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Abstract: Brain imaging genetics examines associations between imaging quantitative traits (QTs)
and genetic factors such as single nucleotide polymorphisms (SNPs) to provide important insights
into the pathogenesis of Alzheimer’s disease (AD). The individual level SNP-QT signals are high
dimensional and typically have small effect sizes, making them hard to be detected and replicated.
To overcome this limitation, this work proposes a new approach that identifies high-level imaging
genetic associations through applying multigraph clustering to the SNP-QT association maps. Given
an SNP set and a brain QT set, the association between each SNP and each QT is evaluated using a
linear regression model. Based on the resulting SNP-QT association map, five SNP–SNP similarity
networks (or graphs) are created using five different scoring functions, respectively. Multigraph
clustering is applied to these networks to identify SNP clusters with similar association patterns with
all the brain QTs. After that, functional annotation is performed for each identified SNP cluster and
its corresponding brain association pattern. We applied this pipeline to an AD imaging genetic study,
which yielded promising results. For example, in an association study between 54 AD SNPs and
116 amyloid QTs, we identified two SNP clusters with one responsible for amyloid beta clearances
and the other regulating amyloid beta formation. These high-level findings have the potential to
provide valuable insights into relevant genetic pathways and brain circuits, which can help form new
hypotheses for more detailed imaging and genetics studies in independent cohorts.

Keywords: brain imaging genetics; multigraph clustering; Alzheimer’s disease

1. Introduction

Alzheimer’s Disease (AD) is a complex neurodegenerative disorder characterized by
continuous cognitive impairment and eventual amyloid plaques, neurofibrillary tangles,
and atrophy patterns in the brain [1–3]. As the most common type of dementia, AD is
responsible for approximately 5.8 million dementia cases in US [4]. AD has a heritability
ranging from 60% to 80% estimated from the twin study [5]. The most widely used
approach to identify AD genetic basis is to perform a genome-wide association study
(GWAS) or GWAS-based meta-analysis on case-control phenotypes. Over 50 AD-related
single nucleotide polymorphisms (SNPs) have been identified [6,7].

Many previous AD studies use GWAS and pathway enrichment analysis to explore the
genetic basis of the AD diagnosis [3,7–14]. However, these case-control genetic association
studies cannot directly reveal the biological pathways from genetic determinants, molecular
signatures, and brain traits to cognitive and clinical outcomes. To bridge this gap, brain
imaging genetics [15–17] is emerging as a new research field, where quantitative traits (QTs)
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extracted from brain imaging data are used as intermediate phenotypes to study genetics.
These imaging QTs have the potential to not only link genetics with disease outcomes but
also capture neuropathological heterogeneity of AD [18,19].

Conventional brain imaging genetics studies perform massive pairwise association
analyses between each SNP-QT pair. These individual level SNP-QT signals are high dimen-
sional and typically have small effect sizes, making them hard to be detected and replicated.
To bridge this gap, some studies attempt to interpret these results on a macroscopic level or
derive high-level understandings. For example, Yao et al. used a two-dimensional enrich-
ment analysis to address this challenge, grouping similar brain regions and genes together
via a biclustering approach [20]. Yao’s work identified various high-level two-dimensional
imaging genetic modules, which were predefined based on the brain transcriptome data
from Allen Human Brain Atlas.

In this work, instead of using the knowledge-driven, predefined imaging genetic
modules, we propose an alternative data-driven approach to identify high-level imaging
genetic patterns. Based on the detailed SNP-QT associations, we develop a graph-cut
algorithm to cluster similar SNPs together so that SNPs within the same cluster tend to
have similar associations with QTs across the brain. We construct multiple SNP networks
based on different similarity measurements. Each similarity network can be viewed as
a weighted graph with a specific similarity measure defined as the edge weight. We
employ a multigraph clustering method derived from min-max graph cut to discover
SNP clusters that take into consideration of all the studied similarity measures. After that,
functional annotation is performed for each identified SNP cluster and its corresponding
brain association pattern to provide valuable biological insights at a high level.

We applied this pipeline to an AD imaging genetic study, which yielded promising
results. For example, in an association study between 54 AD SNPs and 116 amyloid QTs,
we identified two SNP clusters with one responsible for amyloid beta clearances and the
other regulating amyloid beta formation. These high-level findings have the potential to
provide valuable insights into relevant genetic pathways and brain circuits, which can help
form new hypotheses for subsequent imaging and genetics studies in independent cohorts.

2. Material and Methods
2.1. Data Description

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) [21]. The ADNI was
launched in 2003 as a public–private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-
info.org. In this study, participants (N = 971) include 202 AD, 218 late MCI (LMCI), 296 early
MCI (EMCI), and 255 healthy control (HC) subjects. The baseline structural magnetic
resonance imaging (MRI) scans, AV45, and FDG positron-emission tomography (PET)
scans, genotyping data, demographic information and clinical assessments are downloaded
from the ADNI database (adni.loni.usc.edu). Table A1 shows participant characteristics.

2.2. Data Preprocessing

The genotyping data were downloaded and analyzed using PLINK v1.90 [22]. We
perform quality control using the following criteria: genotyping call rate > 95%, minor
allele frequency > 5%, and Hardy Weinberg Equilibrium > 1.00× 10−6. Then, we select
54 risk variants identified by recent AD genome-wide association studies (GWAS) or GWAS
meta-analysis [3,6,7]. Table A2 shows the list of risk variants investigated in this study.

Structural MRI scans are processed with voxel-based morphometry (VBM) using the
Statistical Parametric Mapping (SPM) software. All scans are aligned to a T1-weighted
template image, segmented into gray matter (GM), white matter (WM), and cerebrospinal
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fluid (CSF) maps, normalized to the standard Montreal Neurological Institute (MNI) space
as 2 × 2 × 2 mm3 voxels. The GM maps are extracted and smoothed with an 8mm FWHM
kernel. We then extract the average regional GM measurements from 116 regions-of-
interests (ROIs) defined by the automated anatomical labeling (AAL) atlas.

