

Received 12 May 2017 Accepted 22 May 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; selenium; pyran derivative; C—Cl··· π interactions; Hirshfeld surface analysis.

CCDC reference: 1551641

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Julio Zukerman-Schpector,^a* Karinne E. Prado,^b Luccas L. Name,^b Rodrigo Cella,^b Mukesh M. Jotani^c and Edward R. T. Tiekink^d

^aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bDepartamento de Engenharia Química, Centro Universitário da FEI, 09850-901, São Bernardo do Campo, São Paulo, Brazil, ^cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and ^dCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: julio@power.ufscar.br

The title organoselenium compound, $C_{19}H_{13}ClO_3Se$ {systematic name: 2-[(4chlorophenyl)selanyl]-2H,3H,4H,5H,6H-naphtho[1,2-b]pyran-5,6-dione}, has the substituted 2-pyranyl ring in a half-chair conformation with the methylene-C atom bound to the methine-C atom being the flap atom. The dihedral angle between the two aromatic regions of the molecule is 9.96 (9)° and indicates a step-like conformation. An intramolecular Se···O interaction of 2.8122 (13) Å is noted. In the crystal, π - π contacts between naphthyl rings [inter-centroid distance = 3.7213 (12) Å] and between naphthyl and chlorobenzene rings [inter-centroid distance = 3.7715 (13) Å], along with C- $Cl \cdots \pi$ (chlorobenzene) contacts, lead to supramolecular layers parallel to the *ab* plane, which are connected into a three-dimensional architecture *via* methylene-C-H···O(carbonyl) interactions. The contributions of these and other weak contacts to the Hirshfeld surface is described.

1. Chemical context

The natural product, β -lapachone (see Scheme) can be isolated from the bark of the lapacho tree found in Central and South American countries (see: http://www.beta-lapachone.com/). It exhibits biological activities in the context of cancer (Park *et al.* 2014), being known to induce apoptotic cell-death pathways in a number of cancer cell lines, including breast cancer (Schaffner-Sabba *et al.*, 1984), leukaemia (Chau *et al.*, 1998) and prostate cancer (Li *et al.*, 1995). In an allied application, β -lapachone can be used as a sensitizer in radiotherapy on prostrate (Suzuki *et al.*, 2006) and colon (Kim *et al.*, 2005) cancer cells.

Compounds of the bio-essential element selenium, found in amino acids such as selenocysteine and selenomethionine, are known to hold potential as pharmaceutical agents (Tiekink, 2012), including in the realm of anti-cancer drugs (Seng & Tiekink, 2012). A key aspect of developing metal-based drugs is to incorporate a heavy element into the structure of a biologically active organic molecule and with this in mind, it was thought of interest to attempt to incorporate selenium into the structure of β -lapachone. This was attempted by reacting lawsone, paraformaldehyde and (4-chlorophenyl)-(ethenyl)selane, as detailed in *Synthesis and crystallization*. Two major products were isolated, *i.e.* derivatives of α -lapachone and β -lapachone. The latter, hereafter (I), could be crystallized and was subjected to an X-ray structure determination along with an analysis of its Hirshfeld surface in order to obtain more information on the molecular packing. The results of this study are reported herein.

2. Structural commentary

The substituted 2-pyranyl ring in (I) (Fig. 1) adopts a halfchair conformation with the C13 atom lying 0.620 (3) Å above the plane through the remaining five atoms (r.m.s. deviation = 0.0510 Å). The 12 atoms comprising the naphthalene-1,2dione ring system are almost coplanar, with an r.m.s. deviation of 0.0152 Å. This plane forms a dihedral angle of 9.96 (9)° with

Figure 1

The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

The molecular packing in (I), showing (*a*) a view of the supramolecular layer sustained by π - π and C-Cl··· π interactions and (*b*) a view of the unit-cell contents in projection down the *a* axis. The π - π , C-Cl··· π and C-H···O interactions are shown as purple, blue and orange dashed lines, respectively.

the chlorobenzene ring bound to the selanyl atom, indicating a near parallel disposition and a step-like arrangement between the aromatic substituents about the 2-pyranyl ring. An intra-molecular Se···O interaction of 2.8122 (13) Å is noted; this observation is discussed further in the *Database survey*.

