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Cancer drug resistance has always been a major difficulty in cancer therapy. In the face of
drug pressure, resistant cancer cells show complex molecular mechanisms including
epigenetic changes to maintain survival. Studies prove that cancer cells exhibit abnormal
m6A modification after acquiring drug resistance. m6A modification in the target RNA
including non-coding RNA can be a controller to determine the fate and metabolism of
RNA by regulating their stability, subcellular localization, or translation. In particular, m6A-
modified non-coding RNA plays multiple roles in multiple drug-resistant cancer cells,
which can be a target for cancer drug resistance. Here, we provide an overview of the
complex regulatory mechanisms of m6A-modified non-coding RNA in cancer drug
resistance, and we discuss its potential value and challenges in clinical applications.
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INTRODUCTION

RNA modification determines cell fate by regulating gene expression and responds to
environmental pressures (1, 2). m6A methylation is the most common modification in
mammalian RNAs. Many studies showed that m6A sites are highly conservative and prefer to
the motif RRACH (R = G, A, or U; R = G or A; H = A, C, or U) in human, yeast, and mice RNA
(3–5). In the early days, m6A modification was reported to be present in ribosomal RNA and tRNA.
Subsequent studies have found that there are also abundant m6A sites depositing in mRNA and
non-coding RNA (6–8). Among them, m6A modification could affect these types of RNA
metabolism events, including RNA cleavage, processing, transportation, stability, and translation
by embedding dynamic and reversible deposition of m6A sites (9, 10). Then, the dysregulated
mRNA or non-coding RNA was reported to play an important role in physiological and pathologic
activities, such as cancer (11–13).

Cancer, which has still endangered human health, kills approximately 600,000 people each year
(14, 15). Therefore, it is an urgent problem that scientists are committed to solving. Currently, five
mainstream approaches for oncotherapy are surgical resection, radiotherapy and chemotherapy,
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targeted therapy, and biological immunotherapy. Among them,
chemotherapy and targeted therapy are an important leap in the
development of cancer therapy. However, it is unsatisfactory that
therapy pressure compels the cancer cell appearing drug resistance
(16). In brief, a group of cancer cells are inherently resistant or
becomes resistant cancer cells under drug treatment (17). The
molecular mechanism of tumor resistance is extremely complex
and changeable (18). Many studies have shown that epigenetic
changes, such as differential non-coding RNA and dynamic m6A
modification, can lead to cancer drug resistance (2, 19).

In this review, we focused on the important role of m6A
modification in cancer drug resistance, summarized the
molecular mechanism of m6A-modified RNA including non-
coding RNA involved in cancer drug resistance, and discussed
the application and clinical value of m6A modification in the
prediction and treatment of cancer resistance.
DYNAMIC AND REVERSIBLE DEPOSITION
IN RNA BY M6A REGULATORS

Like other epigenetic modification, such as DNA methylation,
m6A methylation is a dynamic and reversible phenomenon that
embeds or removes m6A modification in RNA. This process is
controlled by methylases and demethylases, which are vividly
known as “writers” and “erasers” and then recognized by m6A
“readers” (Figure 1). These m6A regulators affect multiple
physiological and pathological activities such as cellular
differentiation and cancer progression (10). The increasing rate
suggested that m6A regulators decide RNAmight play important
roles in cancer progression (20).
Frontiers in Oncology | www.frontiersin.org 2
m6A Dynamic Deposition by m6A
“Writers” and “Erasers”
Methyltransferase complexes, which consisted of multicomponents
including methyltransferase-like 3/14/16 (METTL3/14/16), WT1-
associated protein (WTAP), vir-like m6A methyltransferase-
associated (VIRMA, another name: KIAA1429), zinc finger
CCCH-type containing 13 (ZC3H13), and RNA-binding motif
protein 15 (RBM15), is the key for catalyzing m6A sites in RNA.
In the 1990s, an m6A complex containing three components was
found in the mRNA of HeLa (21). Then, Joseph et al. found MT-A
(MT-A70), which is also called METTL3, is the critical core of m6A
methyltransferase complex and interacts with the methyl donor S-
adenosylmethionine (SAM) for catalyzing methyl to partial RNA
sequence (22–25). Moreover, another critical component of this
complex, METTL14, could be as an RNA-binding platform
stabilized METTL3 conformation when METTL3 is the catalytic
core of this complex (23–25). WTAP, located at nuclear speckles,
was another component that could interact with METTL3 and
METTL14 for recruiting the m6A methyltransferase complex to
RNA targets (26). Recently, Huang et al. reported that m6A
deposition catalyzed by METTL3–METTL14–WTAP complex
was regulated by histone H3 trimethylation at Lys36
(H3K36me3). Moreover, METTL14 could be a “reader” of
H3K36me3 for promoting m6A deposition in transcribed nascent
RNAs via binding adjacent RNA polymerase II (27). In addition,
another m6Amethylase component was identified in other types of
RNAs, such as METTL16. Studies showed that m6A modification
in U6 snRNA was catalyzed by METTL16 (28, 29). Moreover,
METTL16 could efficiently induce splicing via binding 3′UTR of
MAT2A, which encoded the SAM synthetase, a methyl donor (28).
Removal of m6A modification in RNA was controlled by
demethylase, FTO (obesity-associated protein), and alkB homolog
FIGURE 1 | Regulators and functions involved in m6A modification. m6A writer, such as METTL3 and METTL14, binds to RNA to methylate adenine. Then, the
m6A readers including YTHDC1/2, YTHDF1/2/3, IGF2BP1/2/3, and HNRNPA2B1 recognize the m6A site and participate in the process of RNA splicing, stability,
nuclear transport, translation, degradation, or miRNA processing. In addition, m6A modifications can also be erased by FTO and ALKBH5, thereby affecting the fate
of RNA. A, adenine.
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5 (ALKBH5). Initially, FTO was found to be correlated with
childhood and adult obesity in early time (30). In 2011, FTO was
firstly identified to have demethylation activity to decreased m6A
amounts (31). Moreover, FTO could be as demethylase involved in
physiology and pathology processes (32). ALKBH5 was identified as
another demethylase in mammalian RNA and affects RNA export
and RNA metabolism (33).

