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Background 
Calf muscle strain injuries are a common running injury affecting male runners and are 
known to have high reoccurrence rates. Currently, limited evidence exists investigating 
factors associated with this injury with no previous study investigating the running 
kinematics of male runners with a history of repeat calf muscle strain injuries. 

Purpose 
To investigate whether male runners with a history of repeat calf muscle strain injury 
demonstrate differences in stance phase running kinematics when compared to healthy 
controls. 

Study Design 
Case-control investigation 

Level of Evidence 
3b 

Methods 
Stance phase kinematics were compared between 15 male runners with a history of calf 
muscle strain injury and 15 male control participants during treadmill running at 3.2m/s. 
Independent t-tests were used to compare differences in stance phase kinematic 
parameters between groups and effect sizes were calculated using Cohen’s d. 

Results 
The group with a history of calf muscle strain injury demonstrated a significant 2.1⁰ and 
3.1⁰ increase in contralateral pelvic drop and anterior pelvic tilt during mid stance. In 
addition, this group exhibited longer stance times and a more anterior tilted pelvis, flexed 
hip and a greater distance between the heel and centre of mass at initial contact. Large 
effect sizes, greater than 0.8, were observed for all differences. No significant differences 
were observed for ankle and knee joint kinematics between the groups. 

Conclusion 
This is the first study to identify kinematic characteristics associated with recurrent calf 
muscle strain injury. While it is not possible to determine causality, the observed 
kinematic differences may contribute to recurrent nature of this injury. Specifically, it is 
possible that neuromuscular deficits of the hip and calf muscle complex may lead to 
increased strain on the calf complex. Rehabilitation interventions which focus on 
addressing pelvis and hip kinematics may reduce the demands placed upon the calf 
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complex and could prove clinically effective. 

INTRODUCTION 

Running is an increasingly popular method of physical ac-
tivity; however it also poses a considerable risk of injury 
with an estimated one in three runners being injured in 
their lifetime.1 Of all running injuries, the majority are 
thought to occur to the knee and lower limb, accounting for 
7 to 50% and 9 to 32% of all running injuries respectively.2 

One lower limb injury commonly experienced by runners 
is calf muscle strain injury (CMSI). CMSIs can occur to ei-
ther the soleus or the gastrocnemius muscles and often pre-
sent as sudden onset of pain localised to the calf muscle 
belly, with an inability to continue activity.3 Amongst run-
ning populations, previous literature has reported preva-
lence rates of CMSI to range from 12 to 23.3%4,5 and inci-
dence rates ranging between 4.5% and 33%.5–7 CMSIs are 
also known to have recurrence rates as high as 38%,8 sug-
gesting that underlying contributors to CMSI remain unad-
dressed following return to running. 

Currently there are only a limited number of studies in-
vestigating factors associated with CMSIs. Of the available 
literature, studies have identified male gender,7 greater age, 
higher body mass index (BMI) and having suffered a pre-
vious CMSI9 as the main risk factors for CMSI. It is hy-
pothesised that these risk factors may contribute to bio-
mechanical and neuromuscular maladaptation resulting in 
increased vulnerability of the calf complex to further in-
jury.9 Although this highlights at-risk populations, many 
of the identified risk factors are non-modifiable and con-
sequently cannot be targeted within the rehabilitation 
process. Therefore, there is a need for greater understand-
ing of modifiable risk factors for CMSIs, as this may help in-
form rehabilitation programs and reduce the high reoccur-
rence rates of CMSI amongst runners. 

During the stance phase of running, the soleus acts to 
control both ankle dorsiflexion and knee flexion, decelerat-
ing the downward movement of the body’s mass.10 At mid 
to late stance both the gastrocnemius and soleus then act 
to plantarflex the ankle, facilitating the vertical and for-
ward propulsion of the body.10,11 During early stance, the 
calf muscle contracts isometrically while the muscle ten-
don unit elongates,12,13 with peak muscle forces reported to 
reach upwards of 1.9 and 6.7 times body weight for the gas-
trocnemius and soleus respectively.14 It is perhaps this pe-
riod of time where the calf complex is most vulnerable to 
injury. 