3. Supramolecular features

In the molecular packing of (I), both rings of the naphthyl residues of centrosymmetrically related molecules form close π - π contacts, *i.e.* $Cg(C2-C4/C9-C11)\cdots Cg(C3-C8)^i = 3.7213 (12) \text{ Å}$ for an angle of inclination = 0.72 (9)° and symmetry operation (i) -x, -y, -z. Two types of interactions connect centrosymmetric aggregates into a supramolecular layer parallel to the *ab* plane (Fig. 2*a*). Thus, π - π interactions

research communications

Table 1 Hydrogen-bond	geometry (Å, °).	
Cg1 is the centro	id of the C14-C	19 ring.	
	ם מ	Н. А	D A

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \text{C13-H6} \cdots \text{O3}^{\text{i}} \\ \text{C17-Cl1} \cdots \text{Cg1}^{\text{ii}} \end{array}$	0.97	2.59	3.239 (2)	125
	1.74 (1)	3.72 (1)	4.000 (2)	86 (1)

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z.

between naphthyl and chlorobenzene rings are formed, $[Cg(C3-C8)\cdots Cg(C14-C19)^{ii} = 3.7715 (13) \text{ Å with an angle of}$ inclination = 9.95 (10)° and symmetry operation (ii) -1 + x, y, z] along with C-Cl··· π (chlorobenzene) contacts between centrosymmetrically related rings (Table 1). Connections between layers are of the type methylene-C-H···O(carbonyl) (Table 1) to consolidate the three-dimensional packing (Fig. 2b).

Figure 3 Two views of the Hirshfeld surface for (I) plotted over d_{norm} in the range -0.032 to 1.401 au.

Table 2
Summary of short interatomic contacts (Å) in (I).

Contact	distance	symmetry operation
$H5 \cdots H11$ $O2 \cdots H5$ $O3 \cdots H9$	2.27 2.70 2.70	$x, \frac{1}{2} - y, \frac{1}{2} + z$ -x, $-\frac{1}{2} + y, \frac{1}{2} - z$ x $\frac{1}{2} + y, \frac{1}{2} - z$
C7···C18	3.346 (3)	$-x, -\frac{1}{2} + y, \frac{1}{2} - z$ -1 + x, y, z

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated on the structure of (I) also provide insight into the intermolecular interactions; the calculation was performed as in a recent publication (Jotani *et al.*, 2016). The presence of bright-red spots appearing near the naphthyl-C7 and phenyl-C18 atoms on the Hirshfeld surface mapped over d_{norm} in Fig. 3 are due to a short interatomic $C \cdots C$ contact (see Table 2), significant in the crystal of (I). The absence of characteristic red spots near other atoms on the d_{norm} -mapped Hirshfeld surface confirms the absence of conventional hydrogen bonds in the structure except for a weak $C-H \cdots O$ interaction as given in Table 1. The blue and

A view of Hirshfeld surface for (I) mapped over the calculated electrostatic potential in the range -0.067 to +0.039 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.

research communications

Figure 5

Views of Hirshfeld surfaces mapped over the shape-index about a reference molecule, showing (a) $C-H \cdots O$ and short interatomic $O \cdots H/H \cdots O$ contacts by black and red dashed lines, respectively, (b) $\pi-\pi$ stacking interactions between naphthyl residues and between chlorobenzene and naphthyl rings by blue and yellow dotted lines, respectively and (c) $C-CI \cdots \pi/\pi \cdots CI-C$ stacking contacts between chlorobenzene rings with black and blue dotted lines.

