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Abstract 
Background: Respiratory syncytial virus (RSV)-induced lower 
respiratory tract disease is a prominent cause of hospitalisation 
among children aged <5 years in developing countries. Accurate and 
rapid diagnostic tests are central to informing effective patient 
management and surveillance efforts geared towards quantifying RSV 
disease burden. This study sought to estimate the sensitivity (Se), 
specificity (Sp) (along with the associated factors) and predictive 
values of a direct immunofluorescence test (IFAT), and two real-time 
reverse transcription polymerase chain reaction (rRT-PCR) assays for 
RSV infection within a paediatric hospital population: a multiplex rRT-
PCR (MPX) and Fast-Track Diagnostics® (FTD) Respiratory Pathogens 
33 (Resp-33) rRT-PCR. 
Methods: The study enlisted 1458 paediatrics aged ≤59 months 
admitted with acute respiratory illness at the Kilifi County Hospital 
between August 2011 and December 2013. A Bayesian latent class 
modelling framework was employed to infer the tests’ estimates based 
on the patients’ diagnostic data from the three tests. 
Results: The tests posted statistically similar Se estimates: IFAT 
(93.7%, [90.7; 95.0]), FTD (97.8%, [94.6; 99.4]) and MPX (97.5%, [94.2; 
99.3]). As for Sp, FTD registered a lower estimate (97.4%, [96.2; 98.2]) 
than MPX (99.7%, [99.0; 100.0]) but similar to IFAT (99.0%, [98.2; 99.6]). 
The negative and positive predictive values were strong (>91%) and 
closely mimicked the pattern given by the Se and Sp values 
respectively. None of the examined covariates (age, sex and 
pneumonia status) significantly influenced the accuracy of the tests. 
Conclusions: The evaluation found little to choose between the three 
diagnostic tests. Nonetheless, with its relative affordability, the 
conventional IFAT continues to hold promise for use in patient care 
and surveillance activities for RSV infection within settings where 
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children are hospitalised with severe acute respiratory illness.
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Introduction
Respiratory syncytial virus (RSV) is a leading cause of bron-
chiolitis and pneumonia globally, with an estimated 3.2 million 
hospital admissions and 59,600 in-hospital deaths being regis-
tered in children aged <5 years in 20151. In Kilifi, Kenya’s coast, 
RSV is associated with seasonal epidemics characterised by 
high under-five hospitalisation rates2,3.

As RSV clinical presentation is indistinguishable from other 
acute respiratory infections, virologic testing of respiratory 
secretions is necessary to establish an RSV diagnosis4,5. Since 
2002, longitudinal surveillance for RSV at the Kilifi County 
Hospital (KCH), seeking to strengthen the understanding 
of paediatric RSV epidemiology, has depended on a direct 
immunofluorescence test (IFAT) (RSV DFA kit, light Diag-
nosticsTM) as the standard diagnostic tool2,6. Of note, IFAT’s 
merits stem from its good performance (high sensitivity (Se) 
and specificity (Sp)) when used during peak RSV season, ease 
of use and interpretation, rapidity and affordability7. Neverthe-
less, the test’s accuracy may vary depending on the virus strain 
targeted and sufficiency of the specimen8–10. Furthermore, the 
test’s Se may suffer especially in immunocompromised indi-
viduals and during RSV inter-epidemic periods when virus 
transmission is low11,12.

To enhance the detection of RSV, as of 2008, RSV surveillance 
at KCH has integrated the use of real-time reverse transcription 
polymerase chain reaction (rRT-PCR) assays, namely: a cus-
tom (in-house) multiplex rRT-PCR (MPX) and Fast-Track Diag-
nostics® (FTD) Respiratory Pathogens 33 (Resp-33) rRT-PCR6. 
PCR assays possess superior Se to immunofluorescence tests, 
particularly during off-seasons, owing to their comparably 
lower viral detection limits13. They afford further advantages in 
permitting the quantification of viral loads in samples and the 
detection of multiple respiratory viruses. However, owing to 
the tests’ costliness, their applicability in most resource-limited 
settings is restricted. Moreover, since viral particles may be 
detectable by the tests in healthy subjects, thereby compromis-
ing their Sp, the clinical usefulness of PCRs remains vague14. 
An understanding of the performance of these RSV diagnostics 
in a clinical setting is valuable for informing clinical decision- 
making and supporting RSV-targeted genetic studies.