Muscle strain injuries are thought to occur as tissues 
lengthen while exposed to high external forces.15,16 For ex-
ample, hamstring strain injuries have been most frequently 
reported to occur during late swing phase of sprinting or 
during kicking actions, as the hamstrings lengthen under 
high forces.17 With reference to the calf complex, it has 
been proposed that increased ankle dorsiflexion and knee 
flexion during stance phase could contribute to injury de-
velopment;18 with the calf exposed to elevated muscle 
forces whilst musculotendinous structures are in a length-
ened position.13,14,18,19 However, although a feasible expla-
nation for CMSI, there has been minimal biomechanical re-
search to explore this mechanism. 

Currently the only available evidence investigating 
whether biomechanics play a role in CMSIs are limited to 
two case reports,20,21 with only one study reporting an in-
jury during running.21 Specifically, Orchard et al20 reported 
the incidence of an acute CMSI in a cricket player, while 
Kong et al21 reported the onset of a CMSI in a runner. Both 
authors reported the onset of injury to occur around the 
point of peak muscle lengthening during early stance, sug-
gesting the biomechanical loads associated with high exter-
nal forces as the tissues lengthen may result in elevated tis-
sue strain and injury.20,21 Although these studies provide 
insight into the mechanics occurring at the moment of in-
jury, they are limited to only one participant and therefore 
may not be generalisable to wider populations. 

Understanding potential kinematic differences between 
runners with a history of repeat CMSI and injury free con-
trols may provide information to direct future rehabilitation 
and preventative strategies for this injury. Therefore, the 
aim of this study was to investigate whether male runners 
with a history of repeat calf muscle strain injury demon-
strate differences in stance phase running kinematics when 
compared to healthy controls. It was hypothesised that run-
ners with a history of recurrent calf muscle injury would 
demonstrate either increased peak ankle dorsiflexion or 
knee flexion angles during the stance phase of running. 
These kinematic patterns could increase the strain placed 
upon the calf muscle complex which may contribute to re-
peat CMSI. 

METHODS 

A total of 30 rearfoot strike male runners were enrolled in 
this study, including 15 runners with a history of repeat calf 
muscle strain injury and 15 controls (Table 1). Participants 
were assessed by the lead clinician to confirm injury history 
and diagnosis prior to participation. All participants pro-
vided written informed consent prior to being enrolled in 
this study and ethical approval was obtained from the local 
ethics committee. 

All participants were injury free at the time of testing 
and therefore we were unable to distinguish whether the 
original injuries occurred to the gastrocnemius or soleus 
muscle. As such, these injuries were classified more broadly 
as calf muscle strain injury (CMSI). Participants were in-
cluded within the CMSI group providing they reported a 
history of two or more CMSIs within the last 12 months. A 
history of unilateral injuries was reported in six participants 
and bilateral injuries in nine participants. One participant 
reported their most recent CMSI to have occurred within 
the prior six months, 10 reported sustaining a CMSI within 
the prior three months, one within the prior two months 
and a further two participants reported experiencing their 
most recent injury within the prior month. Symptoms were 
described as a sudden onset of pain localised to the calf 
muscle resulting in an inability to continue running. Par-
ticipants were excluded if they reported any prior injury to 
the lower back, previous lower limb surgery, neurological 
impairment or any previous traumatic injury to the lower 
limb. Participants were included within the control group 
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Table 1: Participant characteristics, Mean (standard deviation). 

Parameter Controls 
(n = 15) 

CMSI 
(n = 15) 

P - Value Effect Size 

Age (years) 42.4 (7.2) 47.8 (9.1) 0.09 0.66 

Height (cm) 177.2 (4.9) 179.4 (4.5) 0.25 0.47 

BMI (kg/m2) 22.8 (1.7) 23.6 (2.6) 0.12 0.36 

Run Frequency* (runs per week) 4.7 (2.0) 3.2 (0.9) 0.02 0.97 

Weekly Running Volume* (miles) 30.1 (14.6) 19.8 (7.4) 0.03 0.89 

* indicates statistically significant difference. 

providing they were running a minimum of 20km per week 
over two or more days and reported no history of common 
overuse running related injuries over an 18-month period. 

