1) the specimens (right), five main clusters (I-V), of which clusters I, II, comprise
focal IM only, cluster V comprises extensive IM only, and clusters III, IV, comprise focal and extensive IM samples. (2) The
mRNA species (bottom), five main gene clusters. Note a discrete POPDC1-3 cluster (bottom left) where POPDC1 and
POPDC3 segregate out of POPDC2.
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Following the exploratory heatmap analysis that discriminated POPDC gene expres-
sion from almost all the other genes analyzed, we examined further the relationship be-
tween POPDC1 and POPDC3 expression levels and those of genes representing regulators
of proliferation/growth, mucins, and gastric stem cell markers.

2.5. Regulators of Transcription

Transcript levels of CDX2, a homeobox transcription factor essential for intestinal cell
growth and differentiation and a molecular trigger in IM and gastric carcinogenesis, and
c-Myc, a transcription factor associated with gastric cancer progression, were assessed, and
correlation with POPDC1 and POPDC3 expression was calculated [8,11,33]. Compared to
normal gastric tissues, CDX2 transcripts were markedly elevated in focal and extensive IM
and in GC tissues (Figure 5A). c-Myc transcripts were essentially unchanged in the focal IM,
few were elevated in extensive IM, and numerous were significantly elevated in GC tissues
(Figure 5B). A statistically significant inverse correlation was found between the transcript
levels of CDX2 and POPDC1 and POPDC3 (r = −0.6492, p < 0.001 and r = −0.5242, p < 0.001,
respectively). As for c-Myc, an inverse correlation was calculated for POPDC1 (r = −0.2439,
p < 0.05) not for POPDC3.

Figure 5. Expression levels of transcription factors: (A) CDX2 and (B) c-MYC in normal (•), focal IM (�), extensive IM (N),
and GC (H) gastric biopsies measured by qPCR. * p < 0.05; ** p < 0.005; *** p < 0.001. Mean ± SEM.

2.6. Mucins

Expression of several mucins has been linked to IM transdifferentiation and neoplastic
transition in the stomach [34,35]. We examined the relationship between POPDC1 and
POPDC3 expression levels and those of secreted gel-forming (MUC2, MUC5), secreted non-
gel forming (MUC17) and membrane bound (MUC3A, MUC12) mucins [36]. Compared
with normal gastric tissues, all five mucins displayed significantly elevated expression
in extensive IM and GC samples with few specimens elevated also in focal IM. MUC17
was also significantly elevated in focal IM (Figure 6). Correlation analyses with POPDC1
and POPDC3 mRNAs indicated statistically significant inverse correlations with the five
mucins (Figure 6).
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Figure 6. Expression levels of mucin genes and correlation with POPDC1 and POPDC3 expression (A–E). Summary of
mucin transcript quantification. MUC, mucin. * p < 0.05; ** p < 0.005; *** p < 0.0001. Mean ± SEM. (F)Results of Spearman’s
correlation test between the transcript levels of each mucin and POPDC1 and POPDC3.
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2.7. Stem Cell Markers

Intestinal and gastric stem cell markers characterize tissue resident stem cells that
play a role in tissue homeostasis and repair and are dysregulated with the transition to
malignancy [11]. We examined the relationship between POPDC1 and POPDC3 expression
and the expression of twelve ISC markers. Compared with normal tissues, all twelve genes
were significantly upregulated in the GC tissues, some (LGR5, OLFM4, TERT) were elevated
in extensive IM and few (LGR5, OLFM4) were elevated in focal IM as well. (Figure 7).
Table 2 lists the results of correlation analyses. The transcript levels of the twelve genes
were inversely correlated with POPDC1 expression although in the case of LRIG1 and
WNT2 the correlation was not statistically significant. Regarding correlation with POPDC3
expression, only six out of twelve ISC markers showed an inverse correlation with statistical
significance (Table 2).

Table 2. Summary of correlation analyses between transcript levels of POPDC1 and POPDC3 and
those of the genes depicted in Figure 7. Spearman’s correlation test.