Figure 6

(a) The full two-dimensional fingerprint plot for (I) and fingerprint plots delineated into (b) $H \cdots H$, (c) $O \cdots H/H \cdots O$, (d) $C \cdots H/H \cdots C$, (e) $C \cdots C$, (f) $C \cdots H/H \cdots C$, (g) $C \cdots CI/CI \cdots C$ and (h) $C I \cdots O/O \cdots CI$ contacts.

red regions corresponding to positive and negative electrostatic potentials on the Hirshfeld surface mapped over electrostatic potential, in Fig. 4 are the result of polarization of charges localized near the atoms. The immediate environments about a reference molecule within shape-index-mapped Hirshfeld surfaces highlighting intermolecular $C-H\cdots O$ interactions, short interatomic $O\cdots H/H\cdots O$ contacts, $\pi-\pi$ stacking interactions and $C-Cl\cdots\pi$ contacts are illustrated in Fig. 5.

The overall two-dimensional fingerprint plot (Fig. 6*a*) and those delineated into $H \cdots H$, $O \cdots H/H \cdots O$, $Cl \cdots H/H \cdots Cl$, $C \cdots C$, $C \cdots H/H \cdots C$, $C \cdots Cl/Cl \cdots C$ and $Cl \cdots O/O \cdots Cl$

Table 3

Percentage contributions of interatomic contacts to the Hirshfeld surfaces for (I).

Contact	percentage contribution	
НН	35.9	
O···H/H···O	18.2	
$Cl \cdot \cdot \cdot H/H \cdot \cdot \cdot Cl$	10.6	
$C \cdots H/H \cdots C$	9.0	
$C \cdots C$	9.9	
Se···H/H···Se	4.2	
Se···C/C···Se	3.0	
$C \cdots Cl/Cl \cdots C$	3.0	
$C \cdots O / O \cdots C$	2.6	
$Cl \cdots O/O \cdots Cl$	2.5	
Se···Cl/Cl···Se	0.6	
Se···O/O···Se	0.5	

contacts (McKinnon *et al.*, 2007) are illustrated in Fig. 6b-h, respectively; the relative contributions from the various contacts to the Hirshfeld surfaces are summarized in Table 3. The relatively low, *i.e.* 35.9%, contribution from H···H contacts to the Hirshfeld surface of (I) is due to the low content of hydrogen atoms in the molecule and the involvement of some hydrogen atoms in short interatomic O···H/H···O contacts (Tables 1 and 2). The single peak at $d_e + d_i \sim 2.3$ Å in Fig. 6b is the result of a short interatomic H···H contact (Table 2). The intermolecular C-H···O interaction in the crystal is recognized as the pair of peaks at $d_e + d_i \sim 2.6$ Å in the O···H/H···O delineated fingerprint plot (Fig. 6c); the points arising from the short interatomic O···H contacts are merged in the plot.

The fingerprint plot delineated into $C \cdots C$ contacts, Fig. 6e, characterizes the two $\pi - \pi$ stacking interactions, one between inversion-related naphthyl rings, and the other between the chlorobenzene and (C2–C4/C9–C11) rings as the two overlapping triangular regions at around $d_e = d_i \sim 1.8$ and 1.9 Å, respectively, having green points in the overlapping portion.

Figure 7

View of the Hirshfeld surface mapped over curvedness highlighting the flat regions corresponding to the C2–C4/C9–C11, C3–C8 and C14–C19 rings, labelled as 1, 2 and 3, respectively, involved in π - π stacking interactions.

The presence of these two π - π stacking interactions is also seen in the flat regions around the participating rings labelled with 1, 2 and 3 in the Hirshfeld surface mapped over curvedness in Fig. 7.

The chlorine atom on the benzene (C14–C19) ring makes a useful contribution to the molecular packing. The small, *i.e.* 3.0%, contribution from $C \cdots Cl/Cl \cdots C$ contacts (Fig. 6g) to the Hirshfeld surface is the result of its involvement in a C– $Cl \cdots \pi$ contact formed between symmetry-related chlorobenzene atoms (Fig. 5c). Its presence is also clear from the fingerprint plot delineated into $Cl \cdots H/H \cdots Cl$ (Fig. 6d), and $Cl \cdots O/O \cdots Cl$ contacts (Fig. 6f) and other contribution from $C \cdots H/H \cdots C$ contacts (Table 3), including the selenium atom, have negligible influence on the packing as the interatomic separations are greater than sum of their respective van der Waals radii.