Kinematic data were collected from all participants while 
running on a treadmill at 3.2m/s wearing their own running 
shoes. After a five-minute warm up period, 30 seconds of 
kinematic data were collected using a 12 camera Qualysis 
Oqus (Göteborg, Sweden) system (240Hz). Treadmill run-
ning has been reported to produce kinematics comparable 
to over-ground running and therefore can be considered 
representative of participants natural running gait.22 Ad-
ditionally, all participants reported being comfortable with 
treadmill running. A standardised running speed of 3.2m/
s was selected to avoid between participant variability in 
running kinematics due to speed, with this speed consid-
ered similar to average training paces commonly encoun-
tered by recreational runners23 and used in prior biome-
chanical studies.24,25 

A total of nine anatomical segments were tracked fol-
lowing a previously published protocol.26,27 Segments in-
cluded the thorax, pelvis and bilateral thigh, shank and foot 
segments. Further details of the markers used to track each 
segment and the precise definition of the anatomical coor-
dinate systems are provided in previous publications.26,27 

Raw kinematic data were low pass filtered at 10Hz. Inter-
segmental kinematics, along with the motions of the pelvis 
and thorax with respect to the laboratory system, were cal-
culated using a six degrees of freedom model using the Vi-
sual 3d (C -Motion) software. Gait events were defined us-
ing a previously validated kinematic algorithm,28 in which 
initial contact was defined as the first peak in vertical ac-
celeration of either the heel or metatarsal markers. Toe-off 
was identified as the vertical jerk peak of the 2nd metatarsal 
marker.28 Gait events were used to segment each kinematic 
signal into a minimum of 10 consecutive gait cycles. An 
ensemble average for each signal was created and selected 
kinematic parameters derived from the ensemble average 
curves. This latter processing was carried out using a cus-
tom Matlab script. 

Several kinematic parameters were selected for data 
analysis. Kinematic parameters included sagittal and 
frontal plane joint angles at initial contact, peak joint an-
gles during stance, joint excursion of the ankle and knee 
and spatiotemporal parameters. Peak angles during stance 
were defined as the maximum joint angle between initial 
contact and toe off. Joint excursion was calculated as the 
range of movement from initial contact to the peak angle 

at mid stance. Spatiotemporal parameters included stride 
length, step rate, stance time, flight time as well as the hori-
zontal distance between the heel marker and centre of mass 
at initial contact. Center of mass was calculated using a 
nine segment model comprised of bilateral feet, shank and 
thigh segments, as well as the pelvis, lumbar and thoracic 
spine.27 A recent study identified a link between a range 
of lower limb running injuries and kinematics of the pelvis 
and trunk.24 Therefore, kinematic parameters of the trunk, 
pelvis and lower limbs were included in the analysis. Inde-
pendent t- tests were used to compare differences between 
groups and effect sizes calculated using Cohen’s d. A critical 
alpha of .05 was set and effect sizes of 0.2, 0.5 and 0.8 were 
interpreted as small, medium and large respectively.29 

RESULTS 

When compared to the control group the previously injured 
group were found to have a significantly longer stance time 
(p ≤0.01) and greater distance between heel and center of 
mass at initial contact (p ≤0.01), characteristic of an over-
stride running gait (Table 2). No other significant differ-
ences were observed between the groups for any spatiotem-
poral parameters. There were several differences found at 
the hip and pelvis kinematics between the previously in-
jured and control groups (Table 3). At initial contact the 
previously injured group landed with a significant 4.4° in-
crease in hip flexion (p ≤0.01) and a significant 3.7° increase 
in anterior pelvic tilt (p ≤0.01). At mid stance the previously 
injured group demonstrated a significant 2.1° increase in 
peak contralateral pelvic drop (p ≤0.01) (Figure 1) and 3.1° 
greater anterior pelvic tilt (p = .03) when compared to the 
control group. These differences demonstrated large effect 
sizes ranging from 0.8 to 1.2 (Table 3). Interestingly, there 
were no significant differences observed in any of the kine-
matic parameters related to the knee or ankle (p >.05) (Fig-
ures 2 and 3). 