POPDC1 POPDC3

R P r p

LGR5 −0.443 <0.0001 −0.302 <0.05

LRIG1 −0.164 NS 0.114 NS

OLFM4 −0.593 <0.0001 −0.521 <0.01

ATHO1 −0.359 <0.005 −0.277 <0.05

ASCL2 −0.373 <0.005 −0.297 <0.05

AXIN2 −0.323 <0.01 −0.185 NS

SOX9 −0.348 <0.005 −0.018 NS

SOX2 −0.256 <0.05 −0.235 NS

EPHB2 −0.471 <0.0001 −0.361 <0.01

TRET −0.387 <0.001 −0.256 <0.05

WNT2 −0.229 NS −0.129 NS

FZD3 −0.26 <0.05 0.063 NS
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Figure 7. Expression levels of ISC marker genes in the four tissue categories. (A-L) Summary of qPCR quantification of
gene transcripts. * p < 0.05; ** p < 0.005; *** p < 0.001. Mean ± SEM.
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3. Discussion

We report the dysregulated expression of POPDC genes in human IM and GC tissues
as evaluated in endoscopic gastric biopsies. Our results demonstrate, for the first time,
the reduced expression of POPDC1 and POPDC3 in precancerous IM lesions and confirm
previously reported downregulation of these genes in GC. Several genes formerly identified
in relation to IM development and GC progression were co-assessed for comparison and
were found to be regulated in a manner opposite to POPDC genes. The study, conducted
in archival pathologically diagnosed samples, provides new insights as to the possible
involvement of POPDC1 and POPDC3 in IM transdifferentiation and GC progression.

IM is primarily a histologic definition. In this study, the pathological analysis was
based on H&E staining with no routine AB/PAS staining including the classification
into focal and extensive IM. Although we did not group our IM samples according to
the new guidelines on the management of IM published by Gupta and colleagues in
2020 [37], it is noteworthy that the pathological-histologic IM classification corresponded
satisfactorily, though not completely, to the clustering of tissue samples by the bi-directional
multi-transcript heatmap analysis. The tissues diagnosed as focal IM were segregated
from tissues identified as extensive IM with little intermingling. This points to distinct
transcriptomic pattern of each IM category and the potential use of a multitranscript
approach to improve IM characterization.

To the best of our knowledge, the positive immunolabeling of POPDC3, not POPDC1,
was reported in IM only once and was not extended to a larger IM cohort as we did in
the current study [21]. POPDC2 expression was essentially unchanged in the IM and GC
specimens that corroborated previous reports in GC tissues and GC cell lines, suggesting
that the regulation of POPDC2 expression differs from that of POPDC1 and POPDC3 [21].
The co-regulation of POPDC1 and POPDC3 may result from their co-localization on the
same chromosome 6q21, whereas POPDC2 localizes to chromosome 3q13 [38].

The silencing of POPDC1 and POPDC3 during tumorigenic transformation is at-
tributed primarily to promoter hypermethylation [21,39]. Other mechanisms reported to
reduce POPDC1 and POPDC3 expression include histone de-acetylation, EGF signaling,
and AKT activation by netrin-1 [21,28,40,41]. We believe that the same mechanisms may
underlie POPDC1 and POPDC3 downregulation in precancerous IM, yet additional studies
are required to confirm this hypothesis.

Studies on POPDC1 (BVES), the prototype of the POPDC family, have provided
insights as to mechanisms through which POPDC1 silencing or suppression facilitate tumor
development and progression [14,15,18,29,30,42]. POPDC1 maintains junctional structures
and cell adhesion and suppression of POPDC1 expression enhanced EMT and cell mobility.
POPDC1 re-expression reverted EMT and established cell contacts in cultured epithelial
cells [20]. Likewise, in GC cell lines, the re-expression of POPDC3 reduced cell migratory
and invasive capabilities [21,43]. Besides, POPDC1 modulates cell shape and motility as
well as vesicle trafficking that may also contribute to cancer cell transformation and tumor
progression [21,44,45]. Both, POPDC1 and POPDC3 showed predominant cytoplasmic
localization in tumors, suggesting that altered subcellular localization also plays a role in
addition to differences in expression levels [22]. Furthermore, the interaction of POPDC1
with molecules in pathways regulating cell proliferation and stem cell activation, such
as ZO-1, Wnt, and c-Myc supports the role of POPDC1 as a negative regulator of cell
proliferation [20,23].

