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Objective: Survival Rate Prediction (SRP) is a valuable tool to assist in the clinical
diagnosis and treatment planning of lung cancer patients. In recent years, deep
learning (DL) based methods have shown great potential in medical image processing
in general and SRP in particular. This study proposes a fully-automated method for SRP
from computed tomography (CT) images, which combines an automatic segmentation of
the tumor and a DL-based method for extracting rotational-invariant features.

Methods: In the first stage, the tumor is segmented from the CT image of the lungs. Here,
we use a deep-learning-based method that entails a variational autoencoder to provide
more information to a U-Net segmentation model. Next, the 3D volumetric image of the
tumor is projected onto 2D spherical maps. These spherical maps serve as inputs for a
spherical convolutional neural network that approximates the log risk for a generalized
Cox proportional hazard model.

Results: The proposed method is compared with 17 baseline methods that combine
different feature sets and prediction models using three publicly-available datasets: Lung1
(n=422), Lung3 (n=89), and H&N1 (n=136). We observed comparable C-index scores
compared to the best-performing baseline methods in a 5-fold cross-validation on Lung1
(0.59 ± 0.03 vs. 0.62 ± 0.04). In comparison, it slightly outperforms all methods in inter-
data set evaluation (0.64 vs. 0.63). The best-performing method from the first experiment
reduced its performance to 0.61 and 0.62 for Lung3 and H&N1, respectively.

Discussion: The experiments suggest that the performance of spherical features is
comparable with previous approaches, but they generalize better when applied to unseen
datasets. That might imply that orientation-independent shape features are relevant for
SRP. The performance of the proposed method was very similar, using manual and
automatic segmentation methods. This makes the proposed model useful in cases where
expert annotations are not available or difficult to obtain.

Keywords: lung cancer, tumor segmentation, spherical convolutional neural network, survival rate prediction, deep
learning, Cox Proportional Hazards, DeepSurv
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INTRODUCTION

The objective of Survival Rate Prediction (SRP) is to estimate the
time until a well-defined “terminal event”, which occurs in some,
but not necessarily all, cases. For cancer patients, the terminal
event may be the death of the patient (“overall survival”), relapse,
or progression of the disease (“relapse-free survival” or
“progression-free survival”, respectively). It has been shown
that image-based characteristics of tumors such as shape, size
and texture are associated with malignancy (1). A research
avenue that has been explored in the last few years is whether
those image-based tumor characteristics can also be used for
predicting the survival of cancer patients (2). Survival rate
prediction (SRP) from the shape, size, and texture of the tumor
is challenging. First, it is not clear if imaging information alone is
enough for SRP. Moreover, the prediction might be affected by
different factors, including image acquisition parameters,
inaccurate segmentation masks, the selected features used for
the prediction, the prediction model itself, as well as the presence
of right-censored data. Although clinical trials are often relied on
clinical assessments like molecular profiling to conduct the
survival analysis (3), such information is not always accessible.

While SRP could be framed as a regression-type problem, that
is, to predict the time from the last observation to the terminal
event, a practical difficulty is that part of the longitudinal data of
patients is missing in training datasets for SRP in cancer. More
specifically, these datasets usually contain right-censored data,
which means that the start of the observation period is known for
all data points, but the definitive end of the observation point
might be missing for some cases. Consider a dataset where some
patients were still alive when the study ended. In such an example,
there would be a lower boundary of the survival times, namely,
the last known date of record, which is lower than the definitive
time of death for some cases. Other reasons for right-censorship
in practice could be that patients dropped out of the study and did
not have a time of death reported. However, it should be noted
that exclusion of such cases is not recommended since that might
bias the analysis towards the more lethal cases.

In the past, SRP was usually performed on small feature sets
of descriptive statistics or clinical assessments (4). used ensemble
data mining to train an outcome calculator on clinical data
including features such as patient age at diagnosis, cancer grade,
lymph node involvement, among many others. When working
with imaging data, radiomics (5) provides a catalog of standard
methods to extract such statistics automatically. These radiomics
features can be used in CoxPH models (4) and other prediction
methods such as decision trees, rule-based classification, or naive
Bayes (6). More recently, deep learning (DL)-based methods have
outperformed conventional algorithms in the field of image
processing in general (7) and in image-based SRP in particular
(8, 9). Among the first approaches using DL, Faraggi and Simon
(10) proposed a feed-forward neural network for a non-linear
risk-score approximation. A more recent example is DeepSurv,
which provides a general framework for DL-based SRP (11).

