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Abstract

The cumulative impact of chronic inflammation in patients with inflammatory bowel diseases 
predisposes to the development of inflammatory bowel disease-associated colorectal cancer [IBD-
CRC]. Inflammation can induce mutagenesis, and the relapsing–remitting nature of this inflammation, 
together with epithelial regeneration, may exert selective pressure accelerating carcinogenesis. The 
molecular pathogenesis of IBD-CRC, termed the ‘inflammation–dysplasia–carcinoma’ sequence, is 
well described. However, the immunopathogenesis of IBD-CRC is less well understood. The impact 
of novel immunosuppressive therapies, which aim to achieve deep remission, is mostly unknown. 
Therefore, this timely review summarizes the clinical context of IBD-CRC, outlines the molecular and 
immunological basis of disease pathogenesis, and considers the impact of novel biological therapies.
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1.  Introduction

Inflammatory bowel disease [IBD] describes chronic immune-
mediated conditions characterized by relapsing–remitting inflam-
mation of the gastrointestinal tract. Ulcerative colitis [UC] and 
Crohn’s disease [CD] are the dominant phenotypes and prevalence 
is estimated to be as high as 1 in 125 [0.8%] in countries such 
as the UK.1 While prevalence is rising throughout the world, the 

greatest acceleration is observed in newly industrialized countries: 
since 1990 Africa, Asia and South America have seen an annual 
percentage change of +11.1% (95% confidence interval [CI] 4.8, 
17.8) for CD and +14.9% [95% CI 10.4, 19.6] for UC.2 With 
an ageing population compound prevalence suggests that IBD-
associated colorectal cancer [herein IBD-CRC] could become an 
emerging global issue.
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Over the past two decades, we have defined IBD-CRC through the 
inflammation–dysplasia–carcinoma sequence [Figure 1]. However, 
many fundamental questions remain, including elucidation of dis-
ease immunopathogenesis. The impact of potent immunosuppressive 
therapies in IBD, which aim to achieve ‘deep remission’, is mostly 
unknown and their subsequent effect on IBD-CRC is yet to be es-
tablished. This timely review summarizes the epidemiological and 
clinical context of IBD-CRC, outlines molecular and immunological 
disease pathogenesis, and considers the impact of novel biological 
therapies.

2.  Patients with IBD are at Increased Risk for 
Developing CRC with a Poor Prognosis

A 2012 meta-analysis of population-based cohort studies [n = 10,385 
patients] reported that patients with UC have an increased risk of 
developing CRC [standardised incidence ratios (SIR) 2.4, 95% CI 
2.1, 2.7], especially if they are male, have extensive colitis and are 
young when diagnosed with UC.3 A more recent study by Olén and 
colleagues [n = 96 447 UC and n = 949 207 control patients] re-
ported that, while the incidence of UC-CRC may be decreasing in 
Scandinavian countries, patients with UC have a 1.7-fold increased 
risk for incident CRC compared with matched controls.4

For CD, Canavan and colleagues published a meta-analysis 
[n = 11 840 patients] that reported the relative risk for developing 
CRC in those with colonic disease is 4.5 [95% CI 1.3, 14.9], with a 
cumulative risk of 2.9% [95% CI 1.5, 5.3] 10 years after diagnosis.5 
A  prospective cohort study from Hong Kong [n  =  2621 patients] 
reported that patients with CD have an increased risk of anorectal 
cancer [SIR 4.11, 95% CI 1.84, 9.14].6 A more recent study by Olén 
and colleagues [n  =  47  035 CD and n  =  463,187 matched refer-
ence individuals] also demonstrated increased CRC incidence in CD: 
hazard ratio [HR] 1.40 [95% CI 1.27, 1.53].7

There is also an increased IBD-CRC risk for paediatric patients; 
a 2018 review [n = 271 patients] concluded that, while rare, CRC is 
the most common fatal malignancy in paediatric IBD patients.8