DISCUSSION 

The aim of the present study was to identify whether male 
runners with a history of recurrent calf muscle strain in-
juries demonstrate differences in running kinematics when 
compared to healthy controls. It was hypothesised that the 
CMSI group would demonstrate greater peak ankle dorsi-
flexion and knee flexion angles during the stance phase of 
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Table 2: Spatiotemporal parameters, mean (standard deviation). 

Parameter Controls CMSI P - 
Value 

Effect 
Size 

95% Confidence 
Interval 

Lower Upper 

Flight Time (sec) 0.204 
(0.04) 

0.181 
(0.05) 

0.17 0.51 -0.059 0.011 

Stance time (sec)* 0.523 
(0.03) 

0.562 
(0.04) 

≤0.01 1.10 0.014 0.063 

Stride Length (meters) 2.23 (0.09) 2.27 (0.14) 0.31 0.34 -0.043 0.133 

Stride Rate (Steps per minute) 164.9 (6.7) 162.3 
(10.3) 

0.41 0.30 -9.118 3.838 

CoM Vertical Excursion (cm) 9.3 (1.0) 9.3 (1.5) 0.88 0.05 -0.896 1.040 

Heel to CoM distance at contact 
(cm)* 

13.3 (2.8) 15.8 (2.5) ≤0.01 0.94 0.44 4.38 

* indicates statistically significant difference. CoM = centre of mass. 

Table 3: Kinematic characteristics mean (standard deviation). 

Parameter Controls CMSI P - Value Effect Size 95% Confidence Interval 

Lower Upper 

Joint Angles at Initial contact 

Pelvis anterior tilt* (⁰) 6.2 (3.5) 9.9 (3.7) ≤0.01 1.04 1.01 6.44 

Hip Flexion* (⁰) 21.8 (3.5) 26.3 (3.9) ≤0.01 1.20 1.66 7.23 

Knee flexion (⁰) 6.3 (5.4) 5.4 (5.2) 0.64 0.17 -4.88 3.06 

Ankle dorsiflexion (⁰) 9.6 (4.5) 11.3 (6.6) 0.42 0.29 -2.53 5.89 

Foot Inclination (⁰) 20.4 (6.0) 23.8 (6.8) 0.16 0.53 -1.42 8.20 

Joint Angles at mid stance 

Contralateral Pelvic Drop* (⁰) 3.5 (2.6) 5.7 (1.9) ≤0.01 0.94 0.45 3.83 

Pelvis anterior tilt* (⁰) 6.0 (3.8) 9.1 (3.8) 0.03 0.80 0.21 5.88 

Hip Adduction (⁰) 9.2 (3.2) 11.3 (3.1) 0.07 0.68 -0.19 4.05 

Knee flexion (⁰) 33.0 (2.8) 33.4 (5.1) 0.81 0.09 -2.72 3.46 

Ankle Dorsiflexion (⁰) 23.4 (2.2) 24.3 (3.4) 0.37 0.33 -1.21 3.08 

Rearfoot eversion (⁰) 4.0 (2.6) 3.1 (5.1) 0.53 0.23 -2.08 3.96 

All values are presented as degrees of movement (⁰). * indicates statistically significant difference. 

running. This hypothesis was based on the premise that ex-
cessive ankle dorsiflexion and knee flexion angles would in-
crease the eccentric load placed on the calf complex, lead-
ing to tissue damage and injury. Contrary to this 
hypothesis, there were no differences in peak ankle or knee 
joint angles (Figures 2 and 3), however there were differ-
ences between groups for pelvis and hip kinematics as well 
as longer stance times. Therefore, it appears that there are 
stronger associations between proximal rather than distal 
kinematics and CMSIs. 