Since the introduction of DL-based SRP, a vast body of work
has been published where different DL algorithms have been
applied to diverse modalities and features from various organs.
Frontiers in Oncology | www.frontiersin.org 2
Some examples include SPR for gastric cancer (12), cervical
cancer (13), colorectal cancer (14), liver cancer (15), breast
cancer (16) and oral cancer (17). In particular, this study is
focused on non-small cell lung cancer (NSCLC) SRP. Previous
studies from recent years have already shown the potential of DL
models for survival analysis of lung cancer patients (18–21).

In some studies [e.g (22). and (23)], features from different
modalities including imaging, radiomic features, clinical data,
and molecular information, were combined as inputs to improve
the performance of DL-based SRP models. While such
multimodal prediction pipelines are theoretically superior to
single modality-based predictions, the requirement for the
respective data availability can be a disadvantage for the
application in clinical practice. The financial cost of additional
laboratory testing and expert clinical staging and tumor
segmentation is another limiting factor of multimodal
techniques. In addition, those approaches can only be applied
to sites where the required data can be collected. Thus, it is
clinically relevant to develop an SRP pipeline that requires only
the CT scan of the lung region from the patient.

To our knowledge, previous studies have mainly used
traditional convolutional neural networks (CNNs) for image-
based SRP. One major issue of these types of neural networks is
that their extracted features strongly depend on the spatial
orientation of the tumor. That is, a rotated tumor can
potentially get a different prediction by using traditional CNN.
Instead, spherical CNNs (SphCNNs) are designed to be invariant
against changes in orientation. Thus, SphCNNs are theoretically
better suited for SRP. While traditional CNNs work with inputs
structured in well-defined Cartesian grids, SphCNNs work with
functions defined on the unit sphere. Thus, the use of SphCNNs
for SRP requires a mapping from 3D CT images to functions on
the unit sphere, which are intrinsically 2D. This dimensionality
reduction has the additional effect that the derived DLmodels are
less prone to overfitting in complex tasks with small datasets of
3D images (24). These reasons make it interesting to assess the
ability of SphCNNs for SRP.

The aim of this study is to propose a fully-automatic solution for
SRP of cancer patient data. First, we train a deep learning-based
model that is able to segment tumors from CT images
automatically. In a second step, we use spherical convolutional
neural networks (SphCNNs) to perform deep feature extraction for
SRP. To our knowledge, such spherical features SphCNNs have not
been used in this context before. Thus, we also compare our
SphCNN-based pipeline against more traditional methods using
different prediction models for SRP on radiomic features or features
extracted from fine-tuned DL-based pre-trained classifiers.

The remainder of this paper is structured in the following way.
Section 2 establishes a general framework for SRP consisting of
three stages: tumor segmentation, feature extraction, and survival
prediction. Next, we describe how our proposed pipeline
implements each of those stages. Moreover, the implemented
baseline methods are described. Section 3 lists the experimental
results comparing the proposed method with the baseline models.
Section 4 discusses the findings from the experimental evaluations.
Finally, section 5 reveals the main implications of the results and
makes some conclusions of the study.
April 2022 | Volume 12 | Article 870457
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MATERIALS AND METHODS

In the context of this study, we model the SRP of cancer patients
as a three-stage process, consisting of segmentation, feature
extraction, and survival prediction (cf. Figure 1).

I. Tumor Segmentation describes the process of defining
which of the voxels belong to the object of interest, that
is, which parts of the CT image depict the cancerous mass.
Therefore, a binary mask is generated either by manual
annotation through a medical expert or an algorithmic
segmentation method.

II. Feature Extraction is the transformation of high
dimensional input data (in our case, segmented regions of
the image) into fewer but more relevant features.

III. Survival Prediction takes the previously extracted features
and determines the respective value of interest.

We will refer to these three stages when comparing different
prediction pipelines in the experiments. The following
subsections specify the methods we propose for each of the
three SRP stages.
Tumor Segmentation
This study aims to introduce an end-to-end solution for SRP that
does not rely on manual tumor segmentations. Therefore, we
incorporate a fully automatic lung nodule segmentation model,
concretely, the lung cancer detection and segmentation method
we proposed in (25). This method decomposes the segmentation
problem into three separate steps, as shown in Figure 2.