The Regulation Mechanism of m6A
Regulators via m6A “Reader”
Gene expression on the post-transcriptional level, including
RNA splicing, transport, stability, and translation, was closely
mediated by m6A modification via recruiting reader protein or
changing RNA structure (34–38).

The newly transcribed RNA is regulated by the m6A regulator
to affect its splicing. The METTL3–METTL14–WTAP complex
was in nuclear speckles to regulate alternative gene splicing (26).
In addition, m6A demethyltransferase FTO regulated splicing
factor serine/arginine-rich splicing factor 2 (SRSF2)-targeted
exons to control RNA splicing (39). Nuclear m6A “reader”
YTH domain-containing protein 1 (YTHDC1) was reported to
recruit SRSF3 and blocked SRSF10 to promote exon inclusion for
affecting RNA splicing (40). Moreover, YTHDC1 mediated RNA
export from the nucleus to the cytoplasm in HeLa cells via
interacting with SRSF3, which is a splicing factor and nuclear
export adaptor protein (41).

The fate of RNA in the cytoplasm is to be translated into
protein or be degraded. Increasing studies proved that m6A
reader YTH domain-containing family proteins (YTHDFs)
greatly contributed to RNA translation (42). YTHDF1
promoted RNA translation efficiency via interacting with
translation initiation factor complex 3 (eIF3) (38). Moreover,
RNAs that modified m6A in its 5′UTR could be translated in a
cap-independent manner by directly binding eIF3 (43). RNA
stability protected by its 5′ cap and 3′ poly A tail is the key for
RNA to execute its roles in the vital movement. When RNA was
redundant, the RNA degradation mechanism was initiated by the
deadenylation-dependent decay pathway and/or deadenylation-
independent decay pathway. It has been reported that m6A
modification destabilized m6A-embedded RNA (44, 45).
YTHDF2 could recruit CCR4-NOT deadenylase complex for
destabilizing m6A-containing RNA. This binding is critical for
m6A-containing RNA deadenylated by CAF1 and CCR4 (37).
Furthermore, YTHDF3 interacted with YTHDF1 to promote
protein synthesis and regulated decay of methylated RNA in a
YTHDF2-dependent manner (46). In addition, the insulin-like
growth factor 2 mRNA-binding protein (IGF2BP) family,
including IGF2BP1/2/3, could be an m6A “reader” to promote
RNA stability by interacting with ELAV-like RNA-binding
protein 1 (ELAVL1), matrin 3 (MATR3), and poly(A) binding
protein cytoplasmic 1 (PABPC1) for regulating RNA translation
under normal and stress conditions (47). HnRNP A2/B1, which
contains two RNA recognition motifs, was another reported
m6A “reader” for promoting microRNA (miRNA) processing
(48). The above shows that m6A modification decided the RNA
destiny regulated by “writers,” “erasers,” and “reader”.
Frontiers in Oncology | www.frontiersin.org 3
M6A MODIFICATION CONTRIBUTES TO
CANCER DRUG RESISTANCE

Increasing data showed that m6A modification playing
as a decision maker contributed to cancer progression (13).
For example, overexpressed FTO is a critical oncogene in
hematologic malignancies, such as AML (49, 50). High
expression of METTL3 has been reported to be an oncogene in
multiple solid tumors, such as hepatocellular carcinoma (HCC)
(51), non-small cell lung cancer (NSCLC) (52), gastric cancer (GC)
(53), colorectal cancer (CRC) (54), and bladder cancer (BLC) (55).
Deregulation of m6A regulators in cancer cells is involved in cell
stemness, proliferation, apoptosis, metastasis, immune, and drug
resistance (13). Chemotherapy and targeted therapy are the main
methods for patients with hematologic tumors and solid tumors.
Cancer cells that develop resistance to drug treatment usually cause
tumor recurrence, leading to a bad clinical outcome (16).
Complicated mechanisms including epigenetic change are crucial
for cancer cell obtaining resistance (56). Emerging data indicated
that the global m6A level was abundant and aberrant in drug
resistance of cancer cells (Figure 2) (57–59). Moreover, m6A
“writers,” “erasers,” and “readers” were dysregulated in multiple
cancer cells, and these regulators played important roles in cancer
cells resisting chemotherapeutic drugs and targeted drug (Table 1)
(57, 61, 63).

Change of Global m6A Level Under Drug
Pressure in Cancer
Increasing data showed that the global m6A level in cancer
tissues was different from that in normal tissues (73, 74).
Aberrant and abundant global m6A levels have also been
reported in cancer drug resistance (57–59). In leukemia,
researchers found that the development of resistance
phenotype during tyrosine kinase inhibitor (TKI) treatment
depended on the reduction of m6A detected by m6A dot-
blotting due to FTO overexpression in leukemia cells.
Furthermore, these results lead to the upregulation of
proliferation/anti-apoptosis-related genes (58). Not only in
blood tumors, but also in solid tumors, were there abnormal
m6A levels in the drug-resistant cancer cell. For example, in
HCC, low m6A global level cause by downregulated METTL3
was found in HepG2 cells resisting sorafenib therapy. This
situation induced the increased autophagosomes of HepG2
cells to fight sorafenib therapy (70). Conversely, a high m6A
global level in HepG2 cells and breast cancer cells with
adriamycin resistance was detected by liquid chromatography
coupled to tandem MS (LC-MS/MS) compared with parental
cells. A high m6A level induced by upregulated METTL3 was
responsible for the upregulation of ERRg with metabolic
reprogramming in chemoresistant cancer cells (59). In NSCLC,
m6A but not the gene expression level in cisplatin-resistant A549
cells was significantly increased compared with A549 cells (72).

However, there are few studies that showed that the
expression of m6A regulator was abnormal in the drug-
resistant cancer cells, but the overall m6A level had no
perturbation. In ovarian cancer, the global m6A level was not
October 2021 | Volume 11 | Article 746789
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significantly changed in parental and cancer cells with olaparib
and poly(ADP-ribose) polymerase inhibitor (PARPi) resistance.
No change of global m6A levels in ovarian cancer resistant cells
might be due to downregulated FTO, ALKBH5, METTL3, and
METTL14. Furthermore, a high m6A level in 3′UTR region of
the FZD10 mRNA due to the decrease of FTO and ALKBH5 was
found to activate the Wnt signaling pathway, leading to PARPi
resistance (57). These evidence indicated that the global m6A
level is very complicated under different types of tumor cells and
different therapy resistance. This complexity is due to the
abnormal expression of different m6A regulators under
resistant conditions. Therefore, it is necessary to acquaint
entirely the molecular mechanism of abnormal m6A level and
m6A regulators under the drug resistance pressure.