Conventionally, evaluation of the performance of RSV diag-
nostics has relied on the use of imperfect reference tests15–18 
that may introduce bias to the accuracy estimates of index tests. 
Further, a call for alternative evaluation approaches is justified 
especially when interest lies in demonstrating the superiority 
of a novel tests over an existing reference standard19. Bayesian  
latent class models (BLCMs) permit the quantification of test  
accuracy without knowledge on the true infection status of  
subjects20.

When data are available on covariate factors believed to affect 
the characteristics of tests under evaluation, stratum-specific 
estimates are derivable and, arguably, afford greater utility than 
pooled estimates in inhomogeneous populations21. Notably, 
Se and Sp are properties specific to a test; unlike predictive 

values, they do not provide information as to the probabil-
ity that an individual has a certain disease considering their test 
status. Thus, the objective of the present study was to derive 
the Se and Sp together with the predictive values of IFAT, MPX 
and FTD tests for RSV infection within a paediatric hospital 
population, while assessing the effect of specific factors on the 
accuracy of the tests.

Methods
Study setting and population
As part of the existing long-term surveillance for RSV  
disease in children at KCH2, the study enrolled paediatric 
patients aged ≤59 months admitted with syndromic pneumonia 
(as described by Hammitt et al.22) between August 2011 and  
December 2013. Notably, KCH is the primary referral facility 
in Kilifi County admitting ~4000 paediatric patients annually. 
Here, for children aged <5 years, hospitalisation rates for RSV 
have been observed in the region of 271–317 admissions per 
100,000 children annually2. Additionally, RSV epidemics 
in Kilifi are strongly seasonal usually occurring between the 
months of November of one year and May of the next2,23.

Sample collection
On admission, paired nasopharyngeal and oropharyngeal sam-
ples were collected and processed as previously described24. The 
samples were stored in cooler boxes and delivered to the hospi-
tal’s microbiology laboratory for processing within 2 hours. 
At the lab, the samples were stored at 4°C until processed – 
usually within 48 hours of collection. The specimens were 
screened for the presence of RSV by IFAT, MPX and FTD tests. 
Aside from the samples, the patients’ sociodemographic char-
acteristics (date of admission, sex, age, area of residence and 
presenting symptoms) were recorded.

Ethical considerations
Prior to enlisting the paediatric patients into the study, written 
informed consent was obtained from their parents/guardians. 
Approval for the study was granted by the Kenya Medical 
Research Institute (KEMRI) Ethical Review Committee 
(SERU No. 3178 and SCC Nos. 1858 and 1526) and Oxford 
Tropical Ethical Review Committee, UK (60-90).

Target condition
The infection (latent) status targeted by the three tests (IFAT, 
MPX and FTD) constitutes an RSV-laden respiratory sample 
carrying either the live virus or its antigens at any concentration.

IFAT
A Light DiagnosticsTM RSV DFA kit (Cat No. 3125, Chemi-
con, USA) was used to test for the presence of RSV in respira-
tory samples. The IFAT procedure was run as per manufacturer’s 
instructions. Briefly, 200 µl of specimen was used for slide prep-
aration following a centrifugation process (Cytospin 3, Themo 
Shandon) at 1800 rpm for 10 min. A drop of Light Diagnos-
tics RSV DFA reagent was added to the fixed cell preparation. 
The ready slide was then incubated in a moist chamber at 37°C 
for 30 min. Excess reagent was washed off in a fresh change 
of phosphate buffered saline, with the slide allowed to air dry 
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at room temperature. After adding a drop of mounting fluid 
to the centre of each well, the stained specimen was exam-
ined with an epifluorescence microscope at ×200–500 magni-
fication. An observation of apple-green fluorescence in one or 
more cells of the stained specimen constituted a positive result. 

MPX assay
The MPX assay has been detailed elsewhere24. Briefly,  
140 µl of respiratory specimen was employed to extract RNA by 
Qiacube HT using an RNeasy extraction kit (Qiagen, Germany). 
The extracted RNA was subsequently tested for RSV (A and B) 
by a multiplex real-time PCR assay in triplex sets (Qiagen, ABI 
7500 system). Samples yielding cycle threshold (Ct) values 
≤35 were deemed positive for RSV.