In the present study, an increase in contralateral pelvic 
drop and anterior pelvic tilt were observed in runners with 
a history of calf muscle strain injury. Peak contralateral 
pelvic drop has previously been reported to be associated 

with multiple different running injuries, including iliotibial 
band syndrome, patellofemoral pain, medial tibial stress 
syndrome and Achilles tendinopathy,24 however this is the 
first study to identify similar associations amongst runners 
with CMSI. It is possible that this observation indicates po-
tential deficits in the neuromuscular function of the gluteal 
muscles during the stance phase of gait. The gluteus medius 
is considered one of the primary stabilizers of the hip and 
pelvis in the frontal plane, while the gluteus maximus as-
sists in control of anterior pelvic tilt.30 Delayed onset of 
these muscles has previously been reported to result in a 
loss of neuromuscular stiffness around the hip and pelvis, 
subsequently leading to altered kinematic patterns.31 

Therefore, the observation of increased contralateral pelvic 
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drop and anterior pelvic tilt in the CMSI group, could in-
dicate neuromuscular deficits of the gluteal muscles which 
may have implications for calf muscle function during run-
ning. 

The gluteal muscles play a key role in vertical support 
and propulsion during the stance phase of gait through syn-
ergy with the gastrocnemius, soleus and quadriceps.10 

Modelling studies have reported the gluteal muscles to pro-
vide up to half the total vertical support during running.11 

Similarly, along with the soleus muscle, the gluteus max-
imus and posterior fibres of the gluteus medius play a role 
in the control of knee flexion velocity,32 generating a hip 
extension moment during early stance which accelerates 
the knee into extension. It is possible that deficits of the 
gluteal muscle group may reduce the hip muscle contri-
bution to knee extension, vertical support and propulsion. 
This, in turn, could lead to an increase in muscular demand 
at the calf muscle complex and subsequent tissue overload 
and injury.33 If such a mechanism does play a role in the ae-
tiology of CMSI, then rehabilitation approaches may need 
to focus on correcting proximal dysfunctions in order to re-
duce the mechanical demand on the calf muscle complex 
during running. However, EMG studies are now required to 
investigate this idea further. 

The CMSI group were also observed to land with signifi-
cantly greater hip flexion and distance between the heel and 
center of mass at initial contact, characteristic of an over-
stride running gait.34,35 This may explain the longer stance 
times observed amongst the CMSI group and could have 
implications for calf muscle function. In a previous study 
by Napier et al,35 hip flexion and heel to center of mass 
distance at initial contact were correlated with peak hori-
zontal breaking force, which will slow the forward momen-
tum of the centre of mass during early stance. Additionally, 
without compensatory knee and ankle kinematics, an over-
stride running gait will result in a posterior shift in the cen-
tre of pressure under the foot36 which may reduce the ca-
pacity for storage of elastic energy within the calf complex. 
Consequently, in order to reaccelerate the centre of mass at 
toe off, there may be a need to increase ankle power genera-
tion from mid to late stance.10,11 It is conceivable that such 
biomechanical compensation could increase the demand on 
the calf complex and may subsequently lead to repeated 
muscle overload and greater musculotendinous strains, in-
creasing the risk of tissue failure and injury. 

It is also possible that neuromuscular deficits of the calf 
complex may underlie the observation of an increase in 
stance time and that such deficits may place the calf com-
plex at risk of injury. During the early stance phase of run-
ning, the calf muscle complex contracts isometrically, while 
the muscle tendon unit elongates.12,13 This interaction, be-
tween isometric muscle contraction and elongation of the 
elastic components of the muscle tendon unit, acts to store 
elastic energy which is later returned during the propulsion 
phase, accelerating the body’s mass vertically.12,13,37–39 

Neuromuscular deficits of the calf complex, such as reduced 
rate of force development, reduced peak muscle force or 
delayed neuromuscular activity, could subsequently reduce 
the ability of the muscle fascicles to remain isomet-
ric.26,28,40,41 Consequently, this may result in muscle tissue 
lengthening, longer stance times and an increased risk of 

Figure 1: Frontal plane pelvis ensemble average 
kinematic waveform across the gait cycle. 

Positive y-axis values represent the contralateral side of the pelvis dropping 
away from the side of the standing leg, negative represent the contralateral side 
of the pelvis elevating relative to the side of the standing leg. CMSI= calf muscle 
strain injury. 