Aberrant m6A Regulators in Cancer
Drug Resistance
The global m6A level was regulated at different layers by
“writers,” “erasers,” and “readers,” which showed irregular
expression and played important roles in drug resistance of
multiple cancers (Table 1).

Aberrant m6A “Writers” in Cancer
Drug Resistance
Dysregulated m6A “writers” were found in multiple cancers after
drug treatment (57, 59, 61, 66, 70). It has been reported thatMETTL3
Frontiers in Oncology | www.frontiersin.org 4
andMETTL14 were downregulated in ovarian carcinoma cells (57).
METTL3, as a critical methylase, was reported to play an essential
oncogene in 2017 (75). It was not until recent years that increasing
fact about the oncogene effect of METTL3 and its dysregulation in
cancer drug resistance was displayed (76). In osteosarcoma (OS),
METTL3 was found to have a critical role in OS cells through
promoting cell proliferation, migration, and invasion ability (77).
When OS cells showed doxorubicin resistance, an increasing
METTL3 expression was detected (61). Similarly, highly expressed
METTL3 in drug-resistant cell lines was also found in
nasopharyngeal carcinoma (NPC) (61). A recent study showed that
overexpression of METTL3 in NPC tissues promoted EMT process
via m6A-modified Snail (78). Studies showed that high METTL3
expression in recurrent NPC tissue was associated with a bad
prognosis of NPC patients (78, 79). After cisplatin induction,
METTL3 was upregulated in drug-resistant NPC cell lines, where it
could promote the viability of cell culture with a series of doses of
cisplatin via regulating TRIM11 transcript (66). In HCC, METTL3
was found to promote HCC progression via YTHDF2-dependent
silencing of SOCS2 on the post-transcriptional level (51).
Interestingly, the role of METTL3 in HCC drug resistance was also
complicated. Chen et al. reported that highMETTL3 expression was
detected in HepG2 cells with adriamycin resistance (59). Deleting
METTL3 leads to the increase of dox sensitivity in adriamycin
resistant HepG2 cells by regulating pre-mRNA of ERRg. However,
low METTL3 expression was found in human sorafenib-resistant
FIGURE 2 | Aberrant m6A regulator and global m6A levels in drug-resistant cancer. The changes in m6A levels and the expression of m6A regulators were present
after chemotherapy and targeted drug treatment in multiple cancer. BC, breast cancer; CSCC, cervical squamous cell carcinoma; CRC, colon cancer; GC, gastric
cancer; HCC, hepatocellular carcinoma; NPC, nasopharyngeal carcinoma; NSCLC, non-small cell lung cancer; OSCC, oral squamous cell carcinoma; OS,
osteosarcoma; OC, ovarian cancer; PC, pancreatic cancer.
October 2021 | Volume 11 | Article 746789
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TABLE 1 | The role and regulatory mechanism of m6A regulator in cancer drug resistance.

enes Mechanism Ref

ALKBH5 promoted FOXM1 expression by demethylating its nascent transcripts (60)
NA (61)
ALKBH5 promoted WIF-1 transcription to hinder Wnt signaling (62)

Silencing m6A demethylases ALKBH5, and FTO contributes to FZD10 upregulation (57)
FTO promoted gene expression of b-catenin via m6A modification (63)

BCL-2 m6A demethylated by FTO promoted MERTK and BCL-2 stability (58)

Silencing m6A demethylases ALKBH5, and FTO contributes to FZD10 upregulation (57)

,
nd

NA (64)

NA (57)
NA (57)
Mettl3 delayed the half-life of precursor mRNA of ERRg (59)
ARHGAP5-AS1 recruits METTL3 to stimulate m6A modification of ARHGAP5 mRNA
to stabilize ARHGAP5 mRNA

(65)

METTL3 promoted TRIM11 transcript stability via the m6A-IGF2BP2-dependent
pathway

(66)

METTL3 enhanced the translation of YAP mRNA by recruiting YTHDF1/3 and eIF3b (52)
METTL3 enhances TFAP2C mRNA stability (67)
m6A modified by METTL3 promoted pre-mRNA splicing (68)
NA (57)
METTL3 enhanced CBX8 mRNA stability through a IGF2BP1-dependent mechanism (69)
METTL3 promoted FOXO3 stability through a YTHDF1-dependent mechanism (70)
NA (61)
YTHDF1 promoted TRIM29 translation (71)
YTHDF1 promoted translational efficiency of Keap1 (72)
NA (57)
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Drug Target g

ALKBH5 OSCC Oncogene High Cisplatin FOXM1
ALKBH5 OS NA High Doxorubicin NA
ALKBH5 PC Tumor

suppressor
Low Gemcitabine WIF-1

ALKBH5 OC Oncogene Low Olaparib FZD10
FTO CSCC Oncogene High Cisplatin b-Catenin
FTO Leukemia Oncogene High Imatinib, nilotinib, or

PKC412
MERTK and

FTO OC NA Low Olaparib FZD10
HNRNPA2/
B1

BC NA High 4-Hydroxytamoxifen,
fulvestrant

MiR-29a-3p
miR-29b-3p
miR-222,
miR-1266-5
miR-1268a,
miR-671-3p

IGF2BP2 OC NA High Olaparib NA
METTL14 OC NA Low Olaparib NA
METTL3 HCC Oncogene High Adriamycin ERRg
METTL3 GC Oncogene NA Cisplatin ARHGAP5

METTL3 NPC Oncogene High Cisplatin TRIM11

METTL3 NSCLC Oncogene NA Cisplatin YAP
METTL3 Seminoma NA High Cisplatin TFAP2C
METTL3 CRC Oncogene NA Doxorubicin p53
METTL3 OC Oncogene Low Olaparib NA
METTL3 CRC Oncogene NA Oxaliplatin or irinotecan CBX8
METTL3 HCC Oncogene Low Sorafenib FOXO3
METTL3 OS Oncogene High Doxorubicin NA
YTHDF1 OC Oncogene No difference Cisplatin TRIM29
YTHDF1 NSCLC Oncogene Low Cisplatin Keap1
YTHDF2 OC NA Low Olaparib NA
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,
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HCC(70).Different fromadriamycin, sorafenib is amulti-targetdrug
that inhibited cancer cell proliferation and angiogenesis. This
interesting result showed that METTL3 could be a tumor
suppressor when its knockout could enhance sorafenib resistance,
promote angiogenesis-associated genes expression, and activate
pathway-associated autophagy in HCC cells under hypoxia
condition (70). It is worth noting that METTL3 not only was
involved in tumor progression but also plays an important role in
tumor resistance, especially solid tumors.