IBD-CRC confers a poor prognosis. A  large meta-analysis 
[n  =  3472 patients] reported that patients with IBD-CRC have 
poorer overall survival compared to patients with sporadic[S]-CRC 
[HR 1.24 95% CI 1.19, 1.29].9 These patients were more likely to 
have proximal tumours [odds ratio [OR] 2.52, 95% CI 1.35, 4.72) 
and poorer histopathological differentiation [OR 1.59, 95% CI 

1.26, 1.99]. Olén and colleagues also reported patients with UC 
have a 1·6-fold increased risk of death from cancer, compared with 
S-CRC.4 Similarly, patients with CD have increased mortality com-
pared with matched controls [HR 1.42, 95% CI 1.16, 1.75], when 
adjusted for tumour stage.7 Reported differences between IBD-CRC 
and S-CRC prognosis are probably due to differences in tumour 
biology [Table 1].10

3.  IBD-CRC Develops from Dysplasia and 
Inflammation is a Critical Initiating Factor

With an increasing global prevalence of IBD, and patients living 
longer, it is important to consider the cumulative impact that mul-
tiple occurrences of acute and chronic inflammation have on the 
development of IBD-CRC. Clinicians strive to modulate natural dis-
ease progression at a very early stage, often using potent agents to 
achieve early mucosal healing. The ‘top down’ or ‘treat to target’ 
approach aims to reduce the risk of hospitalizations, future use of 
biologics and surgery. While lower colectomy rates are desirable, 
preservation of damaged colorectum, particularly in the setting of 
potent immunomodulation, is unknown and could result in an in-
creased incidence of IBD-CRC. Understanding the molecular and 
immunological pathogenesis of IBD-CRC is therefore important for 
clinicians and scientists to develop new therapies that achieve deep 
remission and reduce IBD-CRC risk.

Our current understanding of S-CRC is defined through the se-
quential histological and genetic changes known as the adenoma–
carcinoma sequence [Figure 2A]. In contrast, IBD-CRC develops 
through the ‘inflammation–dysplasia–carcinoma’ sequence [Figure 
2B]. Here, low-grade dysplasia develops on a background of mucosa 
that has been genetically altered by chronic inflammation and is at 
increased risk of malignant progression. Inflammation can induce 
mutations and the relapsing–remitting nature of this inflammation 
with proliferative epithelial regeneration exerts selective pressure 
that accelerates evolution.11 Increased reactive oxygen species pro-
duction and lipid peroxidation and decreased antioxidant capacity 
with increased oxidative DNA damage in IBD are likely mechanisms 
that drive mutagenesis.12,13

Mutations that contribute to IBD-CRC pathogenesis are similar 
to those implicated in S-CRC; however, the order that mutations 
are accrued is often described as ‘reversed’. Early loss of TP53 
function is a hallmark of IBD-CRC, with mutations observed in 

Development of In�ammatory Bowel Disease-Associated Colorectal Cancer
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Figure 1. Clinical photographs and photomicrographs of IBD-CRC. Endoscopic images and histopathology photomicrographs illustrate the development 
of inflammatory bowel disease-associated colorectal cancer [IBD-CRC] through the ‘inflammation–dysplasia–carcinoma’ sequence. Histopathology 
photomicrographs provided by Lothian NRS Bioresource [M.J.A.] and colonoscopy images provided by Edinburgh IBD Unit [S.D.].
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diploid, non-dysplastic epithelial cells, and they precede TP53 
loss of heterozygosity.14 In contrast, S-CRC TP53 mutations occur 
late.14 KRAS activating mutations are important alternative gate-
keeper mutations that occur later and less frequently in IBD-CRC 
[~20% of cases].15 Hypermethylation of the tumour suppressor 
gene MLH1 also occurs earlier in IBD-CRC, and this contributes to 
microsatellite instability [MSI] in an important subset of cancers, 
similar in frequency to that observed in S-CRC.16 Dysregulation of 
the Wnt signalling pathway plays an important role in IBD-CRC, 
with ~55% of dysplastic lesions and up to 100% of cancers ex-
pressing nuclear β-catenin.17 However, unlike the S-CRC pathway, 
which has early loss of APC function leading to aberrant Wnt 
signalling, APC function is lost late in IBD-CRC and only occurs in 
<50% of cases.15,18 This may be explained by inflammation-driven 
upregulation of β-catenin in IBD-CRC, which can induce APC 
mutation-independent Wnt signalling.19

