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Activity of Alzheimer’s γ-secretase is linked
to changes of interferon-induced
transmembrane proteins (IFITM) in innate
immunity
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Abstract

The activity of γ-secretase is critical to the pathogenesis of Alzheimer’s disease (AD). How its activity is regulated is
intriguing and highly important for any AD therapy that focuses on reduction of toxic amyloid peptides and
amyloid deposition in patients. Recently, interferon-induced transmembrane protein 3 (IFITM3) has been identified
as a novel regulator of γ-secretase through a specific interaction. This commentary highlights this exciting study
and provides an updated link of γ-secretase activity to innate immunity through IFITM3.
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Immune activity has long been linked to Alzheimer’s
disease (AD) pathology, but whether it is beneficial and
detrimental to AD progression has stirred a great deal of
debate [7, 12]. The heat of this debate has not ebbed in
recent years; rather, the premise of neuroinflammation
in AD pathogenesis has become increasingly recognized
due to growing evidence that risk genes for late onset of
AD are predominantly expressed by microglia [11, 33].
Of the AD risk loci identified by genomic methods, over
50% of validated gene variants are implicated in innate
immune and microglial functions, including the top 2
AD risk genes, APOE and TREM2 [14, 36]. Epigenomic
analysis shows that AD GWAS loci are preferentially
enriched in enhancer sequences involved in innate im-
mune processes [21, 22]. Intriguingly, single cell profil-
ing of human and AD mouse brains has revealed disease
associated microglia (DAM) with unique transcriptomic
profiles that localize near amyloid plaques [20, 26], while

other studies highlight how dysfunctional microglia, with
impaired chemotactic and phagocytic functions, result in
increased Aβ deposition in the AD brain [1]. These
emerging evidence emphasize how microglia, as mem-
bers of the innate immune system, serve a central role in
Alzheimer’s neurodegeneration.
Amyloid-β (Aβ), considered a primary cause of AD,

may function as an antimicrobial peptide (AMP) [5, 37],
and thus may play a functional role in the innate im-
mune system. Infection from a variety of pathogens, in-
cluding Chlamydia pneumoniae [4, 23], Herpes simplex
virus [9], pseudorabies virus [39], Toxoplasma gondii
[41] and Porphyromonas gingivalis [17], leads to in-
creased Aβ production in the brain, suggesting that bac-
terial and viral infections in human and animal models
can shift the processing of amyloid precursor protein
(APP) toward the amyloidogenic pathway, resulting in
increased rates of Aβ production and deposition. This
increased Aβ production is perhaps a defense against in-
vading pathogens. Indeed, Aβ are shown to possess anti-
microbial activity against many bacterial and fungal
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pathogens as well as viruses [13, 27]. The antimicrobial
activity of Aβ species may partly be due to its capacity
to form fibrils, which can insert into cell membranes to
permeabilize microbes, leading to their death. Aβ fibrils
can capture and perforate microbes with its hairpin loop,
while aggregates of Aβ may immobilize microbes in a
manner similar to neutrophil extracellular traps (NETs)
[6]. How Aβ production is coordinated in such an ele-
gant immune response remains an outstanding question
in the field. Furthermore, the consequences of pathogen-
stimulated Aβ production on the risk of developing AD
have yet to be fully elucidated.
In a recent study published by the Li lab in Nature, an

innate defense is shown to stimulate Aβ production,
thus increasing AD risk [16]. By using the γ-secretase
modulator (GSM) E2012-BPyne, Hur and colleagues
conducted photo-crosslinking experiments and identified
interferon (IFN)-induced transmembrane protein 3 (IFIT
M3) as an authentic interaction protein of γ-secretase.
IFITM3 is a member of the IFITMs, a protein family
that was first discovered as interferon-induced genes in
human neuroblastoma cells [2, 35]. This family has five
members in the human and seven members in the ro-
dent; homologous IFITM members are evolutionally
conserved and distinguished by the presence of a canon-
ical CD225 domain, made up of two hydrophobic
membrane binding sequences separated by a highly con-
served cytosolic loop. This di-spanning CD225 domain
resembles the reticulon homolog domain [34], and em-
beds IFITMs on the lipid bilayer. Likely found on the
membrane, IFITM3 interacts with γ-secretase, a protease
complex known to have four multi-spanning transmem-
brane proteins comprised of presenilin-1 (PS1), preseni-
lin enhancer 2, anterior pharynx defective 1, and
nicastrin (NCT). Consistent with its original discovery,
IFITMs are found to limit virus infection or replication
in a variety of vertebrates [2, 24, 32], positing a possible
evolutionarily significant role in host immunity across
species. IFITMs block viral infection by interacting with
nearby IFITMs and/or other transmembrane proteins,
thereby reducing host membrane fluidity at the sites of
viral fusion and preventing viral fusion pore formation.
Although IFITM proteins can play a known role in in-

nate antiviral and adaptive immunity, virus restriction by
individual IFITMs depends on cell type and intracellular
localization. For example, IFITM1 is localized on the cell
surface and early endosomes, and restricts HIV infection
at these sites. Immunofluorescence and live-cell imaging
studies reveal cellular localization of IFITM2 and 3 pri-
marily to early and late endocytic vesicles and lysosomes
[2, 8, 31]. Studies with influenza A virus in host cells
suggest that IFITM2 and 3 restrict the virus entry or fu-
sion at these sites through pH-dependent changes in
conformation of envelope glycoproteins [8, 10, 19]. A