Aberrant m6A “Erasers” in Cancer
Drug Resistance
As m6A demethylase, FTO and ALKBH5 were reported to play
critical roles in multiple cancers and are involved in cancer drug
resistance (58). FTO has been firstly reported m6A demethylase,
which subsequently proved its oncogene role in AML (31, 50).
Through reducing m6A abundance of ASB2 and RARA for
destabilizing its transcripts, high FTO expression could enhance
cell transformation and leukemogenesis, while it could inhibit all-
trans-retinoic acid (ATRA)-induced AML cell differentiation (50).
Moreover, high FTO expression was found in AMLs with multiple
mutations including t(11q23)/MLL rearrangements, t (15, 17)/
PML-RARA, FLT3-ITD, and/or NPM1. TKIs were considered for
leukemia clinic treatment with these mutations (80, 81). However,
rapidly acquiring resistance to TKIs was the main reason for the
failure of leukemia treatment. Yan et al. found that FTO expression
was increased in leukemia nilotinib-resistant cells. Upregulated FTO
assisted leukemia cells to display more TKI resistant ability, and
higher rates of cell growth in vivo via enhance mRNA stability of
MERTK and BCL-2 (58). Moreover, FTO overexpression in cervical
squamous cell carcinoma (CSCC) was proved to be related to
chemo-radiotherapy resistance in vitro and in vivo by decreasing
demethylation of b-catenin for promoting its expression (63). In
addition, another m6A demethylase, ALKBH5, was upregulated in
OS cell lines with doxorubicin resistance and doxorubicin resistance
oral squamous cell carcinoma (OSCC) lines (60, 61). However,
downregulated ALKBH5 expression was reported in a patient-
derived xenograft (PDX) model treated with gemcitabine in
pancreatic ductal adenocarcinoma (PDAC) (62). When ALKBH5
was overexpressed, PDAC cells were sensitive to chemotherapy due
to a decrease of methylation in WIF-1 (62). Moreover, in ovarian
cancer, downregulated FTO and ALKBH5 in PARPi resistance
cancer cells also could be decreased PARPi sensitivity (57).

Aberrant m6A “Readers” in Cancer
Drug Resistance
The process that m6A modification mediated RNA metabolism
always needs the participation of m6A “readers” to decide RNA
fates. In cancer, aberrant reader proteins, such as YTHDF1, could
lead to the disorders of RNA metabolism that contributed to tumor
progression (82).The roleofYTHDF1was reported invarious cancer
types, and it plays a critical role in cancer (72, 83, 84). Cancer stem
cells (CSCs) are cell populationswith stem-like characteristics, which
are considered to be the main cause of tumor chemoresistance and
recurrence (85). A recent study reported that YTHDF1 promoted
TRIM29 translation in cisplatin-resistant ovarian cancer cells.
Frontiers in Oncology | www.frontiersin.org 6
Decreasing YTHDF1 inhibited the CSC-like characteristics
subsequently rescued by overexpressed TRIM29 (71). However,
there is no difference of YTHDF1 in the cisplatin-resistant cells
compared with the parental control cells, which need more clinical
samples to be proved. Another study displayed that YTHDF1 was
upregulated inNSCLC tissues comparedwith paracancerous tissues.
Deletion YTHDF1 in vitro impeded cancer cell proliferation and
inhibited cancer progression in vivo (72). Moreover, recent studies
reported that YTHDF1 was involved not only in the glycolysis of
cancer cells by promotingmRNAstability of PDK4but also in cancer
drug resistance (72, 86). A study showed that YTHDF1 expression
was downregulated in cisplatin-resistant A549 cells. Silencing
YTHDF1 rendered cancer cells resistant to cisplatin treatment,
which showed a bad clinical outcome (72). In addition, decreased
YTHDF2 expression and increased IGF2BP2 expression were found
in resistant ovarian cancer cells, which might be contributing to
FZD10 upregulation for promoting cancer drug resistance (57).

Dysregulation of m6A-Modified RNA in
Cancer Drug Resistance
Increasing studies showed that dysregulation of m6A-deposited
RNA significantly contributed to cancer progression (13).
Recently, abundant m6A modification was found in 3′UTR, 5′
UTR, and/or CDS in drug tolerance of cancer cells, such as
ovarian cancer cell (57). m6Amethyl embedded in different areas
of RNA could influence RNA splicing, RNA stability, and
translation in cancer drug resistance (Figure 3) (52, 58, 68).

Changing RNA Stability for Cancer
Drug Resistance
Transcript stability is a very important character for RNA to execute
its function. Changes in RNA stability are the inevitable result of
tumor progression (87). Increasing data showed that m6A
participated in RNA stability for regulating cancer drug resistance
mechanism. In drug-resistant NPC cells, METTL3 promoted
TRIM11 transcript stability via the m6A-IGF2BP2-dependent
pathway. m6A-marked TRIM11 could promote multidrug
resistance and suppressed apoptosis by activating the b-catenin axis
(66). Moreover, METLL3 enhanced RNA stability of CBX8, which
could promote stemness and inhibit chemosensitivity by activating
LGR5 transcription in colon cancer (CC) cells (69). Not onlymRNA
but also METTL3 could change the stability of pre-mRNA. A study
reported that METTL3 could delay the half-life of pre-mRNA of
ERRg to enhance chemoresistance by upregulating ABCB1 and
metabolic reprogramming in HCC (59). Demethylation of RNA
regulated by ALKBH5 was found in cisplatin-resistant OSCC lines
(60). A study showed that DDX3 could enhance CSC population by
demethylation of FOXM1 andNANOGnascent transcript regulated
by AKBH5 in chemoresistant cells (60). Other demethylase FTO
could enhance RNA stability of MERTK and BCL-2 to control
intrinsic and acquired resistance of CSCC via TKI therapy (58).