Preprocessed F-18 florbetapir (AV45) PET scans are collected and aligned to the Mon-
treal Neurological Institute space as 2× 2× 2 mm voxels using SPM. Standard uptake
value ratio is computed by intensity normalization based on a cerebellar crus reference
region. We then extract the average regional AV45 measurements from 116 AAL ROIs.

The (18)F-fluorodeoxyglucose (FDG) PET measurements are also registered into the
same MNI space as 2 × 2 × 2 mm3 voxels by SPM. We then extract the average regional
FDG measurements from 116 AAL ROIs.

2.3. Method Overview

Figure 1 shows the flowchart of the analyses performed in this study, including
six steps. Step 1 generates detailed SNP-QT association maps for five different subject
sets examined in our prior study [23], respectively. Step 2 constructs five SNP similarity
networks using different scoring functions. Step 3 performs multigraph clustering on the
five SNP networks with a range of cluster numbers. Step 4 examines the clustering quality of
each cluster through Silhouette analysis. Based on the Silhouette scoring results, two cluster
groups are selected for the subsequent analysis in Steps 5 and 6. We perform functional
annotation for (1) each identified SNP cluster in Step 5 using pathway analysis and (2) its
corresponding brain association pattern in Step 6 using Neurosynth and Neurovault.

2.4. Step 1: Imaging Genetic Association Analysis

The relationship between each ROI-based imaging QT and each SNP can be obtained
by performing a linear regression. Let G be a set of SNPs and Y be a set of imaging QTs
(AV45, FDG and VBM). We perform a linear regression model to estimate the additive effect
of each SNP g ∈ G on each QT y ∈ Y. The analysis is performed for all possible SNP-QT
pairs for each of the five comparison groups (i.e., EMCI vs. HC, LMCI vs. HC, AD vs. HC,
MCI vs. HC, ALL vs. HC) within each of the three imaging modalities (i.e., AV45, FDG,
and VBM). The regression is repeated 54× 116 times. The linear regression model is defined
as follows:

y = αg + ΓZ + ε,

where Z = (z1, · · · , zk)
T includes the variables whose effects we want to exclude, such as

age, sex, and education; α and Γ = (γ1, · · · , γk) are the coefficients; ε is the error term. Our
goal is to estimate α and also test if the SNP g has a significant effect (i.e., α 6= 0) on each
QT y ∈ Y.

Thus, in Step 1 we generate an ROI-based p-value map to quantify the significance
of SNP effects on imaging data. Specifically, in this work, each element of the significance
map records the “negative log p-value” −log10(p) at the corresponding ROI. At the end of
this step, we have 5 SNP-QT maps of size 54 (number of studied SNPs) × 116 (number of
ROIs) for each of the three modalities.
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Figure 1. Flowchart of our analysis pipeline. Step 1 generates detailed SNP-QT association maps
(54 SNPs by 116 QTs) for five different subject sets examined in our previous study [23], respectively.
Step 2 transforms the SNP-QT map to SNP networks by applying different similarity scoring functions
to each pair of 116-dimensional SNP vectors. Step 3 uses multigraph min-max cut algorithm to
generate an optimal clustering result scoring analysis in Step 4. In Step 5, the SNPs in each cluster are
mapped to nearest genes and uploaded to enrichR for Elsevier pathway analysis to identify relevant
biological pathways. In Step 6, Neurovault and Neurosynth are used to functionally annotate the
average brain association pattern for all the SNPs in each cluster.

2.5. Step 2: SNP Networks with Different Similarity Measurements

Step 1 explores the lower level relationship between imaging and genetic data. In order
to aggregate the individual effects of multiple SNP–ROI pairs to high-level imaging genetic
patterns, we transform the SNP-QT maps to an SNP network that models the SNP similarity
in terms of their effects on all the QTs across the entire brain. From Step 1, a 54-by-116
SNP-QT map is constructed for each of the five comparison groups within each of the three
modalities. For each SNP, there is a 116 dimensional feature representation that maps its
effect on the brain. The similarity measurement is applied on all pairs of 116-dimensional
normalized SNP vectors to create a 54-by-54 SNP network. Five scoring functions shown in
Table 1 are used, resulting in five distinct 54-by-54 SNP networks for each comparison group.
The three SNP networks formed by the Pearson correlation, the Spearman correlation,
and the cosine similarity are normalized by taking the absolute value of the entry, respec-
tively. The two SNP networks formed by the Manhattan and Euclidean distances are
transformed to normalized similarity networks by taking a Gaussian radial basis function
centered at distance = 0 with a standard deviation of (maximum–minimum)/3, respectively.
After normalization, all the entries in each 54-by-54 SNP network have a value between 0
and 1.
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Table 1. Assume the 54-by-116 genetic-imaging matrix is X. Scoring functions are applied to Xi

and Xj ∈ R116, 116-dimensional row vectors of X that maps the effect of a given SNP to 116 brain
regions of interest (ROIs). Assume Xik denotes the i-th row and k-th column entry of X. Note that the
Manhattan distance and Euclidean distance need to be transformed to the corresponding similarity
measures using a Gaussian radial basis function in the third column.

Measurement Scoring Function Normalized Similarity

Pearson correlation r(i, j) = ∑n
k=1(Xik−Xi)(Xjk−Xj)√

∑n
k=1(Xik−Xi)2(Xjk−Xj)2

|r(i, j)|

Spearman correlation ρ(i, j) = 1− 6 ∑n
k=1(rank(Xik)−rank(Xjk))