FTD assay
The procedure for the FTD assay is as previously described25. 
Briefly, from a 400µl respiratory specimen, RNA was extracted 
using the NucliSENS easyMAG platform (bioMérieux, France). 
The extracted RNA was screened for RSV using the FTD 
Resp-33 PCR Kit. Quantitative PCR data were generated by 
creation of standard curves using serial dilutions of plasmid 
standards provided by FTD, with pathogen density being ascer-
tained from the sample Ct values. As with the MPX assay, Ct 
values ≤35 were considered positive for RSV.

Population classification
The KCH is nested within the Kilifi Health and Demographic 
Surveillance System (KHDSS) area in coastal Kenya – stretching 
about 891 km2 and spanning a resident population of approxi-
mately 260,000 persons. Of note, KHDSS was established in 
2000 with a view to monitoring vital statistics as well as, among 
other goals, quantifying the magnitude of significant local 
childhood ailments26. Consequently, the diagnostic data repre-
sented a sample drawn from this single target population that 
informed the estimation of the Se and Sp of the tests.

Statistical analysis
A Bayesian modelling framework was employed to derive the 
prevalence, Se and Sp estimates along with the predictive val-
ues of the tests. The BLCM was fitted in OpenBUGS soft-
ware (v 3.2.2)27 but called from R (v. 3.6.2) via the ‘BRugs’ 
package (v0.9-0)28. Importantly, the model design and report-
ing were guided by the standards for the reporting of diagnos-
tic accuracy studies that use BLCMs (STARD-BLCM)29. The 
Bayesian code is available as underlying data30.

Essentially, BLCMs are premised on three key assumptions: 
(i) the target population should consist of two or more sub-
populations with different prevalences, (ii) the Se and Sp of the 
index tests should be conditionally independent given the dis-
ease status and (iii) the Se and Sp of the tests should remain 
constant across the subpopulations31. By definition, conditional 
independence implies that given a subject’s disease status, knowl-
edge of results of one test does not alter the expectation about 
the result of a subsequent test32. In our context, given an indi-
vidual’s RSV infection status, the IFAT test was presumed to be 
conditionally independent to the two PCR assays considering 

the tests’ distinct targets: antigens versus genes. However, to 
allow for dependence between the two PCRs, we specified 
two conditional covariances between pairs of the Se and Sp (γ

Se
, 

γ
Sp

) of the assays as detailed by Gardner et al.33. Values of γ
Se

 or 
γ

Sp
 excluding zero denote significant dependence in Se or Sp esti-

mates of the tests. To assess the separate effects of ‘sex’, ‘age’ 
(categorised into <6 months and ≥6 months34) and ‘pneumo-
nia status’ on the Se and Sp of the tests, the assumption on con-
stancy of the test characteristics was relaxed by stratifying the 
single population into subpopulations specified by the covari-
ate levels. As for pneumonia, a child’s presenting symptoms fol-
lowing admission were used to infer their pneumonia status 
(severe or very severe) as previously defined22. The stratifica-
tion permitted the estimation of stratum-specific tests estimates. 
Differences between the stratified estimates were tested using 
a Bayesian P-value.

Counts (O
m
) of the different test combinations (e.g. +,+,+) 

were assumed to follow a multinomial distribution of the form:

( ),m km km m m mO Se Sp P multinomial prob n∼

Where Se
km

 and Sp
km

 represent the respective test characteris-
tics for test k (k = 1,2,3) in subpopulation m and P

m
 is the spe-

cific prevalence for the mth (m = 1,2) subpopulation. Prob
m
 is a 

vector of probabilities of observing the different combinations 
of test results, and n

m
 provides the number of subjects tested for 

the mth subpopulation. For instance, in the 1st subpopulation for 
a child testing positive to each of the three tests, incorporating 
dependence between the PCR assays, prob

1
 is given by:

  
( ) ( )

( ) [ ] [ ][ ]( )[ ]
1 1 2 3 1 2 3

11 21 31 1 1 11 21 31 1 11 1 1 1se sp

prob T T D T T D

Se Se Se P Sp Sp Sp Pγ γ

+ + + + + + + −= +

= + + − − − + −

Pr T Pr T
  

Since for each covariate, the two available subpopulations fur-
nished only 14 degrees of freedom insufficient to compute the 
required 18 parameters (stratum-specific Se and Sp of the three 
tests, two subpopulation prevalences and four conditional cov-
ariances), prior information on at least four of the parameters 
was necessary to achieve model identifiability35. As per avail-
able literature, the Se and Sp estimates of the standard IFAT 
test for paediatric RSV infection fall within the ranges: Se 
(77.8% - 95.1%) and Sp (82% - 99.6%)16,17,36–40. Accordingly, 
these test ranges were used to specify the uniform prior distri-
butions for the IFAT test within the Bayesian model. For the 
remaining parameters, since no prior information was available, 
non-informative priors (beta(1,1)) were utilised.