Promoting RNA Translation for Cancer
Drug Resistance
Dysregulation RNA translation was found in multiple diseases,
including cancer (88, 89). Tumor cells trigger cellular stress
October 2021 | Volume 11 | Article 746789
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under drug stress, such as genotoxic, oxidative, metabolic, and
protein toxic stress. These stress responses lead to the plasticity
of translational control, thereby changing tumor behavior that
tend to drug resistance (90). m6A modification as a regulator
could promote RNA translation via YTHDF1 interacting with
initiation factor eIF3 under a selective regulation mechanism
(38). Recent work reported that the deficiency of YTHDF1
inhibited translational efficiency of Keap1 and activated the
antioxidant reactive oxygen species (ROS) clearance system
(Nrf2-AKR1C1) under DDP therapeutic burden, which leads
to a bad prognosis of NSCLC patients (72). Furthermore,
METTL3 could be binding with YTHDF3, YTHDF1, and
eIF3b to increase YAP1 translation for inducing DDP
resistance and metastasis in NSCLC (52).

Catalyze m6A Modification in Mutation
Site for Cancer Drug Resistance
After drug therapy, cancer cells always accumulate DNA damage
and increase the probability of gene mutations, which leads to a
small number of tumor cells evolving drug resistance (91).
Increasing or decreasing m6A level in RNA transcripts always
leads to cancer progression. Recently, a study reported that m6A
site mutation in transcripts may change m6A deposition and
play an important role in cancer (92). TP53 mutation is a high-
frequency mutation in 12 types of cancer and indicated close
relation with clinical outcome (93). An interesting result showed
that an m6A-modified mutation site found in the transited
codon 273 of p53 pre-mRNA could increase the expression of
R273H mutant protein and lead to multiple drug resistance of
CRC (68). This showed that m6A site mutations in transcript
greatly contributed to cancer drug resistance and could be a
method to indicate patient prognosis in cancer therapy.

Non-Coding RNAs Interacted With m6A
Regulators in Cancer Drug Resistance
Non-coding RNAs are a class of RNAs that are not translated
into protein and regulate the epigenetic change of genes.
Frontiers in Oncology | www.frontiersin.org 7
MiRNAs, long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs) are three common non-coding RNAs that
were reported to play important roles in cancer progression (94,
95). For example, highly expressed miR-21 was found to target
PTEN for promoting HCC growth (96). LncTCF7 promoted self-
renewal of HCC stem cells via triggering Wnt signaling (97). As
the sponge of miR-9, circMTO1 promoted p21 expression for
hindering HCC progression (98). Moreover, dysregulation of
non-coding RNA in multiple cancers may be the primary cause
of drug resistance (99–101). Linc00152, which promoted CRC
progression, conferred resistance of oxaliplatin (L-OHP) that
induced cancer cell apoptosis via the AKT pathway (102). In
ovarian cancer cells, downregulated miR-29a/b/c enhanced the
ability of cells to escape cell apoptosis induced by cisplatin via
targeting collagen type I alpha 1 (COL1A1) (103). Furthermore,
upregulated lncRNA UCA1 contributed to multiple drug
resistance of GC via sponging miR-27b (104). Collectively,
these findings displayed important roles of non-coding RNAs
in one or more drug resistance of cancer. Interestingly, m6A
modification commonly existed in not only mRNA but also non-
coding RNA (9). More and more findings suggested a novel and
complicated pattern of m6A regulator with non-coding RNA in
cancer drug resistance.

m6A Regulator–MicroRNA Model in
Cancer Drug Resistance
MiRNAs are a group of highly abundant small RNAs (21–25
nucleotides) involved in post-transcriptional control via
targeting 3′UTR of mRNA (105). It has been reported that
miRNAs play a crucial role in cancer drug resistance (106). In
NSCLC resistant to EGFR TKIs, exogenous miR-146b-5p in
EGFR TKI-resistant cells could promote the cell apoptosis
induced by EGFR TKIs via regulating the IRAK1/NF-kB
pathway (107). In addition, miR-675-3p, which was from GC-
secreted extracellular vesicles (GC-EVs), could enhance cisplatin
resistance in vivo via targeting CXXC4 (108). These works
displayed the potential role of miRNAs in cancer drug resistance.
FIGURE 3 | The regulatory mechanism of m6A regulator in drug resistant cancer. m6A modification in drug resistant cancer cell was involved in changing RNA
stability, and RNA translation.
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Recently, m6A modification was found in long primary
miRNAs (pri-miRNAs) to affect miRNA processing. It is well
known that pri-miRNAs are firstly transcribed in the nucleus.
Subsequently, pri-miRNAs are transported into cytoplasm to be
processed into precursor miRNAs (pre-miRNAs) via the double-
stranded RNA-binding protein (RBP) DGCR8, which is the
critical component of miRNA microprocessor complex binding
with RNase III endonuclease DROSHA (109). METTL3 marked
pri-miRNA for recognition and processing by DGCR8. Deleting
METTL3 leads to the reduction of global miRNA and
accumulation of unprocessed pri-miRNA. Gain of METTL3
reversed this change of global miRNA in a non-cell-type-specific
manner, which suggested that m6A methylation plays a key post-
transcriptional modification to promote miRNA mature (110).
Moreover, m6A “reader” protein, heterogeneous nuclear
ribonucleoprotein A2/B1 (hnRNPA2/B1), and hnRNPC could
recognize m6A site in pri-miRNA and subsequently interact
with DGCR8 to promote miRNA mature (48, 111).
Interestingly, this new mechanism was found in the progression
of multiple cancers (112–114). In BLC cells, METTL3 recruited
DGCR8 to promote miR-221/222 maturation via decreasing
Frontiers in Oncology | www.frontiersin.org 8
PTEN expression for tumor growth (57). Another m6A complex
component, METTL14, inhibited HCC metastasis via recognizing
and binding DGCR8 to promote pri-miR-126 processing (115).
Furthermore, m6A regulator–miRNAmodel was found to play an
important role in cancer drug resistance (Figure 4A). In breast
cancer cells, hnRNPA2/B1–miRNA model was reported to be
involved in endocrine resistance. Upregulated hnRNPA2/B1 in
endocrine-resistant breast cancer cells changed miRNA
transcriptome including 148 upregulated miRNAs and 88
downregulated miRNAs. Moreover, overexpressed hnRNPA2/B1
decreased the sensitivity of cancer cells to 4-hydroxytamoxifen and
fulvestrant (64). In addition, m6A regulators are involved in
cancer drug resistance by changing miRNA expression by an
indirect mechanism. MYC as a transcription factor is an oncogene
by accelerating cell proliferation (116). A study reported that
miRNA-155 (miR-155) and the miRNA-23a~27a~24-2 cluster
(miR-23a cluster) were induced by MYC to promote
tumorigenesis in glioma cells. Interestingly, FTO increased MYC
stability and translation efficiency via wiping m6A modification,
and its downregulation reduced the primary and mature
transcripts of the transcripts of miR-155-5p, miR-24-3p, and
FIGURE 4 | The m6A–non-coding RNA model in drug-resistant cancer. (A) m6A–miRNA model: m6A modification directly affects the pre-miRNA splicing, resulting
in abnormal miRNA level changes in cancer drug resistance. (B) m6A–lncRNA model: ARHGAP5-AS1 recruits METTL3 to promote the stability of ARHGAP5 for
inhibiting drug-induced apoptosis. (C) In sorafenib-resistant liver cancer cell, m6A modification promoted circRNA-SORE stabilization. Then, circRNA-SORE could
directly bind YBX1 protein or sponge miR-660-3p and miR-103a-2-5p for arresting drug-activated apoptosis.
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miR-27a-3p (117). Furthermore, FTO inhibitor and MA2
increased the antitumor effect of temozolomide on decreasing
the viability of glioma cells (117).