First, an in-painting network (26) is trained to fill randomly
generated holes in Lung-CT images from healthy subjects. The
resulting network can fill missing parts of an image with
semantically meaningful patterns. By considering the
annotated tumor regions of the unhealthy images as missing
content, the in-painting network is used to generate healthy
synthetic images from the unhealthy counterparts.
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Second, the resulting healthy-unhealthy image pairs are used
to train a normal appearance autoencoder (NAA). Here, the
unhealthy images serve as an input and the healthy synthetic
images as corresponding target images for the supervised
training of the NAA model. Therefore, the trained NAA can
generate tumor-free images from arbitrary unhealthy images
without depending on manual annotation masks.

In the final stage, the original (unhealthy) image and the
difference between the original image and the NAA-generated
healthy outputs are fed to a standard U-Net segmentation model.
The U-Net model benefits from this attention cue to learn the
final segmentation mask by receiving the original and difference-
image as separate channels. The method is described in more
detail in (25). Performance metrics of this method for the
datasets that are relevant for this study are presented in Table 1.

Feature Extraction
This section discusses how our pipeline extracts descriptive
variables that are meaningful for the prediction task from the
raw data, i.e., the lung-CT images.

SphCNNs (27, 28) extend the standard operations used by
traditional Cartesian CNNs to work on signals defined on the
sphere. The network topology of SphCNN consists of stacks of
spherical filters that are applied on the spherical activation
signals via spherical convolution (cf. Figure 3). The
convolution operation is often carried out as a multiplication
in the spherical harmonics domain. One characteristic property
of SphCNN is that it can be used for solving problems where
rotational equivariance (i.e., the output rotates when the input is
rotated) or rotational invariance (i.e., the output is always the
same even if the input is rotated) is required (28). As mentioned,
SRP should be rotational invariant, which means that the
prediction should be the same regardless of the orientation of
the tumor in the lungs. Our implementation builds upon the
code provided in (27).

In order to apply SphCNN on volumetric CT images, it is
necessary to map the segmented tumor onto the unit sphere S2.
FIGURE 1 | General pipeline for survival rate prediction.
April 2022 | Volume 12 | Article 870457
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TABLE 1 | Performance metrics (mean ± std) of the automatic segmentation methods evaluated on two lung cancer datasets.

Dataset Dice Precision Recall Specificity

Lung1 0.77 ± 0.17 0.76 ± 0.20 0.82 ± 0.15 1.00 ± 0.00
Lung3 0.76 ± 0.18 0.74 ± 0.22 0.85 ± 0.16 1.00 ± 0.00
Frontiers in Oncology | www.fro
ntiersin.org
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For the training dataset Lung1, the observed values are averaged over five evaluation folds. For the validation dataset Lung3, the values are averaged over all samples. Note that we
rounded to two digits so 1.00 in the last column results from rounding a value close to one.
A B

C

FIGURE 2 | Overview of the tumor segmentation method. The segmentation method incorporates (A) an image inpainting network, (B) a variational autoencoder,
and (C) a U-Net for the final segmentation. Replicated from (25) with permission from Springer Nature Switzerland AG.
FIGURE 3 | Pipeline of the proposed method, which is divided into three steps. I. The input consists of the CT image and segmentation of the tumor mass. The
experiments compare the predictive performance of provided manual segmentation masks with our automatic segmentation. II. The volumetric images are projected
into the spherical domain to be usable with Spherical CNNs. In this study, we propose three spherical mappings; a) the extended Gaussian image (EGI), b) the
depth-based projection of the mask (b), and c) the spherical intensity mapping of the masked image content. III. The Spherical CNN consists of a cascade of
spherical kernel stacks followed by spherical pooling operations. The Spherical CNN is embedded in the DeepSurv framework that includes a fully connected layer
that pass the activation signal to a single output node. This scalar output is the approximation of the log-risk function hq (x) in Cox proportional hazards model which
is optimized through DeepSurv.
rticle 870457
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We propose three different mapping methods for this projection,
a) the extended Gaussian image (EGI) of the tumor mask, which
is the orientation distribution function of the normal vectors
from the surface of the tumor (29), b) a depth-based projection
(30) of the segmentation mask, and c) an intensity-based
projection of the tumor. As for the EGI, it is generated from
the normal vectors derived from the provided manual
segmentations or the generated automatic segmentation masks
(cf. Figure 4A). Regarding the depth-based projection, first, an
enclosing sphere is centered at the tumor’s center of mass. Next,
a ray is cast from each sampling point on the surface of the
sphere to the centroid. The distance to the first intersection point
then decides the value of the spherical signal at that specific
orientation (cf. Figure 4B). For an alternative mapping, we
accumulate the intensity values within the tumor along every
ray (cf. Figure 4C). These three functions on the sphere are used
as input channels for the SphCNN. These three functions on the
sphere are used as input channels for the SphCNN. Notably, we
explore two configurations here; the first input configuration
only uses the segmentations’ depth-based projection (later
referred to as SphCNN[1]). The second uses the EGI and the
intensity-based projection from the image (SphCNN[2] in the
following). This choice of input channels is motivated by
the question of whether the image content carries additional
predictive power to the use of the segmentation mask alone.