Positive and negative predictive values (PPV and NPV respec-
tively) specific for test k and subpopulation m were derived as 
follows:

[ ][ ]( )/ 1 1m km m km m kmppv P Se P Se P Sp= + − −

[ ] [ ] [ ]( )1 / 1 1m km m km m kmnpv P Sp P Se P Sp= − − + −

Additionally, a separate non-stratified model (disregard-
ing differences in Se and Sp estimates across covariate levels) 
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was built and the relative goodness of fit for the two model 
specifications compared using the Deviance Information 
Criterion (DIC) – model preferability being pegged on the 
smallness of the DIC value.

Two Markov Chain Monte Carlo chains were used to initi-
ate the models. For each chain, a total of 70,000 iterations were 
run with the initial 20,000 discarded as the burn-in phase. Con-
vergence of the chains was assessed by visual inspection of the 
time series plots of selected variables and the Gelman-Rubin 
diagnostic plots. The posterior distribution of the Se and Sp  
test estimates, subpopulation prevalences together with the  
predictive values were recorded as the median and associated  
95% posterior credible intervals (PCI).

Results
The cross-classified counts of the three-test results by covariate 
level are presented in Table 1. The data contained information from 
1458 paediatric patients, of whom 43.8% (n =638) were <6 months 
of age, 58.9% (n =859) were male and 34.1% (n =497) had very 
severe pneumonia.

The stratified estimates of Se and Sp for the three tests are dis-
played in Table 2. The estimated tests’ characteristics did not 
vary significantly by any of the examined factors as given by 
the Bayesian P-value. As the non-stratified model had better fit 
(DIC = 42.5) to the data compared to the covariate-specific 
models (DICs = 76.2; 72.8; 72.3), subsequent analyses were based on 
the former model.

Estimates of the Se and Sp of the RSV diagnostics together 
with their predictive values are displayed in Table 3. All the 
tests exhibited high (>93%) Se and Sp values. The Se esti-
mates were statistically similar. Nonetheless, FTD registered 
a lower Sp (97.4%; 95% PCI [96.2; 98.2]) than MPX (99.7%; 
95% PCI [99.0; 100.0]) but similar to the IFAT test (99.0%; 
95% PCI [98.2; 99.6]). Consequently, FTD’s PPV estimate was 
similar to IFAT (96.5%; 95% PCI [93.5; 98.4]) but comparably 

lower (91.4%; 95% PCI [87.7; 94.2]) to that of MPX (99.1%; 
95% PCI [96.3; 99.9]). The tests’ NPV estimates were high 
and numerically similar. The proportion of truly RSV-infected 
children amongst those hospitalised with acute respiratory ill-
ness was 22.2% (95% PCI [20.1; 24.5]). The two PCR assays 
demonstrated statistically significant conditional dependence.

Discussion
We have estimated the accuracy and predictive values of IFAT, 
FTD and MPX for the diagnosis of RSV infection in hospital-
ised paediatric patients under a Bayesian paradigm. Arguably, 
this framework permits the quantification of accuracy of index 
tests devoid of misclassification errors inherent in diagnostic 
evaluations utilising imperfect reference standards41. Thus, the 
derived estimates can be deemed readily extendable to similar 
populations of hospitalised children with severe respiratory illness. 

With observed disparities in nasopharyngeal RSV loads between 
ages42, sexes43 and disease severity classes44,45, it is plausible 
that performance of the RSV diagnostics may be affected by these 
covariates. This evaluation was conducted, but, as depicted in 
Table 2, the Se and Sp estimates of the three tests remained com-
parable across the examined covariate levels. This observation 
implies that the accuracy of any of the tests is unaffected by the 
age, sex and severity status of the presenting paediatric patient. 
Nevertheless, with advancing age (>5 years), owing to dimin-
ished viral titres in nasal secretions, the Se of most antigen-based 
assays (e.g. IFAT) may be undermined7, thus precluding their 
utility in RSV diagnosis in the aforementioned population.