5. Database survey

There are three structures in the crystallographic literature (Groom *et al.*, 2016) having a similar 2-(organylselanyl)oxane framework as in (I). The chemical diagrams for these, *i.e.* (II) (Traar *et al.*, 2004), (III) (Woodward *et al.*, 2010) and (IV) (McDonagh *et al.*, 2016) are shown in the Scheme above. Each

Table 4 Summary of Se···O distances (Å) and C–Se–C bond angles (°) in (I)–(IV).

Compound	Se···O	C-Se-C	Ref.
(I)	2.8122 (13)	95.62 (8)	this work
(II)	2.7429 (18)	98.43 (12)	Traar et al. (2004)
(III)	2.8760 (12)	98.16 (8)	Woodward et al. (2010)
(IV)	2.8606 (19)	97.41 (12)	McDonagh et al. (2016)

of the structures features an intramolecular Se \cdots O interaction as in (I). From the data collated in Table 4, there is no correlation between the Se \cdots O distance and the C-Se-C angle, consistent with the weak nature of these interactions.

6. Synthesis and crystallization

Referring to the reaction scheme, in a double-necked flask equipped with a magnetic bar and reflux condenser, under a nitrogen atmosphere, lawsone (1 mmol, 174 mg), paraformaldehyde (8 mmol, 240 mg), the vinyl selenide (1.5 mmol, 326 mg) and the ionic liquid 1-butyl-3-methylimidazolium chloride, [Bmim]Cl (1 mmol, 175 mg) were added over 1,4dioxane (2 ml). The reaction mixture was heated at 383 K and stirred over 2 h. The reaction mixture was cooled and diluted with dichloromethane (100 ml) and then washed with water (3 \times 50 ml). The organic phase was dried over Na₂SO₄, filtered and concentrated under vacuum. The crude product was purified in a silica gel-packed chromatography column, using ethyl acetate and hexane (2:8) as eluent to afford α -lapachone and β -lapachone (I) derivatives in 80% yield. Crystals of (I) were obtained by slow evaporation of a solvent mixture of hexane and ethyl acetate (8:2).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were placed in calculated positions (C–H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H})$ set to $1.2U_{\rm eq}({\rm C})$.

Table 5
Experimental details.

Crystal data	
Chemical formula	$C_{19}H_{13}ClO_3Se$
M _r	403.70
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	7.3757 (3), 13.7306 (5), 16.4473 (6)
β (°)	100.002 (1)
$V(Å^3)$	1640.35 (11)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.47
Crystal size (mm)	$0.40 \times 0.33 \times 0.27$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.484, 0.745
No. of measured, independent and	38518, 3367, 2984
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.031
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.068, 1.03
No. of reflections	3367
No. of parameters	217
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.36, -0.39

Computer programs: *APEX2* and *SAINT* (Bruker, 2009), *SIR2014* (Burla *et al.*, 2015), *SHELXL2014* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006) and *publCIF* (Westrip, 2010).

Acknowledgements

The Brazilian agency National Council for Scientific and Technological Development, CNPq, is gratefully acknowledged for a scholarship to JZ-S (305626/2013–2).

References

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
- Chau, Y. P., Shiah, S. G., Don, M. J. & Kuo, M. L. (1998). Free Radic. Biol. Med. 24, 660–670.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Jotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415–425.
- Kim, E. J., Ji, I. M., Ahn, K. J., Choi, E. K., Park, H. J., Lim, B. U., Song, S. W. & Park, H. J. (2005). *Cancer Res. Treat*, **37**, 183–190.
- Li, C. J., Wang, C. & Pardee, A. B. (1995). Cancer Res. 55, 3712– 3715.
- McDonagh, A. W., Mahon, M. F. & Murphy, P. V. (2016). Org. Lett. 18, 552–555.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Park, E. J., Min, K.-J., Lee, T.-J., Yoo, Y. H., Kim, Y.-S. & Kwon, T. K. (2014). Cell Death Dis. 5, e1230.