Prior to the comparative experimental evaluation presented
in the results section, we empirically determined a suitable
network topology for our purpose. Those tests uncovered that
a deeper SphCNN was not beneficial over a more shallow
architecture for the given problem. Therefore, the best-
performing model consists of three layers. The first
convolutional layer lifts the input signal from the sphere, S2

onto the SO (3) manifold. Next, the spherical activation maps are
fed to another convolutional layer [operating on SO (3)] and,
finally, a dense layer that connects via linear activation function
to the scalar output neuron. Interposed spherical pooling layers
condense the spatial dimension of the activation maps. The last
Frontiers in Oncology | www.frontiersin.org 5
fully-connected layer encodes 40 features. The configuration of
the empirically determined training parameters used in the
experiments is provided in APPENDIX A.

Survival Prediction
In this paper, we aim to predict the relative risk of a patient and
the chance of survival for different times. Every longitudinal
entry in the clinical datasets records the observation time T and a
binary event variable E, which indicates whether the event of
death occurred at time T. T represents the actual survival time
when E is equal to one (representing the state ‘True’). However, if
E is equal to zero (representing the state ‘False’), the data entry is
considered as right-censored, and T can only be seen as a lower
bound for the actual unknown time of survival.

One possible approach to handle this type of data could be to
disregard all data points with E≠1 and perform regression on the
remaining data. However, as mentioned previously, this
approach would bias the method towards the subjects with
higher mortality. Instead, the problem of SRP under the
presence of right-censored data is commonly modeled via
survivor- and hazard functions.

The standard method of handling SRP on right-censored data
is the Cox’s Proportional Hazard model (CoxPH) (31). Cox (31)
defined the survivor function as F(t)=P(T ≥t), that is, the
probability P of the actual death of the patient to be larger or
equal to the time t. Cox also defined the hazard function l(t)
which models the age-specific failure rate as:

l tð Þ = lim
Dt!0+

1
Dt

P t 〈T 〈 t + Dtjt ≤ Tð Þ : (1)

He proposed the Cox proportional hazards model (CoxPH) to
approximate the hazard function as:

l(tjx) = l0 tð Þ · eh xð Þ = l0 tð Þ · ebTx , (2)

Where l0(t) is the (unknown) baseline hazard, b is the model
parameter vector, h(x) is the so-called log-risk function, and x are
A B C

FIGURE 4 | Illustrative depiction of the three proposed spherical mappings. Note that volumes are here drawn as image slices, and therefore, the spheres are
depicted as circles. (A) The extended Gaussian image (EGI) can be viewed as an accumulation of the gradient vectors (small red arrows) at the surface of the
tumoral boundary. (B) Depth-based projection of the solid segmentation mask. A ray (red arrow) is cast from a projecting sphere to the surface of the segmentation.
The distance from the sphere to the surface determines the value of the spherical signal at the respective position. (C) Intensity-based projection of the voxel image
content. A ray (red arrow) is cast from the surrounding sphere through the segmented tumor image towards the centroid. The value of the spherical signal is the sum
of all intensities of the voxels that the ray traversed.
April 2022 | Volume 12 | Article 870457
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covariates. Note that in our specific problem, the covariates are
the features extracted from the sample, as discussed in the
previous subsection.

One well-known restriction of the CoxPH is the assumption
that h(x) is linear, i.e. h(x) = bTx, which can limit the capability of
the function to model SRP. DeepSurv (11) tackled this problem
by training a neural network to approximate h(x) which is able to
model non-linearities in the hazard function. Thus, the hazard
function in DeepSurv becomes:

l(tjx) = l0 tð Þ · ehq xð Þ, (3)

where h ≈ hq(x) with q being the learned parameters of the
neural network.

One advantage of DeepSurv is that it is more than a method, it
is a generic pipeline that can easily be connected to a feature
extraction neural network. In the original paper, DeepSurv used
a set of fully-connected layers followed by a linear combination
layer to estimate hq(x). Instead of fully-connected layers, we used
the SphCNN described in the previous section while keeping the
same loss function that aims to minimize the average negative log
partial likelihood of h(x), as described in (11).