2

n(n2−1) |ρ(i, j)|

Manhattan distance d(i, j) = ||Xi − Xj||1 e−0.5
(

d(i,j)−dmin
(dmax−dmin )/3

)2

Euclidean distance d(i, j) = ||Xi − Xj||2 e−0.5
(

d(i,j)−dmin
(dmax−dmin )/3

)2

Cosine cos(i, j) = Xi ·Xj

||Xi ||·||Xi || |cos(i, j)|

2.6. Step 3: Multigraph Min-Max Graph Clustering

Although an SNP network describes the similarity between each pair of SNPs,
a high-level understanding can be obtained by grouping similar SNPs together and study
their collective effects. From Step 2, five 54-by-54 normalized similarity SNP networks are
created for each comparison group within each of the three modalities. The network can be
viewed as a graph so that the connected components output from graph cut algorithms
are viewed as network clusters. Ding et al. proposed a min-max graph cut algorithm that
improves cluster quality and balance by minimizing similarity between pairwise subgraphs
and maximizing similarity within each subgraph [24]. The min-max graph cut takes a
single similarity network as input, so it clusters one network and examines the effect of
one scoring function. Wang et al. generalized the single-graph min-max graph cut into
multigraph min-max graph cut, which is used in this study to evaluate the combined effect
of five scoring functions [25]. The objective functions of both min-max graph cut models are
shown in Table 2. In this study, multigraph min-max graph cut algorithm is implemented
through a gradient descent method with convergence conditions. The implication of multi-
graph min-max clustering is that it combines the effects of multiple scoring functions at
the same time. The clustering results of multigraph min-max graph cut algorithm have
features that resemble the clustering results of single-graph min-max clustering from the
best scoring function. Multigraph min-max clustering with five 54-by-54 SNP networks
as inputs is performed on the number of clusters ranged from 2 to 9 to produce clustering
results for each comparison group within each modality.

Table 2. Objective functions of single-graph and multigraph clustering. A is the adjacency matrix,
which is equivalent to the similarity network in this study. D is the diagonal matrix of A. Q is the
output clustering labels. K is the number of clusters.

Graph Cut Algorithm for Cluster Analysis Objective Function

Single-graph min-max cut minQT Q=IΣK
k=1

qT
k Dqk

qT
k Aqk

Multigraph min-max cut minQT Q=IΣm
v=1ΣK

k=1
qT

k Dvqk

qT
k Avqk

2.7. Step 4: Silhouette Scoring Analysis

The goal of this step is to determine the optimal number of clusters. Silhouette refers
to a method of interpretation and validation of consistency within clusters of data and
provides a graphical representation of cluster quality [26]. The Silhouette value has a range
between -1 and 1. A value close to 1 indicates good clustering quality: the objects are
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close to assigned clusters and far from neighbor clusters. A value close to -1 suggests
that the number of clusters selected is not appropriate. The scoring functions are listed in
Table 3. The Silhouette scoring analysis is performed on the clustering results of multigraph
clustering with number of cluster ranged from 2 to 9. The normalized similarity networks
in Step 3 are transformed to distance matrices by converting a similarity measure of x
into a distance measure of 1− x. For a given number of clusters, there are 5 similarity
measurements × 5 comparison groups within each of the three modalities. The 5× 5 = 25
Silhouette scores are averaged for comparison. The clustering result with the highest
averaged Silhouette score is selected for further analysis. The Silhouette scoring analysis is
also performed on the clustering results of single-graph clustering with number of cluster
ranging from 2 to 9. The 5 Silhouette scores from 5 comparison groups are averaged and
compared with the averaged Silhouette score of the multigraph clustering to analyze the
effectiveness of multigraph clustering.

Table 3. Silhouette scoring functions. Let CI be the cluster which node i belongs to.

Measure Calculation

mean distance a(i) = 1
|CI |−1 Σj∈CI ,i 6=jd(i, j)

mean dissimilarity b(i) = minJ 6=I
1
|CJ |Σj∈CJ d(i, j)

Silhouette value s(i) = b(i)−a(i)
max(a(i),b(i))

2.8. Step 5: EnrichR Elsevier Pathway Analysis

A high-level result of two SNP groups is produced from previous analysis. The genetic
domain of each SNP group can be analyzed through the pathway analysis using Enrichr.
Enrichr is an integrative web-based and mobile software application that includes new
gene-set libraries, an alternative approach to rank enriched terms, and various interactive
visualization approaches to display enrichment results using the JavaScript library, Data
Driven Documents (D3) [27–29]. The software can also be embedded into any tool that
performs gene list analysis. The 54 AD-related SNPs in this study are mapped to their
closest gene, upstream or downstream. The SNP cluster from multigraph clustering are
mapped to a group of genes and uploaded to EnrichR for pathway analysis. The elsevier
pathway analysis results of each SNP cluster are recorded and compared because it contains
various AD-related pathways.

2.9. Step 6: Neurovault Brain Region Analysis

After analyzing the genetic domain, the brain pattern corresponding to each SNP clus-
ter can be analyzed through mapping the average effect of each SNP group onto the brain.
This brain association pattern can be analyzed by Neurovault and Neurosynth [30], which
gives us functional and structural information of the affected brain regions. NeuroVault is
an open-science neuroinformatics online repository of brain statistical maps atlases and
parcellations [30]. Neurosynth is a platform for large-scale, automated synthesis of func-
tional magnetic resonance imaging (fMRI) data. It takes thousands of published articles
reporting the results of fMRI studies and outputs brain maps with calculated correlation
coefficients given the uploaded MRI data. The SNPs that are grouped together are expected
to affect similar brain regions; thus, the averaged SNP effect on 116 QTs from each SNP
group is calculated and mapped onto the brain. The resulting brain map is functionally
annotated using NeuroVault and Neurosynth.

3. Result
3.1. Imaging Genetic Association Maps

Figure 2 shows all 15 resulting imaging genetic association maps, arranged by three
modalities (AV45, FDG, VBM) against five comparisons (EMCI vs. HC, LMC vs. HC, AD
vs. HC, MCI vs. HC, All vs. HC). Each map consists of 54 SNPs on the vertical axis and



Genes 2022, 13, 1520 7 of 19

116 ROIs on the horizontal axis. The order of SNPs on the vertical axis follows the list
shown in Table A2. The order of ROIs on the horizontal axis follows the list shown in
Table A3.

AV45

FDG

VBM

EMCI vs. HC LMCI vs. HC AD vs. HC MCI vs. HC All vs. HC

Figure 2. Detailed imaging genetic association maps (54 SNPs by 116 ROIs) with each entry as a
normalized −log10(p-value) from linear regression of ROI vs. SNP within each comparison group.
Normalization was performed so that each row has a squared norm of 1. The vertical axis follows the
SNP order listed in Table A2. The horizontal axis follows the ROI order listed in Table A3.