Schaffner-Sabba, K., Schmidt-Ruppin, K. H., Wehrli, W., Schuerch, A. R. & Wasley, J. W. (1984). J. Med. Chem. 27, 990–994.

- Seng, H.-L. & Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655–662.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Suzuki, M., Amano, M., Choi, J., Park, H. J., Williams, B. W., Ono, K. & Song, C. W. (2006). *Radiat. Res.* **165**, 525–531.
- Tiekink, E. R. T. (2012). Dalton Trans. 41, 6390-6395.
- Traar, P., Belaj, F. & Francesconi, K. A. (2004). Aust. J. Chem. 57, 1051–1053.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Woodward, H., Smith, N. & Gallagher, T. (2010). Synlett, pp. 869-872.

supporting information

Acta Cryst. (2017). E73, 918-924 [https://doi.org/10.1107/S2056989017007605]

2-[(4-Chlorophenyl)selanyl]-3,4-dihydro-2*H*-benzo[*h*]chromene-5,6-dione: crystal structure and Hirshfeld analysis

Julio Zukerman-Schpector, Karinne E. Prado, Luccas L. Name, Rodrigo Cella, Mukesh M. Jotani and Edward R. T. Tiekink

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SIR2014* (Burla *et al.*, 2015); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

2-[(4-Chlorophenyl)selanyl]-3,4-dihydro-2H-benzo[h]chromene-5,6-dione

Crystal data

C₁₉H₁₃ClO₃Se $M_r = 403.70$ Monoclinic, $P2_1/c$ a = 7.3757 (3) Å b = 13.7306 (5) Å c = 16.4473 (6) Å $\beta = 100.002$ (1)° V = 1640.35 (11) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.484, T_{\max} = 0.745$ 38518 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.068$ S = 1.033367 reflections 217 parameters 0 restraints F(000) = 808 $D_x = 1.635 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9049 reflections $\theta = 2.5-26.3^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ T = 293 KIrregular, colourless $0.40 \times 0.33 \times 0.27 \text{ mm}$