recent study has shown that IFITM3 directly engages in-
coming viral particles and enhances the viral trafficking
from endosomes to lysosomes [38]. This is consistent
with the ability of IFITM3 to limit the entry of a wide
range of primarily enveloped viruses into host cells.
Expression of IFITMs is not always dependent on

interferon induction, since high levels of constitutively-
expressed IFITMs are found in many cell types [2]. Con-
stitutive non-IFN-activated expression of IFITMs main-
tain persistent antiviral status against a panel of viruses.
In human embryonic stem cells, constitutive expression
of IFITM3 likely confers intrinsic antiviral activity [43].
IFITMs constitutively expressed by primary CD8+ T
cells and respiratory dendritic cells may be directly in-
volved in adaptive immunity [42]. This unique expres-
sion profile suggests a need to ensure proper function of
IFITMs in certain tissues or cell types to counteract
pathogenic insults.
In the context of AD, the role of IFITM3 drew focus

on an innate immune rather than an adaptive immune
process [16]. Hur and colleagues discovered that γ-
secretase activity correlates with increased IFITM3
levels. E2012-BPyne-labeled IFITM3 was significantly re-
duced in PS1 and PS2 double knockout mice compared
to wild-type mice. This PS-dependent crosslink of IFIT
M3 to the γ-secretase complex is not due to a reduction
of IFITM3 mRNA levels, but rather more likely related
to post-translational stability of the complex.
The authors found that IFITM3 binds directly to the ac-

tive γ-secretase complex near its active site and reduces γ-
secretase activity for the production of Aβ40 and Aβ42.
IFITM3 knockdown by siRNA led to reduced γ-secretase
activity, as measured by a reduced production of Aβ40 and
Aβ42. In 5xFAD transgenic mice, which express five famil-
ial AD mutations and recapitulate features of AD amyloid
pathology [28], IFITM3 levels increased with age, whereas
PS1 and NCT levels remained relatively constant. This in-
crease is perhaps related to altered cellular expression pro-
files and localization: the authors found higher IFITM3
expression in GFAP-labeled astrocytes and IBA1-labeled
microglia in the 5xFAD mouse brain as compared to age-
matched wild-type littermates, in which IFITM3 expres-
sion is primarily detected within the meninges and blood
vessels. One may speculate that either gliosis in response
to amyloid deposition, or FAD mutations, play a role in
the increased glial IFITM3 expression. The authors show
that Ifitm3−/− mice had comparable γ-secretase complex
levels compared to controls, while γ-secretase activity for
generating Aβ40 and Aβ42 was reduced. Consistently, the
number of Aβ plaques in 5xFAD/Ifitm3−/− transgenic
mice was also reduced.
Aging is the biggest risk factor for AD. Aging can also

induce type I IFN expression, which can thereby modu-
late brain function [3]. Viral infection in human brains
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can alter the cytokine profiles produced by microglia
[25]. Not surprisingly, IFNγ has been explored for its
role in the pathogenesis of AD through modulation of
neuroinflammation [26, 30, 40]. In mouse primary neu-
rons treated with IFNγ or IFNα (a type I IFN), expres-
sion of IFITM3 was increased as expected, even as there
was no change in the levels of NCT or PS1. Increased
IFITM3 levels alone were sufficient to increase the γ-
secretase activity as evidenced by higher secreted levels
of Aβ40 and Aβ42. More importantly, elevated IFITM3
levels are evident in a subpopulation of human patients
with late-onset Alzheimer’s disease (LOAD), indicating
its pathophysiological relevance to AD. Consistent with
mouse and in vitro assays, human tissues with high IFIT
M3 levels also produced more Aβ40 and Aβ42.
These findings are important, as they directly link Aβ

production with innate immunity and neuroinflamma-
tion in a novel way. While the prevailing view is that Aβ
triggers a cascade of pathological gliosis and neuroin-
flammation [15, 18], Hur and colleagues have provided
compelling evidence of how neuroinflammation may
also activate toxic Aβ generation. Of note, it has been
previously shown that lipopolysaccharide, prostaglandin
E2, and pro-inflammatory cytokines like IL-1β can en-
hance Aβ accumulation by impairing microglial phago-
cytosis and clearance of Aβ [29]. However, this paper
provides a direct link between Aβ production and aggre-
gation by identifying IFITM3 as a γ-secretase modula-
tory protein associated with aging and AD. Furthermore,
this work is also the first to demonstrate how Aβ has a
physiological function as an AMP through the action of
IFITM3. Targeting IFITM3 should be explored as an
AD therapeutic strategy for reducing amyloid deposition.
In particular, the subpopulation of LOAD patients exhi-
biting high levels of IFITM3 expression and activity,
which strongly correlate with γ-secretase activity, may
be the most suitable demographic for clinical trials of
IFITM3 inhibitors. For the same reason, IFITM3 may
well be developed as a biomarker to identify LOAD pa-
tients. Taken together, more research on IFITM3 and
innate immunity for applications in translational AD
therapeutics is warranted. Further study should also
focus on optimizing or fine tuning the therapeutic inhib-
ition on IFITM3, in order to avoid undesirable side ef-
fects relating to its beneficial effects on innate immunity.

Conclusion
The activity of γ-secretase can be regulated through the
disruption of interaction between IFITM3 and compo-
nents of γ-secretase complex.
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