Beyond DeepSurv, a family of techniques that aim to address
the shortcomings of CoxPH are large-margin methods such as
regression or ranking-based support vector machines (SVMs)
(32, 33). Other techniques that have been applied successfully for
SRP are ensemble models that use, e.g., gradient-boosting to
learn a partial likelihood function (34). Notice that these
methods can only be used when the feature extraction is
independent of the survival prediction model, which is not our
case. Thus, DeepSurv is a well-suited choice for combining
feature extraction and prediction simultaneously and is
therefore used in the proposed method.
1https://scikit-survival.readthedocs.io/en/stable/api/metrics.html
Baseline Methods
In order to assess the relative performance of the proposed
method, we compared it against multiple feature sets and
prediction method combinations. As for the features, we
computed radiomics features (RF) (5, 22) and deep learning-
based 2D (slice-based) image features (DIF) (22). Instead of the
pre-trained neural network used in (22), we used ResNet50 (35),
which is very well-known for its good performance in transfer
learning tasks. In particular, the DIF features were extracted from
the 2D axial slice with the largest tumor area in the segmentation
mask with the pre-trained ResNet50. The RF and DIF sets consist
of ca. 1,500 and 1,000 features, respectively. Moreover, subsets of
32 features were extracted from RF and DIF after a feature
selection procedure, which are referred to as RF32 and DIF32,
respectively (more details are provided in APPENDIX B). For
this, we used the library function from scikit-learn (36) to rank
each regressor (i.e., each entry of the extracted feature vector)
based on its cross-correlation with the target.

As survival prediction methods we used support vector
machines with ranking (SVM-K) and regression (SVM-R)
objective (32), CoxPH (31, 37), and the gradient boosting-based
ensemble (EGB) model proposed in (34). Thus, we implemented
the sixteen combinations of four features sets and four survival
Frontiers in Oncology | www.frontiersin.org 6
prediction methods. In addition, we implemented the method
proposed by Aerts et al. (2) in which CoxPH is applied to the so-
called radiomics signature that consists of four radiomic features.
This method is referred to as RS-CoxPH in the experiments.
Hyperparameters such as the learning rate or method-specific
engineering values were empirically tuned in a set of preceding tests.
RESULTS

We performed intra- and inter-dataset experiments with
different pipelines and dataset configurations to assess the
model performance and robustness of the different methods as
shown in Figure 5. In particular, we trained our models on the
CT data from the publicly available Lung1 (n=422) (38), Lung3
(n=89) (39), and H&N1 (n=136) (40) datasets. While Lung1 and
Lung3 contains data from Non-Small Cell Lung Cancer
(NSCLC) patients acquired in different institutions, H&N1
depicts head and neck cancer. We used as ground truth
prediction values the right-censored times of survival that were
reported from the respective data providers.

We used the concordance index (C-Index) (41) as our main
performance criterion, which is commonly used for problems
with right-censored data like SRP. The C-Index measures how
good the survival times of a set of patients are ranked and can be
seen as a generalization of the area under the receiver operating
characteristic (ROC) curve (AUROC) that can take into account
right-censored data. We used the implementation of the C-Index
from the python library scikit-survival1.

Results for Lung1
Intra-dataset performance was assessed using 5-fold cross-
validation on Lung1. We kept the fold splits consistent for all
evaluated methods. In addition to the 17 baseline methods
described in Subsection 2.4, we tested the proposed method
with both manually annotated segmentation masks and
automatic masks generated by the method described in Sect. 2.1.

Figure 6 shows the observed C-indices of the 5-fold cross-
validation experiment. As shown, the combination of EGB and
DIF32 obtained the best performance with a C-index of 0.62 ±
0.04 in this experiment, while the worst performance was
measured on SVM-R with DLF32: 0.38 ± 0.04. In comparison,
the proposed method achieved 0.58 ± 0.04 for the manual masks
and 0.59 ± 0.03 for the automatic ones.

Inter-Dataset Evaluation
In order to assess the robustness of the methods, inter-dataset
validation was carried out by training the methods (including the
automatic segmentation) on Lung1 and validating on additional
images from a different dataset. In particular, we used the models
that were fitted to Lung1 for inference on two independent
datasets: Lung3 and H&N1. As mentioned, Lung3 has the same
type of patients (i.e. NSCLC-patients), while H&N1 contains
images of patients with head and neck cancer.
April 2022 | Volume 12 | Article 870457
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Results of these experiments are reported in Figures 7 and 8.
The best-performing method was the proposed one (C-index
0.64 both for Lung3 and H&N1), followed by EGB with RF32 (C-
index 0.63 both for Lung3 and H&N1). EGB with DLF32 - the
best method in the previous experiment - decreased its
performance in this test to 0.61 for Lung3 and 0.62 for
H&N1, respectively.