Throughout the IBD colon, genetic and epigenetic abnormalities 
develop in histologically normal mucosa and can expand to form 
pre-malignant patches.20 IBD patients have dysplastic lesions with 
increased chromosomal instability compared with sporadic aden-
omas.21 Chronic inflammation is the underlying mechanism that 
leads to telomere shortening, and thus chromosomal instability,22 
in pre-malignant IBD mucosa.23 This induces senescence, which 
acts as a tumour-suppressor mechanism to prevent progression past 
low-grade dysplasia. Mutant intestinal epithelial cells [IECs] eventu-
ally escape senescence and progress—this is associated with telomere 
lengthening and loss of TP53 function.

The mutational landscape of cancer is diverse; our recent muta-
tional analysis of 34 IBD-CRCs identified six distinct mutational sig-
natures.24 In S-CRC with MSI, patients have a better prognosis by at 
least 15%, probably due to a cumulative mutational burden with re-
sulting anti-tumour immune cell responses.25 In IBD-CRC, proximal 

Table 1. IBD-CRC is distinct from S-CRC. This table illustrates the key epidemiological, pathophysiological and clinical differences between 
sporadic [S-CRC] and inflammatory bowel disease-associated colorectal cancer [IBD-CRC]

S-CRC IBD-CRC

Epidemiology
 Disease burden 10% of global cancer diagnoses.100 IBD patients have a higher incidence of 

CRC, possibly >60%.4,7,101

 Sex Male preponderance.100,102 Male preponderance.3

 Age Older age of onset [>50 years old]; an increasing 
incidence in younger patients.102

Younger age of IBD onset.3 Paediatric  
IBD-CRCs can develop.8 Patients with IBD 
are living longer.1

 Risk factors Diet, smoking, obesity, family CRC history, 
H. pylori, alcohol [J-shaped  
association likely], colonic polyps and 
others.103–106

Extensive colitis, increased duration of  
disease, family history of S-CRC, PSC.107–109

Disease pathogenesis
 Pre-malignant lesion Adenomatous polyps [polypoid/sessile].110 Flat dysplasia. Genetic aberrations seen 

[TP53 mutations] in histologically normal 
mucosa.11,14,17

 Molecular sequence Mostly adenoma–carcinoma sequence [slow].110 Inflammation-dysplasia-carcinoma sequence 
[fast].11

 Genetic aberrations Chromosomal instability, microsatellite in-
stability and CpG island methylator phenotype 
[CIMP] pathways [not mutually exclusive]. 
Early and more frequent APC mutations. Late 
and frequent TP53 mutations.14,15,111,112

Mutation sequence is ‘reversed’: early TP53 
mutation, late and infrequent loss of APC, 
earlier MSI, later KRAS mutations.14–16

  Contribution of inflammation and  
regeneration to the initiation of cancer

Promotes cancer progression.113 Drives mutagenesis and selects for  
mutagenic clones.11–13

  Contribution of inflammation to the  
progression to cancer

Tumour-promoting inflammation is critical for 
most cancers, including colorectal cancer.113

Critical pathways signal through NF-κB and 
IL-6/STAT3.26–32,35–40,42,46,114 Th17 cells and 
associated cytokines are generally  
pathogenic.30,43,45,47–49,52,53,55,56,58,115

Clinical features
 Endoscopic characteristics Commonly raised/polypoidal lesions; some 

sessile.
Flat dysplasia. Synchronous and recurrent 
tumours. 