Figure 2: Sagittal plane knee ensemble average 
kinematic waveform across the gait cycle. 

Positive y-axis values represent flexion, negative represent extension. CMSI= calf 
muscle strain injury. 

muscle strain injury.28,42 Therefore it is recommend that 
future studies undertake more detailed investigations of 
muscle strength and structural properties of the calf com-
plex in people with CMSI and also investigate whether such 
features underlie the observed kinematic differences be-
tween the previously injured and health groups. 

The results from this current study highlight an associ-
ation between specific kinematic characteristics and a his-
tory of CMSI. Although it is not possible to infer causation 
from these data, the study provides new insight into poten-
tial mechanisms for recurrent CMSIs. Therefore, these find-
ings could be used to inform future research and rehabili-
tation strategies. Firstly, considering the finding of altered 
kinematics at the hip and pelvis, rehabilitation interven-
tions focusing on hip muscle function may serve to increase 
proximal contributions to vertical support and propulsion 
during running, reducing the work required of the ankle 
plantarflexors. Second, gait retraining interventions may be 
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a useful intervention, targeting many of the observed kine-
matic deficits. Specifically, increasing step rate has been 
shown to improve kinematics at the hip and pelvis,43 reduce 
over-stride,44 increase gluteal and calf muscle activation 
prior to foot contact45 and reduce force requirements at the 
ankle joint.46 Therefore, gait retraining may prove bene-
ficial in the management of runners with recurrent CMSI 
through the restoration of mechanical deficits. Finally, fu-
ture studies should consider formalised assessment of mus-
cle activation patterns and plantarflexor muscle strength, 
as deficits in peak muscle force or rate of force development 
can be addressed within the rehabilitation process and 
could play a role in the recurrent nature of this injury. 

There are some limitations which must be acknowl-
edged. Due to the retrospective nature of this study it can-
not be confirmed whether the observed kinematics are the 
cause or effect of injury. The CMSI group did demonstrate 
a significantly lower weekly training volume and running 
frequency when compared to the control group (Table 1). 
Therefore, it is possible that repeated interruption to train-
ing exposure due to injury, could have a negative impact 
on both tissue and biomechanical function.36,47,48 However, 
considering the recurrent nature of CMSIs, it is possible 
that the observed kinematics represent ongoing neuromus-
cular and functional deficits which may contribute to the 
persistence of this injury. 

An additional limitation is that all participants were re-
quired to run at the same testing speed of 3.2m/s. Con-
sequently, some participants may have been running at a 
speed slightly faster or slower than preferred. However, a 
prior publication investigating biomechanical differences 
between high-performance and recreational runners across 
a range of testing speeds,36 suggested between-group bio-
mechanical differences may occur irrespective of testing 
speed. Therefore, subtle variations in running speed are un-
likely to have influenced the between group kinematic find-
ings of the present study. Finally, the current study was re-
stricted to a male population of rearfoot strikers. Therefore, 
further work is required to understand if the observed kine-
matic patterns are characteristic of other populations, such 
as forefoot strikers and female runners. 

CONCLUSION 

This study is the first to identify that male runners with a 
history of recurrent calf muscle strain injury demonstrate 
altered stance phase running kinematics. In contrast to the 
original hypothesis, the data suggest a strong link between 

Figure 3: Sagittal plane ankle ensemble average 
kinematic waveform across the gait cycle. 

Positive y-axis values represent dorsiflexion, negative represent plantarflexion. 
CMSI= calf muscle strain injury. 

pelvic-hip kinematics and the presence of CMSI injury. 
These findings may be the result of underlying neuromus-
cular deficits which are consistent with the recurrent nature 
of this injury. Based on these findings further research 
should consider assessment of muscle activation patterns 
as well as the force generating capacity of the calf and hip 
complex, as this may explain the observed kinematic pat-
terns and can be targeted within the rehabilitation process. 
Gait retraining interventions may also prove useful as a 
short-term intervention, addressing the observed proximal 
kinematic deficits which may have positive implications for 
the function of the calf complex. 
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