Each entry of the map corresponds to −log10(p-value) from the linear regression
before normalization. After an initial SNP-QT map is created, each 116-dimensional vector
of a given SNP is normalized such that the Euclidean norm is 1. This step is performed so
that each SNP is represented as a directional unit vector to facilitate subsequent analysis.

While such an imaging genetic map describes detailed associations for each SNP-QT
pair, it is not straightforward to detect any general trend in these maps. The goal of the
subsequent steps is to extract high-level information from these maps and help provide
biological interpretation to aid biomarker discovery and therapeutic target identification.

3.2. Multigraph vs. Single-Graph Silhouette Analysis

The multigraph vs. single-graph averaged Silhouette scores are shown in Figure 3.
The multigraph averaged Silhouette score is calculated by taking the mean of 25 Silhouette
scores (5 scoring functions × 5 comparison groups) from the multigraph clustering result
at a given number of clusters for a given modality. The single-graph averaged Silhouette
score is calculated by also taking the mean of 5× 5 = 25 Silhouette scores. Instead of
using the same clustering result across five scoring functions for the multigraph case,
a single-graph clustering is performed on each of the scoring functions. The Silhouette
scores are calculated based on the clustering result of a specific scoring function.

A higher Silhouette score indicates a better clustering quality. A lower number of
clusters is preferred in this study when the Silhouette scores are similar since our goal is
to provide a high-level understanding. As a result, cluster number = 2 is chosen for the
subsequent analyses.
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Figure 3. Averaged Silhouette scoring of single-graph and multigraph clustering results across
5 scoring functions × 5 comparison groups at each number of cluster. The results of analyzing
AV45, FDG, and VBM data are shown from left to right. In the subsequent analyses, we report the
multigraph results of clustering SNPs into two groups, which is the optimal case for both AV45
and VBM.

3.3. Clustering Results

The SNP networks constructed by the normalized cosine scoring function are shown
in Figure 4. The two resulting SNP clusters are separated by two black lines. The cluster
with a smaller number of SNPs is reordered in the top left corner with the cluster with a
larger number of SNPs in the bottom right corner.

AV45

FDG

VBM

EMCI vs. HC LMCI vs. HC AD vs. HC MCI vs. HC All vs. HC

Figure 4. The SNP networks (54 by 54) constructed by the normalized cosine scoring function. Each
entry is the cosine similarity of two corresponding SNP representations (measuring their association
patterns with 116 ROIs in the brain). The black line indicates the partition of two clusters.

The similarity network entries are normalized so that the minimum is 0 and the
maximum is 1. Each SNP has a maximum similarity of 1 with itself as observed from the
diagonal. Good partition of SNPs is indicated by strong similarity within each cluster and
weak similarity between the clusters. A balanced size of the two clusters is preferred so that
we can identify multiple high-level patterns instead of one single high-level pattern coupled
with a small number of outliers; therefore, the clustering result on the AV45 measures for
the LMCI vs. HC comparison group as well as the clustering result on the VBM measures
for the AD vs. HC comparison group are selected for subsequent analysis.
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3.4. Case Study: Example AV45 Result

Among all the results in modality AV45, the most balanced one is generated by
analyzing the LMCI vs. HC comparison group, and this result is shown in Table A4.
The functional annotation and pathway analysis of the identified SNP clusters and the
corresponding brain maps are shown in Figure 5. The SNPs in each of the two groups
are mapped to their closest genes and uploaded as two gene sets to enrichR. The Elsevier
pathway analysis is used in this study because multiple AD related pathways are included
in this pathway, which is helpful for understanding AD pathogenesis. The average nor-
malized brain significance maps corresponding to two SNP groups are shown in Figure 5c.
Neurosynth analysis results of these two brain maps are shown in Figure 5d.

�D� �E�

�F� �G�

Figure 5. (a) Cosine SNP network derived from genetic analysis of the AV45 data in the LMCI vs.
HC comparison. (b) The Elsevier pathway analysis from EnrichR of SNP group 1 (20 SNPs) and SNP
group 2 (34 SNPs). (c) The average normalized brain significance maps corresponding to SNP group
1 (left) and SNP group 2 (right), respectively. (d) Neurosynth analysis results of the two brain maps
shown in (c).

3.5. Case Study: Example VBM Result

Among all the results in the modality VBM, the most significant and balanced result
is generated by analyzing the AD vs. HC comparison group, and this result is shown in
Table A5. The functional annotation and pathway analysis of the identified SNP clusters
and the corresponding brain maps are shown in Figure 6. The analysis is similar to the
previous case study on the AV45 measures for the LMCI vs. HC comparison group. This
clustering result has a lower Silhouette score (0.158) than that in the previous case study
(0.293). So a less distinct pattern is observed in the network, along with less differentiated
pathways, brain regions, and brain map visualization.
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�D� �E�

�F� �G�

Figure 6. (a) Cosine SNP network derived from analyzing VBM data in the AD vs. HC comparison.
(b) The Elsevier pathway analysis from EnrichR of SNP group 1 (16 SNPs) and SNP group 2 (38 SNPs).
(c) The average normalized brain significance maps corresponding to SNP group 1 (left) and SNP
group 2 (right), respectively. (d) Neurosynth analysis results of the two brain maps shown in (c).

4. Discussion
4.1. Comparison between Single-Graph and Multigraph Clusterings

In this study, multiple scoring functions have been selected to evaluate the similarity
between different AD-related SNPs in terms of their effects on 116 ROIs across the brain.
Each scoring function quantifies the similarity between SNPs from a specific perspective.
Multigraph clustering is used to output a clustering result that combines the effects of
multiple scoring functions. The purpose of building SNP–SNP networks through different
scoring methods is to evaluate the SNP similarity in terms of their effects on 116 ROIs
traits across the brain from multiple perspectives. Given two vectors (1, 2, 3) and (0.001,
0.002, 0.003), their Pearson correlation, Spearman correlation, and cosine similarity are
all 1 (corresponding to the largest similarity), since they focus on comparing the vector
directionality instead of the vector magnitude; however, their Manhattan distance and
Euclidean distance are very sensitive to the vector magnitude, and thus are both large,
leading to very small similarity. Our multigraph approach combines the effects of all these
scoring functions, and takes into consideration both vector directionality and magnitude
when performing multigraph clustering.