Since our automatic segmentation method was trained and
developed for lung cancer, it did not yield meaningful
segmentation results for CT images from head and neck
regions. Actually, it is well-known that automatic segmentation
Frontiers in Oncology | www.frontiersin.org 7
of head and neck cancer is a very difficult task (42). Thus, our
methods were tested only with the manually annotated masks
provided in the datasets.

As shown in the experiments, the proposed method performed
better when all spherical mappings were used. As expected, the
proposed method yields slightly better results with manual
segmentations compared to the use of automatic segmentation.

Kaplan-Meier Analysis
Validation datasets from the respective experiment were
stratified according to our best-performing method’s assigned
FIGURE 5 | Schematic overview of the experiments. Intra-data-set uses Lung1 for training and testing in a cross-validation setup. For Inter-dataset evaluation,
methods were trained on Lung1 and evaluated on Lung3 or H&N1.
FIGURE 6 | Cross evaluation results for 17 baseline SRP methods and the proposed one. The models were trained on four splits from the Lung1 Data and
evaluated on the remaining fifth split. We report the average across the splits (marker) as well as the observed minimum and maximum observed values (line).
Compared prediction methods are Support Vector Machines with regression (SVM-R) and ranging (SVM-K) objective, Cox Proportional Hazards model (CoxPH),
Ensemble Gradient Boosting (EGB) and DeepSurv, a deep-learning-based prediction framework. Baseline features are Radiomics Features (RF) and pre-trained deep
2D Image Features (DIF). Both feature sets were also used with feature selection (RF32 and DIF32 respectively). In addition, we also include the Radiomics Signature
(RS-CoxPH) suggested by Aerts et al. (2) in out comparison. Our proposed method uses a Spherical Convolutional Neural Network (SphCNN) with manual (SphCNN
[…, manual]) and automatic (SphCNN[…, auto]) tumor segmentation. The spherical input for the SphCNN is either extracted via depth-image projection from the
segmentaion mask (SphCNN[1,…]) or composed of intensity projection and extended gaussian image from the CT-image (SphCNN[2,…]).
April 2022 | Volume 12 | Article 870457
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risk score (i.e., SphCNN[2]). The stratification into risk groups
was done based on the median of the predicted risk scores.
Therefore, half of the higher-risk samples were binned into one
group and the other half into another. Then, non-parametric
Kaplan-Meier (KM) estimations were evaluated on each group
separately (cf. Figure 9).

As shown, the KM curves also reflect the relative performance
assessment reported in the previous subsections. Concretely, the
evaluation folds of the cross-validation experiments reported
mixed observations regarding their performance. In contrast, our
method showed promising stratification abilities when tested on
the external datasets (Lung3, H&N1). There is also a potential
trend observable regarding the type of cancer. Lung cancer data
has good short-term separability but often fails for long-term
prediction (over five years). In contrast, head and neck cancer data
showedmore confident separation (i.e., the survival curves become
more distant from each other) for periods larger than ten years.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

The primary goal of this study was to introduce a novel fully-
automatic lung cancer SRPmodel based on CT-images. In addition,
we performed a benchmark with various SRP models evaluated on
publicly available data. We run our experiments in both inter and
intra dataset evaluation schemes. This section discusses some
findings and analytical aspects of the presented investigations.

Perhaps themost apparent observation is that the C-index values
from SVM-R scored lower than all other methods across different
features. This difference in prediction performance confirms the
previous claim that regression methods are poorly fit for working
with right-censored data. Historically, this misfit motivated the
development of ranking and hazard-based SRP models. Thus, we
will focus the discussion on the remaining prediction methods.

In contrast, we found that pre-trained ResNet50 with feature
selection (DIF32) had the highest predictive power in the
FIGURE 7 | Performance comparison for the models trained on Lung1 and evaluated on Lung3. We used the prediction methods and features as labelled
in Figure 6.
FIGURE 8 | Performance comparison for the models trained on Lung1 and evaluated on H&N1. We used the prediction methods and features as labelled in
Figure 6 with the exception that no automatic segmentation was evaluated here.
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cross-validation experiment. Notice that the original set of
features (DIF) did not perform well in the experiments. That
means that the boost in performance is mainly due to the feature
selection method. We like to emphasize that the reported use of
DIF with feature selection entails the risk of overfitting the given
training set. Since only the 32 highest-rated regressors were
selected on the training data, the possibility arises that this
selection might be biased towards the respective training
dataset. By using additional validation datasets, we confirmed
the predictive power of this model but, in that case, we did not
observe any advantage of this method over the other tested
methods. In comparison, the proposed method used 40 features
that, according to the results, are enough to encode the most
relevant information for SRP. Thus, the results support that a
small set of spherical features or DIF are beneficial for SRP.