 Histological characteristics Majority adenocarcinoma. Comparatively  
favourable differentiation; fewer contain  
mucinous/signet ring cell morphology.116

Majority adenocarcinoma. Mucinous/signet 
ring cell differentiation is more common.10,116

 Mortality and prognosis Prognosis is improving, especially if diagnosed 
early.102

Poor prognosis compared with S-CRC 
[2-fold].117 Increase in recurrence [3-fold].10 
Poor prognosis associated with PSC, male 
sex, extensive colitis and early age of diag-
nosis.4,7,9,10,107,108,118 

Abbreviations: APC [adenomatous polyposis coli]; IBD-CRC [inflammatory bowel disease-associated colorectal cancer]; IL-6 [interleukin-6]; KRAS [Kirsten 
rat sarcoma viral oncogene homologue]; MSI [microsatellite instability]; NF-κB [nuclear factor kappa-light-chain-enhancer of activated B cells]; PSC [primary 
sclerosing cholangitis]; qFIT [quantitative faecal immunohistochemical test]; S-CRC [sporadic colorectal cancer]; UC [ulcerative colitis]; STAT3 [signal transducer 
and activator of transcription 3].
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tumours have high mutational rates, are associated with MSI [espe-
cially loss of MLH1 and defects in DNA POLE proofreading func-
tion], and have a higher predicted neo-epitope load,24 suggesting 
increased immunogenicity. It is unknown if or how chronic inflam-
mation in IBD influences the development of IBD-CRC mutational 
signatures or molecular phenotypes.

4.  Dysregulation of Critical Immune-Mediated 
Pathways in IBD-CRC

4.1.  NF-κB and IL-6/STAT3 signalling pathways 
promote IBD-CRC
The two most comprehensively studied pro-inflammatory 
and pro-tumour pathways in IBD-CRC are the nuclear factor 

kappa-light-chain-enhancer of activated B cells [NF-κB] and 
interleukin [IL]-6/signal transducer and activator of transcrip-
tion [STAT]3 signalling pathways. These pathways are well estab-
lished26–28 [Figure 3].

In summary, inhibition of the canonical NF-κB pathway abro-
gates tumorigenesis in the azoxymethane [AOM]/dextran sulphate 
sodium [DSS] mouse model by two main mechanisms: [1] IKKβ 
deletion in myeloid cells reduces both intestinal inflammation and 
tumour size through decreased production of pro-inflammatory 
cytokines (IL-1α, IL-1β, IL-6, KC, MIP-2, tumour necrosis factor 
[TNF]-α, COX-2 and ICAM), and [2] IKKβ deletion in IECs re-
duces tumour incidence and is associated with apoptosis; however, 
it does not reduce inflammation.29 Non-canonical NF-κB signalling, 
mediated by NF-κB-inducing kinase signalling [NIK], contributes 
to intestinal homeostasis through maintenance and differentiation 
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Figure 2. Contemporary model for the molecular pathogenesis of [A] sporadic and [B] IBD-associated colorectal cancer. Sporadic colorectal cancer [S-CRC] 
develops through the ‘adenoma–dysplasia–carcinoma sequence’ whereas inflammatory bowel disease-associated colorectal cancer develops through the 
‘inflammation–dysplasia–carcinoma’ sequence. The figure illustrates genetic mutations that can contribute to cancer development.
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of microfold [M]-cells [specialized epithelial cells of mucosal-
associated lymphoid tissue], and local and systemic IL-17A and IgA 
production.30 Mice with intact NIK are protected against colitis; 
however, constitutively activated NIK signalling worsens colitis and 
is associated with increased IL-17A production and ectopic colonic 
M-cells.30 NF-κB signalling can also be driven by genetic aberra-
tions: mutant p53 augments and prolongs the response of IECs to 
low levels of inflammatory cytokines, resulting in chronic NF-κB 
activation, which promotes persistent tissue damage and inflam-
mation.31 Mutant p53 mice exposed to DSS are prone to colitis-
associated cancer: the gain-of-function mutation is associated with 
flat dysplastic lesions that progress to cancer, similar to those seen 
in IBD-CRC.31