m6A Regulator–Long Non-Coding RNA
Model in Cancer Drug Resistance
Compared with miRNA, lncRNAs are a class of non-coding
RNA with its length more than 200 nucleotides defecting coding
protein function (118). LncRNA generally contributed to gene
regulation via binding with miRNA, interacting with RBPs, or
chromatin remodeling (119). In gemcitabine-resistant cells,
GSTM3TV2 promoted the drug resistance by sponging let-7
for upregulating L-type amino acid transporter 2 (LAT2) and
oxidized low-density lipoprotein receptor 1 (OLR1) in pancreatic
cancer cells (120). Upregulated H19 in tamoxifen-resistant breast
cancer cell line promoted autophagy by inhibiting the binding of
DNMT3B to Beclin-1 (121). These studies showed that lncRNA
could be a controller to regulate cancer drug resistance.

It has been observed to conserve m6A modification in
lncRNA (122). Subsequently, increasing findings showed that
m6A modification as “switches” regulated lncRNA–protein
interaction contributed to the lncRNA–miRNA interaction or
influenced lncRNA stability (52, 123, 124). Metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) was a conserved
lncRNA that was upregulated in multiple types of cancers (125).
In NSCLC, MALAT1 promoted cancer cell migration in vitro
and tumor formation and growth in vivo, and a high expression
level of MALAT1 is associated with poor prognosis (126, 127).
Recently, high m6A modification in transcripts of MALAT1 was
observed (8). METTL3/YTHDF3 complex increased the stability
of MALAT1, which sponged miR-1914-3p to promote the
invasion and metastasis of NSCLC and enhanced sensitivity to
DDP via regulating YAP1 (52). On the other hand, lncRNA was
also involved in cancers when it was coupled with m6A
regulators. Upregulated ALKBH5 in glioblastoma stem-like
cells (GSC) demethylated FOXM1 to promote its expression.
Interestingly, as a lncRNA antisense to FOXM1, FOXM1-AS
accelerated the interaction between ALKBH5 with FOXM1 for
promoting GSC proliferation and tumorigenesis (128). This
interaction of lncRNA assistance to m6A regulators was also
found in cancer drug resistance (Figure 4B). In chemoresistant
GC cells, overexpressed ARHGAP5 antisense RNA 1
(ARHGAP5-AS1) promoted the cancer cell resistance to
chemotherapeutic drugs including DDP, ADM, and 5-FU;
decreased drug-activated apoptosis; and reduced intracellular
drug concentration. ARHGAP5-AS1 could stabilize ARHGAP5
via recruiting METTL3 for m6A modification (65).

m6A-Modified Circular RNA in Cancer
Drug Resistance
CircRNAs are a class of non-coding RNA that has a special
continuous loop by back splicing. The reported biological
function of circRNA seems to bind miRNA or RBPs, regulate
transcription, interfere with splicing, or translate peptide
fragments and played important roles in cancer drug resistance
(129, 130). In GC, circCUL2 could affect cisplatin sensitivity by
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inhibiting the autophagy activation mediated by miR-142-3p/
ROCK2 (131). In glioblastoma cells that acquired temozolomide
resistance, circASAP1 was markedly upregulated. Its
overexpression promoted cell proliferation and temozolomide
resistance by sponging miR-502-5p in glioblastoma (132). These
studies showed that dysregulated circRNAs play a significant role
in cancer drug resistance.

CircRNAs are widely modified by m6A and exhibited cell-
type-specific methylation, which suggested the potentially
important role of m6A modification in modulating circRNA
biogenesis, transport, degradation, and translation (133, 134). It
is well known that circRNAs are the product of back splicing,
which is an alternative to linear splicing. Recently, m6A
modification at specific sites was found to significantly
modulate these two splicing ways. Furthermore, these specific
m6A sites affected by METTL3–YTHDC1 were proved to
command circRNA biogenesis, which offers a novel reason for
circRNA biogenesis (135). CircRNA location is the key to
determining the regulatory mechanisms of circRNA, especially
ceRNA model in cytoplasm. However, few data illustrated the
mechanisms of circRNA localization or nuclear export. It has
been found that Drosophila DExH/D-box helicase Hel25E and
human UAP49/56 act as key factors in the nuclear export of
circRNAs depending on its length (136). Interestingly, m6A
reader YTHDC1 was reported to accelerate cytoplasmic export
of circNSUN2 in an m6A-dependent manner (137). The
degradation of circRNA is another important part of
understanding its function and expression, but the
understanding of related mechanisms is still very limited. It
has been reported that YTHDF2 interacting with HRSP12 acted
as a guide of RNase P/MRP endoribonucleases for identifying
and degrading m6A-modified circRNAs (138). In translation
initiation, different from mRNA (cap-dependent pathway),
circRNA lacking dissociative 5′ end was translated by cap-
independent pathways, such as IRES-dependent pathway and
m6A-dependent pathway (139–141). Yang et al. found that
m6A-modified circRNAs have sufficient translation ability
regulated by YTHDF3 and the translation initiation factors
eIF4G2 and eIF3A (141). Recently, increasing findings prove
the important role of the m6A-circRNA model in cancer
progression. In CRC, m6A reader YTHDC1 expedited
cytoplasmic export of circNSUN2 to promote cancer liver
metastasis via stabilizing HMGA2, which acted as a driver of
cancer metastasis via enhancing EMT process (137, 142, 143). In
cervical cancer cells, an interesting study found that circE7
derived from human papilloma virus 16 (HPV16) translated
into E7 protein to promote cancer cell proliferation in an m6A-
dependent manner, which provided a basis for the diagnosis of
high-risk HPV infection (144).