Regarding radiomic features, feature selection resulted in
worse performance except for EGB in the inter-dataset
evaluation. In specific, it should be noticed that the employed
cross-correlation based feature selection method aim to hold
only those subset of the features that are more linearly correlated
with respect to the class labels statistically. However, this linear
statistical association does not necessarily represent their more
prognostic values of the feature subsets. Accordingly, although
the selected subset of radiomic features is more correlated with
the target values, their prediction power is not as high as the
whole radiomic feature set. In addition, the observation that such
a feature selection method leads to improving the performance of
DL-based features but not the radiomic features can be explained
by the fact that DL-based features were extracted from a single
2D slice, i.e., the central tumoral slice, while the radiomics
descriptors were extracted from the tumor volumes. Therefore,
the less complicated attributes of the tumors in 2D slices which
were captured by the DL model, are more prone to show stronger
association with the target labels compared against the 3D
radiomics descriptors that were extracted from the irregular
tumor volumes with a large variety of texture, intensity, and
morphological characteristics.
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Furthermore, we noted that except for SVM-R, all evaluated
prediction methods resulted in C-indices at a comparable level.
In our experimental setup, the individual remaining prediction
methods do not seem to have an advantage over other prediction
methods. Besides, the differences in the feature extraction
methods were mostly consistent for different prediction models
and datasets. Therefore, we observe that the choice of extracted
features is much more important for designing a successful SRP
pipeline than the selection of the prediction model, as long as
they are designed to handle right-censored data.

Our proposed method automatically extracts morphological
features in the spherical domain. Intuitively, our spherical
mapping methods can be understood as a compact
representation of tumor surface texture, size, shape, and
internal structure. Using such spherical signals combined with
a rotation-invariant SphCNNs, we obtained C-indices
comparable to conventional methods on the cross-validation
experiment. Moreover, the proposed method slightly surpassed
the others when referring to the inter-dataset evaluations. Our
results suggest that the proposed SphCNN-based SRP is robust
when applied to new, unknown datasets. The observed statistics
also indicate a similar accuracy on both the lung cancer data and
the head and neck images. This finding hints that the
morphological features that the SphCNN internalized during
training might have prognostic relevance for tumors in general.
However, since the differences between the proposed method
and the best-performing baselines were small, we can only argue
that the proposed method has overall competitive performance.

In clinical settings, it may be difficult or unfeasible to have
high-quality annotated segmentation masks of the tumors. For
that reason, it is relevant to have a fully automated solution that
includes an automatic segmentation tool. Since manual
annotations performed by experts have higher quality than
segmentations from automatic tools, we expected a reduction
in the performance of the proposed SRP method when used on
automatically segmented tumors. From the results, such a
reduction was slightly negative for the intra-dataset experiment
FIGURE 9 | Kaplan–Meier curves for the validation sets used in the experiments. The datasets are stratified into low- and high-risk groups based on the risk
predictions of our best-performing method. Top row: survival curves from five individual folds from Lung1. Bottom: The model was trained on Lung1 and evaluated
on the Lung3 (right) and H&N1 (left) datasets, respectively.
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(0.58 ± 0.04 vs. 0.59 ± 0.03) and very small for the inter-dataset
evaluation (0.64 vs. 0.62). This means that our proposed pipeline
can yield similar results when it is run autonomously without a
manual - and potentially expensive - human intervention.

To gain insights if the segmentation mask or the segmented
image channels are beneficial for SRP, we tested our method in
two different configurations, SphCNN[1] and SphCNN[2].
While the former represents a higher compressed version of
the signal, the latter is assumed to preserve more structural
information. Our reported results support the assumption that
SphCNN[2] is slightly superior in this context.

As mentioned, DeepSurv is a general pipeline that can
potentially be combined with any feature set, including RF and
DIF. We did not include these combinations in the experiments
since that would require a fine-tuning of the architecture of the
neural network for every specific feature set, which is out of the
scope of this study.

Since the implementation of methods by different research
groups can yield different results, we decided to implement 17
baseline methods in order to have a more fair comparison. The
performance of all tested methods was below 0.65, which is
consistent with previous studies [e.g (2, 21).,]. That means that,
although CT images convey important information for SRP, they
should be complemented with other types of information to
improve the predictions to a level that can be used in clinics.