Several single-graph and multigraph clusterings with a varying number of clusters
from 2 to 9 are performed. Averaged Silhouette analysis scores are used to quantify
clustering quality under a given cluster condition. In Figure 3, the plot of averaged
Silhouette analysis for single-graph shows that clustering quality improves in general as
the number of clusters increases for FDG and VBM; however, for AV45 a higher number of
clusters leads to a lower cluster quality. There is an inconsistency in the optimal number of
clusters for different imaging modalities. The goal of this study is to acquire a high-level
understanding of imaging genetic associations. Despite the inconsistency of clustering
quality, a large number of clusters also makes subsequent analysis complicated. Only
a few brain regions and pathways will be present when the number of SNPs in each
cluster decreases, which downgrades the high-level understanding back to individual
level analysis.

With these difficulties addressed in single graph clustering, the use of multigraph
clustering is very promising for various reasons. The first advantage of multigraph cluster-
ing is that at a given number of clusters, it is able to selectively use scoring functions that



Genes 2022, 13, 1520 11 of 19

behave well. For example, at cluster number = 2, the Pearson and Spearman methods have
low Silhouette scores (<0.062) across all three modalities, while the Manhattan, Euclidean,
and cosine methods have high ones (>0.11). In this case, the multigraph clustering yields an
average Silhouette score of 0.1016 (Figure 3), resulting in prominent patterns when mapped
to Manhattan, Euclidean, and cosine networks (e.g., Figure 5a).

The second advantage of multigraph clustering for this study is that it behaves the
best for AV45 and VBM at the number of clusters = 2 (see Figure 3). As discussed above,
a small number of clusters is great for high-level analysis. For FDG, the Silhouette score for
the cluster number of 2 is also close to the score for the cluster number of 8. So the result
for the cluster number of 2 is reported for all three modalities in this study and coupled
with subsequent functional annotation and pathway analysis.

The third advantage of multigraph clustering is that the analysis is more efficient
and consistent than a collection of single-graph clusterings. Instead of doing five single-
graph clusterings with inconsistent results among different scoring functions, multigraph
clustering is able to return a single set of clustering result. This feature provides a novel
way of analysis for future studies with a large number of candidate evaluation functions
and no prior knowledge of their performances.

4.2. AV45 Clustering Result

In the AV45 row of Figure 4, comparison group AD vs. HC and ALL vs. HC both have
one cluster group of 1 SNP and another cluster group of 53 SNPs. The two clusters can
be viewed as one group because the multigraph clustering algorithm explicitly enforces
each cluster to be nonempty. While these two results are not significant, rs11278892 with its
minor allele G is classified to be the most distant from the other 53 SNPs.

Comparison group EMCI vs. HC has one cluster group of 2 SNPs and another cluster
group of 52 SNPs. Again, this can be roughly viewed as a single group. The smaller
cluster group contains rs4575098 and rs4663105. There is no prior research of rs4575098,
but rs4663105 mapped to BINI gene was identified as having a significant association among
APOE ε4+ and ε4− subjects [31]. Future research can be conducted on the association
between rs4575098 and rs4663105 as well as their collective role in early MCI development.

Comparison group LMCI vs. HC has the most balanced cluster group for AV45 with
one cluster of 20 SNPs and another cluster of 34 SNPs (with APOE rs429358). The partition
will provide us with insights of how two groups of SNPs each plays a different role in the
LMCI stage. This finding is promising given that (1) LMCI is the transitional stage between
EMCI and AD, (2) there are no significant partitions at EMCI and AD, and (3) there is a
significant pattern at LMCI. This suggests a potential stage-specific imaging genetic pattern
during AD progression, which warrants further investigation. See Section 4.5 for additional
discussion on the functional annotation of this high-level imaging genetic pattern.

4.3. FDG Clustering Result

In the FDG row of Figure 4, for the smaller cluster group, EMCI vs. HC group has
rs10498633 and rs12881735, LMCI vs. HC group has rs10498633 and rs12881735, and AD vs.
HC group has rs6656401, rs2093760, and rs4844610. The MCI vs. HC group has eight SNPs
and the ALL vs. HC group has six SNPs. In general, the clustering patterns in the networks
do not seem as significant as AV45 and VBM. The Silhouette score of FDG (0.076) is also
lower than AV45 (0.102) and VBM (0.0879); yet, there is one observation of the results:
rs10498633 present in both EMCI and LMCI smaller cluster groups. Previous studies have
shown that rs10498633 in SLC24A4 was significantly associated with anisotropy, total
number and length of fibers, including some connecting brain hemispheres [32].

4.4. VBM Clustering Result

In the VBM row of Figure 4, comparison group MCI vs. HC has one group of 2 SNPs
(rs4236673 and rs9331896) and another group of 52 SNPs. Comparison group ALL vs. HC
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has one group of 1 SNP (rs9271058) and another group of 53 SNPs. These cases can be
viewed as having one group instead of two partitions.

Comparison group EMCI vs. HC has a smaller group of six SNPs: rs10808026,
rs7810606, rs10498633, rs12881735, rs12590654, and rs113260531. Comparison group LMCI
vs. HC has a smaller group of five SNPs: rs4236673, rs9331896, rs10498633, rs12881735,
and rs12590654. The SNPs rs10498633, rs12881735, and rs12590654 lie in the intersection of
these two groups, potentially having an impact throughout the MCI stage. As mentioned in
the FDG section, rs10498633 is also found to be distant from the other AD-related SNPs for
VBM modality, which reinforces its unique role associated with anisotropy in the MCI stage.