A recent study showed a significant role of m6A-circRNA
model in HCC resistance with sorafenib, which is the first-line
chemotherapeutic therapy for advanced HCC (Figure 4C). After
sorafenib therapy, HCC cell with drug resistance showed high
expression of circRNA-SORE in which depletion could enhance
the cell-killing ability of sorafenib by stabilizing YBX1 (145).
Another study showed that circRNA-SORE inhibited the efficacy
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of sorafenib-induced apoptosis in HCC cells. Interestingly, m6A
modification resulted in the increased RNA stability of circRNA-
SORE, which could sponge miR-103a-2-5p and miR-660-3p to
activate the Wnt/b-catenin pathway (146).
IMPLICATIONS FOR CANCER
DRUG THERAPY

Global m6A Level and m6A Regulators as
a Diagnostic Approach
Tumor drug resistance is often the result of a combination of
multiple mechanisms (147). Urgently, we need more effective
assessment methods to judge whether patients have better
treatment effects to improve patient prognosis. Researchers
have found that methods such as gene sequencing for analysis
of mutant genes, tumor-derived organoids for evaluating drug
efficacy, or network-based machine learning can be used to
predict tumor resistance (148, 149). Tiriac et al. reported that
next-generation sequencing (NSG) technology combined with
patient-derived organoid (PDO) drug classification can predict
the response of pancreatic cancer patients and provide a basis for
the selection of treatment options (150).

Abnormal and abundant global m6A levels frequently
appeared in multiple cancer drug resistance. The global m6A
level was decreased in leukemia cell line that obtained nilotinib
and PKC412 resistance and HepG2 resisting sorafenib therapy,
inversely upregulated in breast cancer cell with adriamycin
resistance (58, 59). Therefore, the detection of m6A levels has
the potential to be used as a method to predict whether tumor
cells are/will be resistant. At present, the main technical methods
used to detect the overall level of m6A are LC-MS/MS,
colorimetry, and dot blotting (151). Based on liquid mass
spectrometry, LC-MS/MS uses tandem MS to obtain molecular
ion peaks and fragment ion peaks. LC-MS/MS can
simultaneously perform qualitative and quantitative analyses of
bases. With the use of a method similar to ELISA to suppress
competitive immunity, the colorimetry uses m6A standards to
quantify the m6A level of samples. Dot blotting uses m6A
antibody to detect m6A level after binding RNA to a nylon
membrane. Compared with the cumbersome operation of LC-
MS/MS, colorimetry or dot blotting using a kit is simpler, faster,
and more sensitive. These methods could have a potential
application for detecting cancer drug resistance. Increasing
data suggested that abnormally expressed m6A regulators can
also be used as a detection strategy for drug response of multiple
cancer. In NPC, m6A-modified TRIM11 stabilized by METTL3
could inhibit cancer cell apoptosis to promote multidrug
resistance and enhance cisplatin resistance in vivo (66). Similar
in GC, high METTL3 group tumors showed more sensitivity to
mTOR inhibitor (everolimus) compared with the low METTL3
group (152). In ovarian cancer, downregulated FTO and
ALKBH5 induced FZD10 upregulation, which led to reducing
PARPi sensitivity (57). Moreover, in CSCC, FTO reduced m6A
level of b-catenin to promote its expression for enhancing the
chemo-radiotherapy resistance both in vitro and in vivo (63).
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Oppositely, FTO upregulation in leukemia showed more TKI
tolerance via enhancing MERTK and BCL-2 stability (58).

Targeting m6A Regulator–Non-Coding
RNA Model
Increasing data displayed that m6A regulators play an important
role in drug resistance of cancer, which suggested that m6A
regulators may be a potential target to restore the drug sensitivity
of tumor cells. In cisplatin-resistant seminoma cells, METTL3
promoted cellular viability by enhancing TFAP2C stability,
which was identified by m6A reader, IGF2BP1. Encouragingly,
more rapid tumor growth due to overexpressed METTL3 was
inhibited by IGF2BP1 inhibition under cisplatin treatment
in vivo (67). In NSCLC, METTL3 inhibition observably arrested
tumor growth and enhanced sensitivity to cisplatin in vivo by
reducing YAP1 expression (52). In addition, a significant
antitumor drug effect was also found in drug-treated cancer
cells combined with FTO inhibitors. In glioma, MA2, which
could be an FTO inhibitor, notably inhibited cell proliferation
compared with a single treatment group (117). Regarding the
targeting of m6A-modified molecules, a variety of drugs have
entered clinical research. For example, a competitive 2OG
inhibitor can target and inhibit the activation of FTO. But it
also inhibits other molecules, such as m1A demethylase
ALKBH3, causing adverse side effects (153, 154). Many kinds
of literature have confirmed that m6A modification participates
in the regulation mechanism of tumor resistance. In detail, under
the pressure of drugs, tumor cells cleverly change the
modification level of m6A in RNA, thereby affecting the fate of
RNA, especially non-coding RNA. Therefore, compared with
looking for highly specific inhibitors of m6A regulatory
molecules, directly targeting its downstream RNA molecules is
also an ideal tumor drug resistance treatment policy. Non-coding
RNA that interacts with m6A regulators has been reported to
regulate the sensitivity of drug-resistant cells. A large number of
studies have found that many non-coding RNAs can be used as
targets or partners for m6A regulators in drug-resistant tumor
cells. METTL3 coupled with lncRNA ARHGAP5-AS1 stabilized
ARHGAP5, which promoted chemoresistance in GC (65). In
addition, in vivo shRNA delivery of m6A-modified circRNA-
SORE could enhance sorafenib efficacy in animal models (146).
These studies suggested that m6A regulator–non-coding RNA
model plays important roles in cancer drug resistance. In general,
the combined strategy of using m6A targeted drugs with
chemotherapy or its related non-coding RNA may provide
new ideas for avoiding drug resistance in clinical practice.