TNF-α is the quintessential pro-inflammatory cytokine and can 
bind to either of its receptors [TNFR1 or TNFR2] and induce in-
flammation through either canonical or non-canonical NF-κB 
signalling pathways. There are data suggesting TNF-αα can enhance 
Wnt signalling through NF-κB actvation32 and promote mucosal re-
generative healing through colonic epithelial stem and progenitor 
cell populations.33 A protective role for TNF is perhaps controver-
sial. Nonetheless, this is important to consider in IBD-CRC as IEC 
p53 stabilization post-immune activation is dependent on TNFR1/2 

and inducible nitric oxide synthase [iNOS].34 TNF-α-induced iNOS 
activates a p53-dependent pathway of IEC apoptosis, and this may 
hypothetically be prevented in patients receiving anti-TNF treat-
ment. This could mean that without p53 wild-type function, such 
as during early IBD-CRC, damaged IECs evade apoptosis and thus 
have selective advantage.34

NF-κB signalling in immune and epithelial cells upregulates IL-6 
and constitutively activates STAT3 in human tumours, maintaining 
NF-κB signalling.35 Thus, IL-6/STAT-3 and NF-κB signalling are not 
mutually exclusive. IL-6/STAT3-deficient mice treated with AOM/
DSS have a reduced tumour burden compared with wild-type 
mice.36,37 This is because IL-6, produced mainly by bone marrow-
derived myeloid cells, such as macrophages and dendritic cells [along 
with some T-cells], increases IEC proliferation and resistance to 
apoptosis through the STAT3-dependent pathway.36,37 Furthermore, 
STAT3 acts as a critical mediator for stimulating cell survival [bcl-x, 
survivin, Hspa1a] and proliferation [cdk4/cyclinD1, cdc2/cyclinB1, 
cMyc, RegIIIb/PAP], through G1 and G2/M phases of the cell cycle 
to promote carcinogenesis.37

Increased IL-6 expression in UC is also associated with reduced 
nuclear expression of MSH3, and this increases with duration of dis-
ease, as well as when dysplasia then cancer develops; expression in 
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UC-CRC is higher than in S-CRC.38 This suggests a link between IL-6 
signalling and MSI in IBD-CRC. Trans-IL-6 signalling, in which IL-6 
binds to soluble IL-6R and dimerizes with gp130 on cells that do not 
express IL-6R, is also important; macrophage-derived IL-6/soluble 
IL-6Rα is particularly important.39,40

STAT3 signalling can also be induced by other cytokines, such as 
IL-11, which may be more potent.41 STAT3 is important to Th17 cell 
function as FAM64A, a multifunctional protein involved in cell cycle 
progression, drives the IL-6/STAT signalling pathway and induces 
Th17 differentiation in AOM/DSS-induced murine colitis.42

4.2.  Th17 cells and associated cytokines 
promote IBD-CRC
Patients with IBD have increased numbers of Th17 cells and asso-
ciated cytokines [IL-17, IL-21 and IL-22] in their intestinal mucosa 
and peripheral blood, compared with healthy controls.43 It is im-
portant to differentiate IL-17A [which promotes inflammation and 
tumorigenesis] from IL-17F [which is protective against IBD-CRC, 
possibly by inhibiting angiogenesis].44,45 IL-6/STAT3 signalling is 
also involved in the induction of T-cell RORγt expression, which is 
a key transcription factor of Th17 cells.46 However, Th17 cells dem-
onstrate functional plasticity and can convert into interferon [IFN]-γ 
producing Th1 cells or regulatory T-cells.47