Of the sample of paediatric patients admitted with acute res-
piratory illness, 22.2% had an RSV infection – asserting the 
pathogen’s preponderance amongst pneumonic patients in the 
study setting23. Correspondingly, the three tests recorded strong 
and similar Se estimates; although molecular assays, particu-
larly for RNA viruses, may be affected by primer/probe mis-
matches which may impair their Se6. The FTD assay revealed 
a lower Sp than MPX but similar to the IFAT test. This  

Table 1. Cross-classified counts by stratum for IFAT, FTD and MPX tests for diagnosis of RSV infection 
among paediatric patients admitted with acute respiratory illness at KCH, Kenya during the period 
August 2011–December 2013.

Stratum Tests outcomes combinations (IFAT; FTD; MPX) Total (%)

+++ ++- +-+ -++ +-- -+- --+ ---

Single population 295 4 3 20 13 27 1 1095 1458 (100%)

Age

  <6mths 177 2 1 7 6 7 1 437 638 (43.8%)

  ≥6mths 118 2 2 13 7 20 0 658 820 (56.2%)

Sex

  Female 132 0 2 11 6 12 0 436 599 (41.1%)

  Male 163 4 1 9 7 15 1 659 859 (58.9%)

Pneumonia status

  Severe 215 4 2 12 9 16 1 702 961 (65.9%)

  Very severe 80 0 1 8 4 11 0 393 497 (34.1%)
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Table 3. Estimates of prevalence, sensitivity 
and specificity of IFAT, FTD and MPX 
tests for paediatric RSV infection and 
their respective predictive values along 
with the conditional covariances for the 
dependence between FTD and MPX assays.

Parameter Estimate (95% PCI)

SeIFAT 93.7 (90.7; 95.0)

SeFTD 97.8 (94.6; 99.4)

SeMPX 97.5 (94.2; 99.3)

SpIFAT 99.0 (98.2; 99.6)

SpFTD 97.4 (96.2; 98.2)

Table 2. Stratified estimates of sensitivity and specificity of IFAT, FTD and MPX tests for paediatric 
RSV infection and a Bayesian P-value for the difference in the stratified estimates.

Test 
parametera

Covariate Bayesian P-valueb

Age

<6 months Estimate (95% PCI) ≥6 months Estimate (95% PCI)

SeIFAT 94.3 (91.5; 95.1) 91.0 (84.8; 94.8) 0.89

SeFTD 98.2 (94.7; 99.8) 96.7 (91.5; 99.3) 0.75

SeMPX 97.6 (94.0; 99.5) 96.7 (91.2; 99.5) 0.64

SpIFAT 98.8 (97.3; 99.6) 99.1 (98.0; 99.6) 0.37

SpFTD 98.1 (96.4; 99.1) 96.7 (94.9; 97.9) 0.91

SpMPX 99.5 (98.4; 100.0) 99.7 (98.5; 100.0) 0.39

Sex

Female Estimate (95% PCI) Male Estimate (95% PCI)

SeIFAT 92.5 (87.5; 95.0) 93.8 (90.2; 95.1) 0.29

SeFTD 97.1 (92.5; 99.3) 98.2 (94.1; 99.8) 0.31

SeMPX 98.7 (94.2; 100.0) 96.2 (91.8; 98.7) 0.86

SpIFAT 98.8 (97.4; 99.6) 99.1 (98.0; 99.6) 0.35

SpFTD 96.9 (94.8; 98.3) 97.5 (96.1; 98.5) 0.27

SpMPX 99.6 (98.1; 100.0) 99.7 (98.8; 100.0) 0.48

Pneumonia status

Severe Estimate (95% PCI) Very severe Estimate (95% PCI)

SeIFAT 94.0 (90.9; 95.1) 91.3 (84.0; 94.9) 0.83

SeFTD 97.8 (94.2; 99.5) 96.9 (91.1; 99.5) 0.64

SeMPX 96.9 (93.1; 99.0) 98.3 (92.6; 99.9) 0.29

SpIFAT 98.9 (97.8; 99.6) 99.0 (97.7; 99.6) 0.47

SpFTD 97.5 (96.1; 98.5) 96.8 (94.6; 98.3) 0.75

SpMPX 99.7 (98.8; 100.0) 99.6 (98.0; 100.0) 0.56

a Median estimates
b Value is significant if outside the interval 0.025; 0.975

Parameter Estimate (95% PCI)