3367 independent reflections 2984 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 1.9^\circ$ $h = -9 \rightarrow 9$ $k = -17 \rightarrow 17$ $l = -20 \rightarrow 20$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0329P)^2 + 0.739P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Se1	0.50950 (3)	0.20340 (2)	0.19075 (2)	0.05076 (8)
C11	0.74491 (12)	0.48216 (7)	-0.08524 (6)	0.0988 (3)
01	0.14227 (17)	0.24860 (9)	0.12331 (8)	0.0427 (3)
O2	-0.2776 (2)	-0.07713 (12)	0.09235 (12)	0.0741 (5)
03	-0.0776 (2)	-0.03054 (10)	0.24246 (10)	0.0628 (4)
C1	0.2739 (3)	0.26958 (13)	0.19618 (12)	0.0429 (4)
H9	0.2967	0.3399	0.1975	0.051*
C2	0.0406 (2)	0.16654 (12)	0.12272 (11)	0.0362 (4)
C3	-0.0687(2)	0.14639 (13)	0.04065 (11)	0.0389 (4)
C4	-0.1805 (2)	0.06325 (14)	0.02911 (12)	0.0432 (4)
C5	-0.2841 (3)	0.04307 (17)	-0.04809 (13)	0.0563 (5)
H4	-0.3567	-0.0127	-0.0558	0.068*
C6	-0.2792 (3)	0.1060 (2)	-0.11328 (13)	0.0644 (6)
H3	-0.3499	0.0930	-0.1647	0.077*
C7	-0.1698 (3)	0.18762 (19)	-0.10224 (13)	0.0601 (6)
H2	-0.1675	0.2297	-0.1464	0.072*
C8	-0.0625 (3)	0.20824 (16)	-0.02611 (12)	0.0491 (5)
H1	0.0129	0.2630	-0.0197	0.059*
C9	-0.1868 (2)	-0.00345 (14)	0.09908 (13)	0.0468 (4)
C10	-0.0715 (3)	0.02303 (13)	0.18356 (12)	0.0431 (4)
C11	0.0400 (2)	0.10986 (13)	0.19024 (11)	0.0387 (4)
C12	0.1505 (3)	0.13595 (14)	0.27303 (11)	0.0479 (4)
H7	0.2611	0.0965	0.2838	0.057*
H8	0.0787	0.1232	0.3160	0.057*
C13	0.2018 (3)	0.24304 (14)	0.27349 (12)	0.0502 (5)
H6	0.0945	0.2824	0.2774	0.060*
Н5	0.2952	0.2568	0.3214	0.060*
C14	0.5784 (2)	0.28761 (13)	0.10819 (12)	0.0433 (4)
C15	0.7139 (3)	0.35717 (15)	0.13040 (13)	0.0508 (5)
H13	0.7709	0.3629	0.1853	0.061*
C16	0.7646 (3)	0.41802 (17)	0.07156 (16)	0.0599 (6)
H12	0.8567	0.4642	0.0862	0.072*
C17	0.6774 (3)	0.40953 (17)	-0.00896 (15)	0.0587 (5)
C18	0.5413 (3)	0.3415 (2)	-0.03203 (14)	0.0617 (6)
H11	0.4824	0.3374	-0.0867	0.074*
C19	0.4930 (3)	0.27935 (17)	0.02638 (13)	0.0527 (5)
H10	0.4034	0.2320	0.0110	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Se1	0.04595 (13)	0.04744 (13)	0.05540 (14)	0.00547 (8)	-0.00095 (9)	0.00375 (9)
Cl1	0.0924 (5)	0.1005 (6)	0.1134 (6)	0.0119 (4)	0.0452 (5)	0.0443 (5)
O1	0.0412 (6)	0.0388 (7)	0.0471 (7)	-0.0011 (5)	0.0046 (5)	0.0103 (6)