IL-23 is produced by many antigen presenting cells and plays an 
important role in maintaining the Th17 cell phenotype.48 In IBD-
CRC, data suggest Baft-dependent IL-23+IL-6+CD4+Th17 cells, ra-
ther than RORγt-dependent Th17 cells, mediate downstream effects 
of IL-23.49 IL-23 and IL-12 are part of the IL-12 family of cyto-
kines, both share the p40 subunit, and they heterodimerize with 
p19 or p35, respectively.50,51 p47phox is a protein of NADPH oxi-
dase that regulates induction of the TLR9-induced IL-12/Th1 axis. 
In AOM/DSS-treated mice, IL-12p35−/− mice have reduced colitis 
but increased susceptibility to CRC, whereas p47phox−/− mice have 
worsened colitis but reduced tumour growth.52 Therefore, tilting the 
IL-23/IL-12 balance toward IL-12 might reduce tumorigenesis in 
IBD-CRC. However, this is not viable as this would probably worsen 
IBD symptoms.52

IL-22 is a pleiotropic cytokine, part of the IL-10 family, that is 
produced by mature Th17 cells through IL-23-mediated STAT3 acti-
vation.47 In Rag2−/− mice with Helicobacter-associated colitis, IL-22 
induces iNOS within IECs, which induces DNA damage and dys-
plasia.53 Patients with IBD have increased CD4+ T-cells that produce 
high levels of IL-22 binding protein [IL-22BP]: IL-22BP is a soluble 
IL-22 receptor, without a transmembrane/intracellular domain, that 
binds to and neutralizes IL-22. The anti-inflammatory effects of TNF-
α antibodies have been associated with reduced levels of IL-22BP.54 
IL-22BP is highly expressed in dendritic cells and during NLRP3 
or NLRP6 inflammasome activation, such as in IBD; inflammasome 
activation can lead to IL-18-dependent IL-22BP downregulation. 
IL-22BP−/− mice also show strongly accelerated tumour growth.55 
Pleiotropic effects are likely because IL-22 is initially protective in 
inflammation, but induces tumorigenesis if uncontrolled during res-
titution of inflammation.55 Therefore, dysregulation of the IL-22/
IL-22BP axis may play a pivotal role in IBD-CRC development, per-
haps in the context of anti-TNF therapy.

IL-21 is a multifunctional cytokine produced mainly by T-cell 
subsets such as follicular helper T-cells and Th17 cells. Some studies sug-
gest IL-21-deficient mice are protected from DSS and trinitrobenzene 
sulfonic acid [TNBS]-induced colitis and this is likely because they 
are unable to upregulate Th17 responses.56 However, other studies 
have suggested that IL-21 signalling, through IL-21R, is protective in 

DSS-treated mice due to downregulation of Th1 and upregulation of 
Th2, Th17 and Treg responses.57 Studies have reported a reduced tu-
mour burden in AOM/DSS-treated IL-21−/− mice,58 and the underlying 
mechanism may be due to a reduced number of infiltrating T-cells, 
reduced STAT3 signalling and thus reduced IL-17A and IL-6.58

4.3.  Recent advances in the immunopathogenesis 
of IBD-CRC
There remains a paucity of data characterizing the immune cell land-
scape in human IBD-CRC. From the studies that exist, IBD-CRC 
has a lower number of immune cells expressing CD3, CD8, Foxp3 
or PD-L1; 59 increased CD3+ and CD8+ lymphocytes are associated 
with improved prognosis.59 There is a need to comprehensively char-
acterize the cells and cytokines that define the inflammation–dys-
plasia–carcinoma sequence.