Limitations of the Study
The main limitation of the study is the number of available images.
It is well-known that DL-based methods require large datasets that
are relatively scarce in cancer research at present. Thus, the main
findings of this study require further validation with larger datasets.
That could help to rule out the possibility that the differences in
performance are related to the specific characteristics of the
datasets. In this study, we avoided overfitting by using two
strategies: a) dimensionality reduction by mapping the 3D data
into 2D spherical mappings and b) the architecture of the proposed
SphCNN is relatively small and has just 40 features in the
penultimate activation. While dimensionality reduction will
always be beneficial and needed, using larger datasets would
enable us to evaluate larger SphCNN architectures with more
parameters bigger feature vectors and overall higher capacity.

Another potential downside of the proposed solution is the
representation of the spherical images and activation functions.
The spherical signals are represented as a regular 2D grid in the
implemented pipeline. While this common practice allows easy
integration into the SphCNN framework, it might introduce
distortions in the image due to the lack of equidistant sampling
on the sphere. Concretely, regions close to the poles are
oversampled compared to the equator. An alternative approach
that samples the sphere more uniformly is described in (43). It is
Frontiers in Oncology | www.frontiersin.org 10
unclear at this point if and how this change of sampling can affect
the predictions; therefore, more research would be required.
CONCLUSION

This work introduced a newmethod for image-based lung cancer
SRP. For automatic, relevant feature extraction, we mapped the
tumor extracted with a DL-based method into a spherical
domain and used SphCNN for prediction. The experimental
evaluation confirmed the competitive predictive power of our
model when compared to state-of-the-art approaches on the
Lung1 data. A slight advantage over the other techniques was
observed when tested on data from additional datasets (Lung3,
H&N1). The results support that SphCNNs are helpful for
attaining rotational invariance in SRP problems.
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APPENDIX A. TRAINING CONFIGURATION
OF THE PROPOSED METHOD

The training configuration of the SphCNNs used in this study is
reported in Table 2.

APPENDIX B. Feature Selection for
Baseline Methods
Motivated by the study of Aerts et al. (2), we decided to add a basic
feature selection approach to our baseline feature extraction
methods. The basic idea of feature selection in this context is to
reduce the size of the feature vector that is presented to the
prediction model for better convergence. Therefore, the cross-
correlation of the features with the ground truth was measured on
the respective training set. Next, only the features with the top 32
correlation scores were selected for prediction. The number 32 was
selected to have a similar order of magnitude to the deep spherical
features (i.e., the number of neurons in the penultimate layer of the
SphCNN). Other feature vector sizes might lead to different results.
Frontiers in Oncology | www.frontiersin.org 13
B.1. Feature Selection for
Radiomics Features
In (2), features were selected based on their score within one of
four categories (tumor intensity, tumor shape, tumor texture,
and wavelet). In contrast, we score the cross-correlation as
mentioned above on the complete set of approx 1500
radiomics features. A posthoc inspection of the selected
radiomics revealed that the biggest group of selected features
(18 out of 32) were first order-based statistics (mainly energy and
total energy from different wavelet levels). The next biggest group
were Gray Level Run Length Matrix components (8 out of 32),
followed by Gray Level Size ZoneMatrix entries (6 out of 32). For
a detailed explanation of the different types of radiomics features,
we refer to the documentation of pyradiomics.

2

B.2. Feature Selection for Deep ResNet50 Features
Feature extraction via a pre-trained ResNet50 model transforms
the CT-images slices into feature vectors of length 1000.
The auxiliary hypothesis is that the ResNet50 model is
equipped with 2D filter stacks that extract meaningful
information for general image processing tasks. Since some of
the tasks that the model was previously trained for might be
unrelated to the prediction problem at hand, we test a possible
reduction of the included features. For consistency with the
radiomics baseline, the previously described feature selection
method is used to reduce the size of the prediction input to 32.
Unlike the features selected from radiomics, deep ResNet50
features are extracted by the pre-trained model and therefore
do not carry interpretable labels.
TABLE 2 | Configuration of the SphCNN prediction models.

Batch-size: 32

Number of epochs: 1000
Learning-rate: Epoch 0-500: 1e-3 - 1e-5 (decreasing), Epoch 500-1000:

1e-5 (constant).
Optimizer: ADAM
Dropout: Yes, Rate 0.01
Batch-normalization: Yes
Normalize inputs: Yes
2https://pyradiomics.readthedocs.io/en/latest/
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