02	0.0652 (10)	0.0486 (9)	0.0975 (13)	-0.0140 (8)	-0.0167 (9)	0.0100 (9)
O3	0.0868 (11)	0.0421 (8)	0.0603 (9)	-0.0118 (7)	0.0148 (8)	0.0101 (7)
C1	0.0477 (10)	0.0305 (8)	0.0495 (10)	0.0001 (7)	0.0056 (8)	-0.0003 (7)
C2	0.0341 (8)	0.0329 (8)	0.0423 (9)	0.0067 (7)	0.0089 (7)	0.0021 (7)
C3	0.0326 (8)	0.0434 (10)	0.0416 (9)	0.0118 (7)	0.0088 (7)	0.0006 (7)
C4	0.0345 (9)	0.0446 (10)	0.0495 (10)	0.0117 (7)	0.0048 (7)	-0.0050 (8)
C5	0.0427 (10)	0.0635 (13)	0.0594 (13)	0.0102 (9)	0.0000 (9)	-0.0145 (11)
C6	0.0501 (12)	0.0963 (19)	0.0437 (11)	0.0186 (13)	-0.0001 (9)	-0.0120 (12)
C7	0.0515 (12)	0.0891 (17)	0.0410 (11)	0.0183 (12)	0.0114 (9)	0.0091 (11)
C8	0.0411 (10)	0.0638 (13)	0.0441 (10)	0.0113 (9)	0.0120 (8)	0.0081 (9)
C9	0.0374 (9)	0.0356 (9)	0.0653 (12)	0.0056 (8)	0.0027 (8)	0.0003 (9)
C10	0.0470 (10)	0.0315 (9)	0.0522 (11)	0.0048 (7)	0.0124 (8)	0.0033 (8)
C11	0.0433 (9)	0.0320 (9)	0.0412 (9)	0.0048 (7)	0.0085 (7)	0.0017 (7)
C12	0.0645 (12)	0.0391 (10)	0.0395 (10)	-0.0009 (9)	0.0076 (9)	0.0026 (8)
C13	0.0664 (13)	0.0386 (10)	0.0458 (10)	-0.0005 (9)	0.0105 (9)	-0.0047 (8)
C14	0.0349 (9)	0.0438 (10)	0.0498 (10)	0.0029 (7)	0.0030 (8)	-0.0071 (8)
C15	0.0432 (10)	0.0541 (12)	0.0536 (11)	-0.0039 (9)	0.0042 (9)	-0.0153 (9)
C16	0.0515 (12)	0.0505 (12)	0.0804 (16)	-0.0078 (10)	0.0189 (11)	-0.0138 (11)
C17	0.0529 (12)	0.0560 (13)	0.0719 (14)	0.0120 (10)	0.0240 (11)	0.0099 (11)
C18	0.0489 (12)	0.0858 (17)	0.0489 (12)	0.0057 (11)	0.0041 (9)	0.0033 (11)
C19	0.0401 (10)	0.0636 (13)	0.0514 (11)	-0.0060 (9)	-0.0006 (9)	-0.0093 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Sel—C14	1.918 (2)	С7—Н2	0.9300
Se1—C1	1.9769 (19)	C8—H1	0.9300
Cl1—C17	1.742 (2)	C9—C10	1.541 (3)
O1—C2	1.353 (2)	C10—C11	1.442 (3)
01—C1	1.434 (2)	C11—C12	1.504 (3)
О2—С9	1.208 (2)	C12—C13	1.518 (3)
O3—C10	1.223 (2)	С12—Н7	0.9700
C1-C13	1.505 (3)	С12—Н8	0.9700
С1—Н9	0.9800	С13—Н6	0.9700
C2—C11	1.357 (2)	С13—Н5	0.9700
С2—С3	1.473 (2)	C14—C15	1.385 (3)
С3—С8	1.395 (3)	C14—C19	1.388 (3)
C3—C4	1.401 (3)	C15—C16	1.379 (3)
C4—C5	1.392 (3)	C15—H13	0.9300
С4—С9	1.478 (3)	C16—C17	1.373 (3)
С5—С6	1.382 (3)	C16—H12	0.9300
С5—Н4	0.9300	C17—C18	1.376 (3)
С6—С7	1.375 (4)	C18—C19	1.377 (3)