As depicted in the heatmap, the downregulation of POPDC1 and POPDC3 expression
in IM concurred with increased expression of genes encoding transcription factors, mucins,
and ISC markers previously associated with IM and GC development [46]. Correlation
analyses between the transcript levels of POPDC1 and POPDC3 and a selection of these
genes, demonstrated statistically significant inverse correlation with the majority of the
genes. The elevated expression of CDX2 appears already in focal IM, reflecting the trans-
differentiation to intestinal phenotype. However, a pronounced c-Myc upregulation is
evident mainly in the GC tissues and less in focal or extensive IM. Nonetheless, elevation
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in c-Myc protein may take place independently of c-Myc transcript upregulation since the
enhancing effect of POPDC1 on c-Myc degradation should be reduced when POPDC1 is
underexpressed, a condition expected in the extensive IM tissues [23].

Alterations in mucins, the mucosa protecting glycoproteins [47], are regarded as
indicators of IM and premalignant transformation in the gastric mucosa [34,35]. Mucin
expression levels and mucin glycosylation patterns (such as MUC1, MUC2, MUC3, MUC4,
MUC 5AC, MUC5B, MUC13, and MUC17) reflect inflammation and transdifferentiation of
normal gastric mucosa into intestinal phenotype [46]. We found inverse correlation between
the expression of mucins that characterize severity of malignant transformation, and the
tumor suppressors POPDC1 and POPDC3, suggesting an inverse regulatory linkage.

We report the increased expression of ISC markers in IM and GC tissues that was
inversely correlated with POPDC1 and POPDC3 expression. The observation that Wnt
target gene and ISC marker LGR5 is upregulated in IM tissues along with increased expres-
sion of ISC markers such as OLFM4 and EPHB2, supports previous reports that indicate
intestinal-like stem cell population as players in IM pathogenesis [11]. Increased ISC
marker activation including amplified Wnt signaling and elevated expression of stem cell
markers LGR5 and ASCL2 were reported in enteroids of POPDC1-depleted mice [25]. We
postulate that POPDC1 and POPDC3 downregulation in gastric IM triggers the induction
of stem cell markers and stem cell activation that facilitates IM transdifferentiation and
GC progression.

Collectively, our results demonstrate the downregulation of POPDC1 and POPDC3 in
focal and extensive IM that coincides with the upregulation of genes responsible for the
development and maintenance of IM and the progression to GC. The association of POPDC1
and POPDC3 downregulation with IM and GC suggests a role in tumor suppression and
highlights them as potential biomarkers for IM and GC progression and as prospective
treatment targets.

Study limitations: This is an analysis of archived clinical pathology specimens. No
systematic follow-up biopsies were available, neither adjacent samples of normal tissues.
Therefore, the information obtained is essentially descriptive. Any mechanistic deduction
inferred from the data is based on knowledge derived from the relevant literature. Whether
the downregulation of POPDC1 and POPDC3 plays an active role controlling gene ex-
pression or is it a concomitant phenomenon awaits future investigation. Experiments in
GC cell lines manipulated for POPDC1 and POPDC3 re-expression and over-expression
may offer an answer. The information presented by us provides a basis and opens the
way for prospectively designed investigation of human biopsies as well as experiments
in animal models and cell cultures to clarify the role of POPDC1 and POPDC3 in IM
transdifferentiation and GC progression.

4. Materials and Methods
4.1. Biopsy Selection

The study was approved by the Rabin Medical center institutional Ethics Committee
(#RMC 027812). Endoscopic biopsies have been taken according to the clinical indications.
Consecutive Formalin-fixed and paraffin-embedded (FFPE) gastric samples with or without
intestinal metaplasia or cancer were collected from the pathology archive of Rabin Medical
Center, from patients who underwent endoscopic gastric biopsies at the Gastroenterology
Division of Rabin Medical Center, from 2005 to 2017. Normal tissue, IM or GC lesions, were
determined by using H&E, Alcian Blue/PAS, and Giemza staining for Helicobacter pylori.
The evaluation was done by two expert gastro-pathologists. IM lesions were categorized
into focal and extensive IM. We excluded patients with Helicobacter pylori infection and
patients with family history of gastric cancer. After exclusion, 80 biopsies were included in
the study. The medical records of the patients were reviewed retrospectively, including
flow-up after endoscopic procedures, gastric cancer staging, grading, and prognosis.
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4.2. Sample Processing for Histochemistry and IHC