Potential Applications of m6A Regulation
in Immunotherapy
Tumor immunotherapy is currently one of themainstreammethods
of cancer treatment. However, the effects of immunotherapy in some
tumors, such as lung cancer, are not satisfactory. The main reason is
that the tumor behaved innately or acquired resistance to
immunotherapy. Therefore, it is urgent to find a breakthrough in
resistance to immunotherapy. Recently, most works implied m6A
regulators have huge potential in PD-1 therapy.m6A regulatorswere
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reported to regulate PD-L1 expression, which implied its potential
implication in immunotherapy. In intrahepatic cholangiocarcinoma
(ICC), Qiu et al. found that tumor-intrinsic ALKBH5 stopped T-cell
expansion and cytotoxicity by maintaining PD-L1 expression in
tumor cells. Moreover, the results of clinical sample analysis from
patients receiving anti-PD1 immunotherapy showed that strong
nuclear expression patterns of ALKBH5 are more sensitive to anti-
PD1 immunotherapy (155). KnockdownYTHDF1/2 inNSCLCcells
could upregulate PD-L1 expression and multiple immune-related
genes. High YTHDF1/2 expression showed a good prognostic
outcome of NSCLC patients (156). Most notably, Han et al. found
that the YTHDF1 could be a potential therapeutic target in
immunotherapy because the absence of YTHDF1 can enhance the
therapeutic effect of PD-L1 in Ythdf1−/− mice (157). Interestingly,
non-coding RNA with m6A modification represented promising
therapeutic targets in improving immunotherapeutic efficacy. m6A-
modified circIGF2BP3 inhibited the activity of T cells in vitro and
restrain antitumor immunity in vivo by upregulating PKP3 to elevate
PD-L1 abundance. Furthermore, the inhibition of circIGF2BP3/
PKP3 enhanced the effects of anti-PD-1 therapy in a Lewis lung
carcinoma mouse model (158). These works suggested that m6A
regulators orm6A-modifiednon-codingRNAcould be a therapeutic
target for immunotherapy in combination with PD-L1 inhibitors.
CHALLENGES AND
FUTURE PERSPECTIVES

m6A modification is the most common modification in higher
organisms. Many studies have confirmed that m6A modification
plays important biological functions inmammals, such as regulating
RNAstability, positioning, transportation, splicing, and translation at
the transcriptional level. We have introduced some work that found
that tumor cells exhibit abnormal m6A levels after drug resistance,
and further control RNA stability, RNA translation, or regulation of
non-coding RNA to avoid drug-induced apoptosis and escape
successfully. These papers about cancer drug resistance displayed a
part of the important role of m6A modification. Recent studies
indicated that m6A modification was regulated by other factors.
NADP, an enzyme-regulatedmetabolite, could directly bindFTO for
improving its catalytic activity and adipogenesis (159). It indicated
that some key regulators could be a potential strategy for regulating
m6A modification, and we need more work to explore the
mechanism that triggered abnormal global m6A level or differential
expression of m6A regulators in the future.

At present, more and more m6A regulators are involved in
clinical research for oncotherapy. However, their disadvantages
cannot be ignored, such as poor specificity and side effects.
Therefore, it is urgent to find another way to change the
dilemma of m6A modification in the application of tumor
resistance. Although m6A–non-coding RNA has positive prospects
in clinical applications, the current situation shows that there are
still shortcomings in the study of m6A–non-coding RNA mode.
Firstly, m6A has fewer potential targets and partners in different
drug resistance mechanisms of different tumors. Therefore, the
regulatory mechanism of m6Amodification in the common drug
Frontiers in Oncology | www.frontiersin.org 11
resistance of a variety of tumor cells still needs to be further
explored more comprehensively. Secondly, there are fewer
methods to detect the methylation level at the m6A site on the
non-coding RNA sequence. Therefore, the method detecting
more high resolution of m6A in non-coding RNA sequence
needs to be exploited and widely apply in cancer drug treatment.
Finally, the drug development of non-coding RNA related to
m6A drug should be considered in the future.
CONCLUSIONS

In the review, we summarized the research progress of m6A
modification in cancer drug resistance. We show that the overall
m6A level andm6A regulatorymolecules in tumor cells are changed
after different drug-resistant multiple tumors. For example, in
adriamycin-resistant liver cancer cells, the expression of METL3
was significantly upregulated, resulting in a significant increase in
overall m6A levels. However, in sorafenib-resistant liver cells, the
expression ofMETL3 was significantly downregulated, resulting in a
significant decrease in overallm6A levels. These contradictory results
showed the complexity ofm6Amodification indrug-resistant cancer
cells. In addition, we also summarized the complex regulatory
mechanism of m6A modification in tumor resistance. Abnormal
m6A regulators in tumor cells that have acquired drug resistance can
maintain tumorcells against drug therapyby changingRNAstability,
RNA translation, and catalytic mutation site m6A modification.
Here, we focus on the important role of m6A modification that
interactedwithnon-codingRNA in cancer drug resistance. Sorafenib
is the first-line chemotherapeutic agent for the treatment of liver
cancer. It is worth noting that circRNA-SORE stabilized by m6A
modification can inhibit drug-activated apoptosis through a variety
of ways, which elucidates that m6A regulator–non-coding RNA
model plays an important role in cancer drug resistance. Therefore,
targeting m6A-modified non-coding RNA has potential as a
combined strategy to overcome therapeutic resistance. But the
current situation is that the molecular understanding of m6A
modification is still in its infancy. Therefore, more research is still
needed to realize theapplicationofm6Amodificationcombinedwith
non-coding RNA in cancer drug therapy.
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