Comparison group AD vs. HC has the most balanced cluster result with one group of
16 SNPs and another group of 38 SNPs. This provides us with insights about how the two
groups of AD-related SNPs each play a different role in AD patients. Functional annotation
of this high-level imaging genetic pattern are discussed in Section 4.6.

4.5. AV45 Case Study

In Figure 5a,b, the Elsevier pathway analysis reveals some promising results on our
genetic analysis of AV45 measures in the LMCI vs. HC comparison: (1) the pathway
of amyloid beta clearance in AD is enriched by genes associated with the SNP Group 1,
and (2) the pathway of amyloid beta formation in AD is enriched by genes associated with
the SNP Group 2. AD pathogenesis is widely believed to be driven by the production and
decomposition of β-amyloid peptide [33]. The disease state of AD is closely related to the
solubility and the quantity of β-amyloid. Our pathway analysis suggests that the SNPs in
Group 1 have potential to be related to the decomposition of amyloid beta while the SNPs
in Group 2 to be related to its production. Since AD is characterized by accumulation of
β-amyloid, it warrants further investigation that the SNPs involved here can be studied as
suppressors and/or promoters to minimize the amount of β-amyloid present [34].

A relevant observation from our pathway analysis is Group 1’s association with amy-
loid beta and APP intracellular transport in AD and amyloid beta traffic and degradation
in extracellular matrix in AD and Group 2’s association with APP processing. β-amyloid is
released by sequential proteolytic processing of the amyloid precursor protein, so the inhibi-
tion of APP processing and the excitation of intracellular transport, traffic, and degradation
together minimize the accumulation of β-amyloid in the extracellular matrix.

Another indicator of Group 1’s role on β-amyloid is the MBP immunal pathway, which
is responsible for amyloid beta degradation [35]. The most correlated pathway of Group 2
is complement activation in AD. Complement proteins are integral components of amyloid
plaques and cerebral vascular amyloid in AD patient brains, which can be found at the
earliest of amyloid deposition [36]. The complement activation also coincides with the
clinical expression of Alzheimer’s dementia. Aside from the two group’s direct associations
with β-amyloid, the pathway analysis also shows that AD is correlated with different
diseases including Tangier Disease, cancer, psoriasis, and asthma. Previous studies have
shown that Tangier Disease is caused by mutations of ABAC1, which is closely related to
β-amyloid [37].

In Figure 5c,d, the most correlated brain regions associated with SNP Group 1 include
cerebellar, cerebellum, vi, lobules, and vermis (see https://neurosynth.org/analyses/
terms/, accessed on 16 June 2022 for definition of these terms). Cerebellar and cerebellum
are responsible for motor functions and balance. It is also associated with the visual system.
Vermis and some subsequent correlated brain regions are also associated with maintaining
posture. So, this group is primarily associated with brain regions that are responsible
for balance, motor functions, and visual functions. Group 2 is correlated with prefrontal,
medial prefrontal, medial, prefrontal cortex, and social. All these regions control cognitive
ability, memory management, and emotional impulse. The affected brain regions and their
respective functions of two groups of SNPs show a great difference, demonstrating the
promise of our clustering result.

https://neurosynth.org/analyses/terms/
https://neurosynth.org/analyses/terms/
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4.6. VBM Case Study

Figure 6a,b shows the results of Elsevier pathway analysis on our genetic study of
VBM measures in the AD vs. HC comparison. SNP Group 1 is associated with complement
activation in AD and various pathways that is associated with the immune system and
systematic lupus erythematosus, which is a disease categorized by the immune system
attacking its own tissues. SNP Group 2 is associated with amyloid clearance and forma-
tion pathways, which has an ambiguous downstream function compared with the AV45
results. Thus previous AV45 result shows a better partition, which can also be verified
by visually inspecting the SNP networks and comparing the averaged Silhouette scores
(0.1015 vs. 0.0879).

In Figure 6c,d, the brain association pattern corresponding to SNP Group 1 includes
cerebellum, cerebellar, vi, lobules, and putamen. Cerebullum and cerebellar govern motor
functions and balance (see https://neurosynth.org/analyses/terms/, accessed on 16 June
2022 for definition of these terms). The putamen is involved in learning and motor control,
including speech articulation, language functions, and cognitive functions. Similar to the
Group 1 result of the AV45 analysis above, this group is associated with balance, motor
functions, and visual functions. The brain association pattern corresponding to SNP Group
2, on the other hand, is related to premotor, parietal motor, movements, and primary motor.
The primary function of the premotor cortex is to assist in integration of sensory and motor
information of the performance of an action. The parietal lobes integrate somatosensory
signals and information from different modalities. The difference between the two brain
maps in this case is less significant than the AV45 analysis above.

5. Conclusions

A data-driven analysis pipeline has been proposed in this work to identify high-
level imaging genetic patterns. Based on the detailed SNP-QT associations, we develop a
graph-cut algorithm to cluster similar SNPs together so that SNPs within the same cluster
tend to have similar associations with QTs across the brain. We construct multiple SNP
networks based on different similarity measurements. Each similarity network can be
viewed as a weighted graph with a specific similarity measure defined as the edge weight.
We employ a multigraph clustering method derived from min-max graph cut to discover
SNP clusters that take into consideration of all the studied similarity measures. After that,
functional annotation is performed for each identified SNP cluster and its corresponding
brain association pattern to provide valuable biological insights at a high level.

Our genetic analysis of the AV45 imaging QTs in the LMCI vs. HC comparison
yields a prominent clustering pattern in the cosine SNP network. The pathway analysis
shows that the identified SNP Group 1 is associated with amyloid beta clearances while
the SNP Group 2 is related to amyloid beta formation. The functional annotation using
Neurosynth shows that the brain regions associated with SNP Group 1 are related to motor
and balance functions while the brain regions associated with SNP Group 2 are related to
memory and cognitive functions. These high-level findings have the potential to provide
valuable insights into relevant genetic pathways and brain circuits, which can help form
new hypotheses for more detailed imaging and genetics studies in independent cohorts.
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Appendix A

Table A1. Participant characteristics.