Three serial micro-sections (4 µm) were prepared from each FFPE sample and pro-
cessed for either histochemistry and immunohistochemistry or the isolation of RNA. Slides
were deparaffinized with xylene, and washed with serial dilutions of ethanol. For mucin
staining we used a commercial Alcian Blue 2.5PH/PAS Stain kit (Bio-optica Milano Italy)
according to the manufacture’s protocol including serial staining and washing steps. For
immunohistochemistry, we employed heat-induced epitope retrieval methods with citrate
buffer, pH 6.0 (#ab93678 Abcam, UK). POPDC1 was detected using a 1:100 dilution of a
mouse monoclonal antibody (anti BVES (POPDC1), #sc-374081, Santa Cruz Biotechnology),
POPDC3 was detected in parallel sections using a 1:100 dilution of a Rabbit polyclonal
anti-POPDC3 antibody (#ab76388 Abcam, UK). Incubation with the primary antibodies
was overnight at 4 ◦C. Bound antibodies were detected using HRP Polymer Detection
System, ZytoChem Plus (HRP) One-Step Polymer anti-Mouse/Rabbit (#ZUC053-00, Zy-
tomed Systems, Germany) and DAB Substrate Kit (ab64238 Abcam, UK), according to the
manufactures protocol. Hematoxylin (blue) (Sigma-Aldrich) was used for counter staining.
Of notice, preliminary experiments with several anti-POPDC2 antibodies did not yield sat-
isfactory labeling and no IHC results were obtained for POPDC2. Photographs were taken
at X20 magnification. Two expert pathologists examined the histological preparations.

4.3. RNA Isolation and Quantitative Real-Time PCR (qPCR)

RNA was isolated from FFPE tissue sections using RNAeasy mini columns (Qiagen,
Valencia, CA, USA). The manufacturer’s protocol was followed with the exception of
increased proteinase K digestion time (overnight incubation). RNA quantity and quality
were determined by OD determination at 260 and 280 nm using a Nano Drop spectropho-
tometer (Nano Drop Technologies, Wilmington, DE, USA). RNA was converted to cDNA
using Revert Aid First Strand cDNA Synthesis Kit (Fermentas, Thermo Fisher Scientific,
USA) and was quantified by qPCR, performed as described previously [48]. We used the
TaqMan and or SYBR green system with pre-amplification employing PreAmp Master
Mix kit (Applied Biosystems, Thermo Fisher Scientific, USA) to target genes. Fluorescence
accumulation was analyzed by StepOnePlus Real-Time PCR System (Applied Biosystems,
Thermo Fisher Scientific, USA). For accuracy, gene expression was normalized to three en-
dogenous control genes: 18S ribosomal RNA, RPLP0, and HTRP1. The results reported here
are based on normalization to RPLP0, the most consistently expressed housekeeping gene.
The details of SYBR green primer-pairs and TaqMan assays from IDT DNA Technologies
USA are listed below:
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4.4. Cell Culture

Human GC cell lines SNU-16 (ATCC CRL-5974) and SNU-719 (CVCL_5086) were
obtained from Korea Cell Line Bank (Seoul, Korea) and NCI-N87 from the ATCC (ATCC
CRL-5822). Human embryonic kidney 293T cell line was from the ATCC (ATCC CRL-3216).
Cells were grown in DMEM supplemented with 10–15% fetal bovine serum (Biological
Industries, Israel) and maintained at 37 ◦C in a humidified atmosphere with 5% CO2.

4.5. Statistical Analysis

Comparison between groups was performed using ANOVA, Mann–Whitney–Wilcoxon
test and two-tailed Student’s t-test for independent data. Spearman’s rank correlation
was calculated using GraphPad software and JMP pro13 software. p < 0.05 was consid-
ered significant.

Author Contributions: Conceptualization, G.K.-I., R.G.-B., M.H.-E. Methodology, biopsy recruitment,
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