SpMPX 99.7 (99.0; 100.0)

P 22.2 (20.1; 24.5)

NPVIFAT 98.2 (97.3; 98.7)

NPVFTD 99.4 (98.4; 99.8)

NPVMPX 99.3 (98.3; 99.8)

PPVIFAT 96.5 (93.5; 98.4)

PPVFTD 91.4 (87.7; 94.2)

PPVMPX 99.1 (96.3; 99.9)

γsea 0.89 (0.01; 3.67)

γspa 0.13 (0.001; 0.83)
aValue is significant if the 95% PCI excludes zero.
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discordance in the Sp results between the two assays may be  
reflective of the non-Sp of the RSV matrix gene targeted  
by FTD as compared to MPX’s nucleoprotein gene target that  
permits the latter to effectively discriminate between RSV A and  
B viruses6.

All the tests yielded high NPV and PPV values. As for PPVs, 
the FTD estimate was lower than MPX but comparable to IFAT 
– a pattern explained by the tests’ specificities. The strong 
confidence in both negative and positive test outcomes real-
ised from these high predictive values is especially pivotal in 
patient management so as to: (1) establish the diagnosis of 
viral as opposed to bacterial cause of respiratory illness hence 
lessen unnecessary antibiotic prescriptions46, (2) minimise 
supplementary testing such as blood tests and chest X-rays47, 
(3) support cohorting of children to limit nosocomial spread 
within facilities48 and (4) shorten the duration of hospital stay49. 
Despite the observed good performance of the PCR diagnos-
tics for RSV, their applicability in many resource-limited set-
tings (outside research) is constrained attributable to their high 
costs and requirement of well-trained personnel. Accordingly, 
granted IFAT’s similar performance (to the PCR assays) cou-
pled with its relative affordability, these attributes lend the test 
suitable for long-term use in resource-poor settings to foster 
patient care and surveillance activities aimed at quantifying RSV 
burden.

A noteworthy caution is that the estimates derived in the 
present study relate strictly to severely ill hospitalised chil-
dren. Since patients presenting to outpatient facilities with less 
severe illness may, conceivably, harbour lower viral titres in 
respiratory secretions, generalisability of our findings to this 
population is not guaranteed.

Conclusions
We have derived the Se and Sp and predictive values of IFAT, 
FTD and MPX for diagnosis of RSV infection in a paediatric 
population admitted with severe acute respiratory illness. The 
tests registered high (>93%) Se and Sp estimates, with cor-
respondingly high NPV and PPV values. Notably, the tests’ 
characteristics were unaffected by age, sex or pneumonia  
status of the admitted patient. The strong accuracy recorded by 

the standard IFAT test renders it suitable for continued use in 
patient care and surveillance activities for RSV infection within 
populations of children hospitalised with severe respiratory 
illness.

Data availability
Underlying data
Since the raw dataset carries sensitive information on par-
ticipants, it has been stored under restricted access. Access is 
available for researchers and can be applied for by placing a 
request to our Data Governance Committee at dgc@kemri-
wellcome.org. The replication data and analysis scripts for this 
manuscript are available from the Harvard Dataverse.

Harvard Dataverse: Replication data for: Accuracy of diag-
nostic tests for respiratory syncytial virus infection within 
a paediatric hospital population in Kilifi County, Kenya. 
https://doi.org/10.7910/DVN/LWFP3030.

This project contains the following underlying data:
• BLCM_RSV_tests_code.R (R script for analysis)

• KCH_RSV_tests_data.tab (Analysis dataset)

• MweuMarshal_RSV_Diagnostics_Codebook.pdf (Data 
dictionary containing variable description and value 
labels)

• MweuMarshal_RSV_Diagnostics_Readme.txt (Readme 
file)

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain 
dedication).
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vague". Although authors are right that the clinical usefulness (if any) of detecting these low levels 
of virus "remains vaque", I do not agree that this "compromises their Sp". Sp, specificity, is an 
exact finding, clinical usefulness the interpretation thereof.
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