HC EMCI LMCI AD Total

Number of subject 255 296 218 202 971
Age 76.35 ± 6.54 71.78 ± 7.28 74.71 ± 8.39 75.85 ± 7.67 74.48 ± 7.67

Sex (Male/Female) 132/123 167/129 129/89 123/79 551/420
Education (Year) 16.37 ± 2.64 12.12 ± 2.64 16.12 ± 2.94 15.83 ± 2.81 16.13 ± 2.75

The list includes 54 susceptibility loci identified by recent landmark AD genetic
studies [3,6,7]. The SNP-QT association maps shown in Figure 2 have a vertical axis that
follows the order below.

Table A2. Selected AD-related SNPs.

rs-ID Chromosome Position Gene Symbol rs-ID Chromosome Position Gene Symbol

rs4575098 chr1 161155392 ADAMTS4 rs7920721 chr10 11720308 ECHDC3
rs6656401 chr1 207692049 CR1 rs3740688 chr11 47380340 SPI1
rs2093760 chr1 207786828 CR1 rs10838725 chr11 47557871 CELF1
rs4844610 chr1 207802552 CR1 rs983392 chr11 59923508 MS4A6A
rs4663105 chr2 127891427 BIN1 rs7933202 chr11 59936926 MS4A2
rs6733839 chr2 127892810 BIN1 rs2081545 chr11 59958380 MS4A6A
rs10933431 chr2 233981912 INPP5D rs867611 chr11 85776544 PICALM
rs35349669 chr2 234068476 INPP5D rs10792832 chr11 85867875 PICALM
rs6448453 chr4 11026028 CLNK rs3851179 chr11 85868640 PICALM
rs190982 chr5 88223420 MEF2C-AS1 rs17125924 chr14 53391680 FERMT2

rs9271058 chr6 32575406 HLA-DRB1 rs17125944 chr14 53400629 FERMT2
rs9473117 chr6 47431284 CD2AP rs10498633 chr14 92926952 SLC24A4
rs9381563 chr6 47432637 CD2AP rs12881735 chr14 92932828 SLC24A4
rs10948363 chr6 47487762 CD2AP rs12590654 chr14 92938855 SLC24A4
rs2718058 chr7 37841534 GPR141 rs442495 chr15 59022615 ADAM10
rs4723711 chr7 37844263 GPR141 rs59735493 chr16 31133100 KAT8
rs1859788 chr7 99971834 PILRA rs113260531 chr17 5138980 SCIMP
rs1476679 chr7 100004446 ZCWPW1 rs28394864 chr17 47450775 ABI3
rs12539172 chr7 100091795 NYAP1 rs111278892 chr19 1039323 ABCA7
rs10808026 chr7 143099133 EPHA1 rs3752246 chr19 1056492 ABCA7
rs7810606 chr7 143108158 EPHA1-AS1 rs4147929 chr19 1063443 ABCA7
rs11771145 chr7 143110762 EPHA1-AS1 rs41289512 chr19 45351516 PVRL2
rs28834970 chr8 27195121 PTK2B rs3865444 chr19 51727962 CD33
rs73223431 chr8 27219987 PTK2B rs6024870 chr20 54997568 CASS4
rs4236673 chr8 27464929 CLU rs6014724 chr20 54998544 CASS4
rs9331896 chr8 27467686 CLU rs7274581 chr20 55018260 CASS4
rs11257238 chr10 11717397 ECHDC3 rs429358 chr19 45411941 APOE
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Table A3. Region of interest order. This table includes 116 regions of interest in the brain. The SNP-QT association maps shown in Figure 2 have a horizontal axis
that follows the order below.

Index Name Index Name Index Name Index Name

1 Precentral_L 30 Insula_R 59 Parietal_Sup_L 88 Temporal_Pole_Mid_R
2 Precentral_R 31 Cingulum_Ant_L 60 Parietal_Sup_R 89 Temporal_Inf_L
3 Frontal_Sup_L 32 Cingulum_Ant_R 61 Parietal_Inf_L 90 Temporal_Inf_R
4 Frontal_Sup_R 33 Cingulum_Mid_L 62 Parietal_Inf_R 91 Cerebelum_Crus1_L
5 Frontal_Sup_Orb_L 34 Cingulum_Mid_R 63 SupraMarginal_L 92 Cerebelum_Crus1_R
6 Frontal_Sup_Orb_R 35 Cingulum_Post_L 64 SupraMarginal_R 93 Cerebelum_Crus2_L
7 Frontal_Mid_L 36 Cingulum_Post_R 65 Angular_L 94 Cerebelum_Crus2_R
8 Frontal_Mid_R 37 Hippocampus_L 66 Angular_R 95 Cerebelum_3_L
9 Frontal_Mid_Orb_L 38 Hippocampus_R 67 Precuneus_L 96 Cerebelum_3_R