supporting information

С6—Н3	0.9300	C18—H11	0.9300
C7—C8	1.389 (3)	С19—Н10	0.9300
C14 Set $C1$	05 62 (8)	C11 C10 C0	118 81 (16)
$C_1 - S_2 - C_1$	33.02(0)	$C_1 = C_1 $	110.61(10)
$C_2 = 01 = C_1$	117.03(13) 111.72(16)	$C_2 = C_{11} = C_{10}$	119.03(17)
01 - 01 - 013	111.73(10) 110.02(12)	$C_2 = C_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	121.77(17)
$C_1 = C_1 = S_2 = 1$	110.05(12) 111.65(12)	C10 - C11 - C12	110.37(10) 100.22(15)
C_{13} C_{1} H_{0}	111.05 (15)	$C_{11} = C_{12} = C_{13}$	109.32 (13)
$C_1 = C_1 = H_2$	107.7	C12 - C12 - H7	109.8
C13-C1-H9	107.7	$C_{13} - C_{12} - H_{7}$	109.8
Sel = Cl = Hg	107.7 122.52(16)	C12 - C12 - H8	109.8
01 - 02 - 01	125.55(10) 112.17(14)		109.8
01 - 02 - 03	112.17(14) 124.20(16)	$\Pi / - C_{12} - \Pi_{0}$	108.5
$C_1 = C_2 = C_3$	124.29(10)	C1 = C12 = U2	110.77 (10)
C_{0}	119.21(10) 121.20(17)	C12 C12 U6	109.5
$C_{0} = C_{2} = C_{2}$	121.29(17) 110.40(16)	$C_{12} = C_{13} = H_0$	109.5
C4 - C3 - C2	119.49 (10)	C12 $C12$ $U5$	109.5
$C_{5} = C_{4} = C_{5}$	120.19(19) 120.02(10)	С12—С13—Н5	109.5
$C_3 = C_4 = C_9$	120.03(19) 110.78(17)	$n_0 - C_{13} - n_3$	108.1
$C_{3} - C_{4} - C_{9}$	119.76(17)	C15 - C14 - C19	119.8(2)
$C_{0} = C_{3} = C_{4}$	119.9 (2)	$C_{13} = C_{14} = S_{21}$	119.79(13) 120.20(15)
$C_0 = C_5 = H_4$	120.0	C16 C15 C14	120.39(13)
C4 - C5 - C5	120.0	C16 - C15 - C14	120.3(2)
C^{-}	120.1 (2)	С14 С15 Ц12	119.9
C = C = H	120.0	C17_C16_C15	119.9
C_{3}	120.0	C17 - C16 - C13	119.1 (2)
C6 C7 U2	121.0 (2)	C17 - C10 - H12	120.4
$C_0 - C_7 - H_2$	119.5	C16_C17_C18	120.4
$C_8 - C_7 - H_2$	119.5	C16 - C17 - C18	121.4(2)
$C/-C\delta-CS$	119.0 (2)	C10 - C17 - C11	120.10(19)
C/-C8-HI	120.2		118.46 (19)
$C_3 = C_8 = H_1$	120.2	C17 - C18 - C19	119.0 (2)
02 - 02 - 04	122.07 (19)	C17—C18—H11	120.2
02-09-010	119.38 (19)	C19—C18—H11	120.2
C4 - C9 - C10	117.95 (10)	C18 - C19 - C14	119.8 (2)
03 - 010 - 011	122.40 (18)	C14 C19 H10	120.1
03-010-09	118./9(1/)	C14—C19—H10	120.1
C2—O1—C1—C13	-38.2 (2)	O2—C9—C10—C11	178.44 (18)
C2-01-C1-Se1	86.38 (16)	C4—C9—C10—C11	-1.4 (2)
C1-01-C2-C11	8.4 (2)	O1—C2—C11—C10	-179.37 (15)
C1-01-C2-C3	-171.67 (14)	C3—C2—C11—C10	0.7 (3)
O1—C2—C3—C8	-0.4 (2)	O1—C2—C11—C12	1.8 (3)
C11—C2—C3—C8	179.55 (17)	C3—C2—C11—C12	-178.14 (16)
O1—C2—C3—C4	179.30 (14)	O3—C10—C11—C2	-179.78 (18)
C11—C2—C3—C4	-0.8 (2)	C9—C10—C11—C2	0.4 (3)
C8—C3—C4—C5	-0.1 (3)	O3—C10—C11—C12	-0.9 (3)
C2—C3—C4—C5	-179.83 (16)	C9—C10—C11—C12	179.28 (16)
	× /		. /

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$179.35 (16) \\ -0.3 (2) \\ -1.0 (3) \\ 179.49 (18) \\ 1.0 (3) \\ 0.2 (3) \\ -1.4 (3) \\ 1.3 (3) \\ -178.99 (17) \\ 1.0 (3) \\ -178.48 (19) \\ -179.15 (16) \\ 1.4 (2) \\ -1.4 (3) \\ 179.77 (17) \\ 1.0 (3) \\ -1.4 (3) \\ -1.4 (3) $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.3 (3) -160.59 (17) 57.9 (2) -65.84 (19) -46.3 (2) -0.2 (3) 179.92 (16) 0.9 (3) -0.3 (3) -177.47 (16) -1.0 (3) 176.26 (17) 1.6 (3) -1.1 (3) 178.91 (16) -1.0 (3) -1.1 (4) -1.0 (4) -1.1 (4) -1.1 (5) -
C4—C9—C10—O3	178.77 (17)	Se1-C14-C19-C18	178.81 (16)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С13—Н6…ОЗі	0.97	2.59	3.239 (2)	125
C17—Cl1····Cg1 ⁱⁱ	1.74 (1)	3.72 (1)	4.000 (2)	86 (1)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*.