10 Frontal_Mid_Orb_R 39 ParaHippocampal_L 68 Precuneus_R 97 Cerebelum_4_5_L
11 Frontal_Inf_Oper_L 40 ParaHippocampal_R 69 Paracentral_Lobule_L 98 Cerebelum_4_5_R
12 Frontal_Inf_Oper_R 41 Amygdala_L 70 Paracentral_Lobule_R 99 Cerebelum_6_L
13 Frontal_Inf_Tri_L 42 Amygdala_R 71 Caudate_L 100 Cerebelum_6_R
14 Frontal_Inf_Tri_R 43 Calcarine_L 72 Caudate_R 101 Cerebelum_7b_L
15 Frontal_Inf_Orb_L 44 Calcarine_R 73 Putamen_L 102 Cerebelum_7b_R
16 Frontal_Inf_Orb_R 45 Cuneus_L 74 Putamen_R 103 Cerebelum_8_L
17 Rolandic_Oper_L 46 Cuneus_R 75 Pallidum_L 104 Cerebelum_8_R
18 Rolandic_Oper_R 47 Lingual_L 76 Pallidum_R 105 Cerebelum_9_L
19 Supp_Motor_Area_L 48 Lingual_R 77 Thalamus_L 106 Cerebelum_9_R
20 Supp_Motor_Area_R 49 Occipital_Sup_L 78 Thalamus_R 107 Cerebelum_10_L
21 Olfactory_L 50 Occipital_Sup_R 79 Heschl_L 108 Cerebelum_10_R
22 Olfactory_R 51 Occipital_Mid_L 80 Heschl_R 109 Vermis_1_2
23 Frontal_Sup_Medial_L 52 Occipital_Mid_R 81 Temporal_Sup_L 110 Vermis_3
24 Frontal_Sup_Medial_R 53 Occipital_Inf_L 82 Temporal_Sup_R 111 Vermis_4_5
25 Frontal_Med_Orb_L 54 Occipital_Inf_R 83 Temporal_Pole_Sup_L 112 Vermis_6
26 Frontal_Med_Orb_R 55 Fusiform_L 84 Temporal_Pole_Sup_R 113 Vermis_7
27 Rectus_L 56 Fusiform_R 85 Temporal_Mid_L 114 Vermis_8
28 Rectus_R 57 Postcentral_L 86 Temporal_Mid_R 115 Vermis_9
29 Insula_L 58 Postcentral_R 87 Temporal_Pole_Mid_L 116 Vermis_10
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Table A4. SNP clustering result on the AV45 measures for the LMCI vs. HC comparison. The SNP
and the corresponding closest genes are listed for each resulting cluster or group.

Group 1 Group 2

Index SNP Gene Index SNP Gene

1 rs4575098_A ADAMTS4 1 rs6656401_A CR1
2 rs4663105_C RP11-138I18.2 2 rs2093760_A CR1
3 rs6733839_T RP11-138I18.2 3 rs4844610_A CR1
4 rs6448453_A AP001257.1 4 rs10933431_G SPI1
5 rs9381563_C RNU6-560P 5 rs35349669_T CELF1
6 rs2718058_G FERMT2 6 rs190982_G MS4A6A
7 rs11257238_C PVRL2 7 rs9271058_A MS4A6A
8 rs7920721_G APOE 8 rs9473117_C PICALM
9 rs10838725_C BIN1 9 rs10948363_G RNU6-560P

10 rs983392_G BIN1 10 rs4723711_T FERMT2
11 rs7933202_C INPP5D 11 rs1859788_A SLC24A4
12 rs2081545_A INPP5D 12 rs1476679_C SLC24A4
13 rs867611_G CASS4 13 rs12539172_T SLC24A4
14 rs10792832_A CASS4 14 rs10808026_A ADAM10
15 rs3851179_T CASS4 15 rs7810606_T KAT8
16 rs10498633_T HLA-DRB1 16 rs11771145_A RP11-333E1.1
17 rs12881735_C AL355353.1 17 rs28834970_C RP11-81K2.1
18 rs12590654_A AL355353.1 18 rs73223431_T CNN2
19 rs113260531_A EPDR1 19 rs4236673_A ABCA7
20 rs28394864_A GPR141 20 rs9331896_C ABCA7
21 21 rs3740688_G CD33
22 22 rs17125924_G RP11-61G19.1
23 23 rs17125944_C MEF2C-AS1
24 24 rs442495_C CD2AP
25 25 rs59735493_A GPR141
26 26 rs111278892_G EPDR1
27 27 rs3752246_G PILRA
28 28 rs4147929_A ZCWPW1
29 29 rs41289512_G NYAP1
30 30 rs3865444_A EPHA1
31 31 rs6024870_A EPHA1-AS1
32 32 rs6014724_G EPHA1-AS1
33 33 rs7274581_C PTK2B
34 34 rs429358_C PTK2B

Table A5. SNP clustering result on the VBM measures for the AD vs. HC comparison. The SNP and
the corresponding closest genes are listed for each resulting cluster or group.

Group 1 Group 2

Index SNP Gene Index SNP Gene

1 rs6656401_A CR1 1 rs4575098_A ADAMTS4
2 rs2093760_A CR1 2 rs4663105_C RP11-138I18.2
3 rs4844610_A CR1 3 rs6733839_T RP11-138I18.2
4 rs1859788_A SLC24A4 4 rs10933431_G SPI1
5 rs1476679_C SLC24A4 5 rs35349669_T CELF1
6 rs12539172_T SLC24A4 6 rs6448453_A AP001257.1
7 rs11771145_A RP11-333E1.1 7 rs190982_G MS4A6A
8 rs28834970_C RP11-81K2.1 8 rs9271058_A MS4A6A
9 rs73223431_T CNN2 9 rs9473117_C PICALM

10 rs4236673_A ABCA7 10 rs9381563_C RNU6-560P
11 rs9331896_C ABCA7 11 rs10948363_G RNU6-560P
12 rs3740688_G CD33 12 rs2718058_G FERMT2
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Table A5. Cont.

Group 1 Group 2

Index SNP Gene Index SNP Gene

13 rs113260531_A EPDR1 13 rs4723711_T FERMT2
14 rs3752246_G PILRA 14 rs10808026_A ADAM10
15 rs4147929_A ZCWPW1 15 rs7810606_T KAT8
16 rs3865444_A EPHA1 16 rs11257238_C PVRL2
17 17 rs7920721_G APOE
18 18 rs10838725_C BIN1
19 19 rs983392_G BIN1
20 20 rs7933202_C INPP5D
21 21 rs2081545_A INPP5D
22 22 rs867611_G CASS4
23 23 rs10792832_A CASS4
24 24 rs3851179_T CASS4
25 25 rs17125924_G RP11-61G19.1
26 26 rs17125944_C MEF2C-AS1
27 27 rs10498633_T HLA-DRB1
28 28 rs12881735_C AL355353.1
29 29 rs12590654_A AL355353.1
30 30 rs442495_C CD2AP
31 31 rs59735493_A GPR141
32 32 rs28394864_A GPR141
33 33 rs111278892_G EPDR1
34 34 rs41289512_G NYAP1
35 35 rs6024870_A EPHA1-AS1
36 36 rs6014724_G EPHA1-AS1
37 37 rs7274581_C PTK2B
38 38 rs429358_C PTK2B
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