The role of macrophages in IBD-CRC is poorly defined. 
Macrophages and mast cells infiltrate the colonic submucosa in a 
stage-dependent manner in the progression from inflammation to 
dysplasia to cancer.60 Macrophage migration inhibitory factor [MIF] 
mediates macrophage and T-cell recruitment and MIF−/− mice treated 
with AOM/DSS have an increased tumour burden, associated with 
lower levels of macrophages.61 Fibrinogen-like protein 2 [Fgl2] may 
be important for macrophage recruitment with/without polariza-
tion as Fgl2 loss induces M1-polarized and suppresses M2-polarized 
macrophages; Fgl2 may therefore reduce inflammation and IBD-
CRC.62 In contrast, TGFβ promotes macrophage recruitment 
through expression of CCR2 in the tumour microenvironment, and 
myeloid-cell TGFβ2 expression worsens AOM/DSS-induced tumori-
genesis. Conditional TGFβ2 knock-out mice have reduced IL-6 and 
TNF-α expression, and increased numbers of Foxp3+ T-regulatory 
cells [Tregs] in the early stages of carcinogenesis.62 This suggests a 
pathogenic role of TGFβ signalling via macrophages in IBD-CRC. 
This hypothesis is strengthened by a study that reported conju-
gated linoleic acid ameliorated DSS-induced murine colitis through 
a macrophage PPARγ receptor-dependent pathway, whereas PPARγ 
activation induced TGFβ production by macrophages and T-cells 
that increased tumourigenesis in AOM/DSS-induced colitis.63

A novel subset of Foxp3+RORγt+ T-cells have been described and 
were thought to represent an intermediate stage during differenti-
ation between immunosuppressive Tregs and proinflammatory Th17 
cells. However, these cells can also be stable and functional [regula-
tory] in the intestine. Patients with IBD have increased expression of 
this unique T-cell subset, associated with IBD-dysplasia.64–66 A recent 
study using AOM/DSS-treated mice reported that Foxp3+RORγt+ 
T-cells reduce the expression of FoxO3 in tumour infiltrating den-
dritic cells—FoxO3 is a transcription factor that controls the pro-
duction of IL-6 by antigen presenting cells. This results in aberrant 
IL-6 signalling that upregulates STAT3 and induces proliferation of 
dysplastic cells.66

Barcode sequence analysis using 16S [MiSeq for bacteria] and 
ITS2 [pyrosequencing for fungi] reported a difference in bacterial, 
but not fungal, microbiome populations in IBD-CRC patients com-
pared with both healthy controls and S-CRC.67 Compared with 
S-CRC, IBD-CRC patients have increased abundance of the family 
Enterobacteriaceae family and genus Sphingomonas and reduced 
abundance of the genera Fusobacterium and Ruminococcus.67 The 
mechanistic, clinical and therapeutic consequences of microbial 
dysbiosis in IBD-CRC are poorly understood. Some bacteria, such 
as Bacteroides fragilis, are protective68,69 whereas others such as 
Streptococcus gallolyticus are pathogenic.70 Faecal microbial trans-
plantation [FMT] is being trialled as a therapy for IBD, with variable 
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success. Transplantation of carcinogenic bacteria may occur during 
FMT; robust screening and appropriate follow-up is needed to min-
imize FMT-associated IBD-CRC.71

Antimicrobial peptides, such as cathelicidin/LL-37, are essen-
tial for maintaining intestinal homeostasis. It is unsurprising that 
AOM/DSS-treated cathelicidin-related antimicrobial peptide knock-
out mice have an increased tumour burden.72 This field is in its in-
fancy and further work is required to determine whether bacteria 
and/or defence peptides play a significant role in the development 
of IBD-CRC.

Zhong and colleagues recently reviewed conflicting data on 
caspase recruitment domain-containing protein 9 [CARD9], an 
adaptor protein that can mediate inflammation.73 The pro-tumour 
role for CARD9 may be through IL-1β-mediated STAT3 activation; 
however, whether CARD9 contributes to inflammasome-mediated 
cytokine production and whether intestinal fungi promote or pre-
vent IBD-CRC are undetermined.73

The immunomodulatory role of the appendix has also recently 
attracted interest, as appendicectomy has been shown to induce 
clinical improvement in UC.74 However, appendicectomy is also 
associated with an increased risk of developing IBD-dysplasia and 
IBD-CRC.75 While trials are ongoing,76 mechanistic data elucidating 
the impact of appendicectomy on the gut microbiota and immune 
cell responses are currently lacking.

5.  Immunosuppression can be a Double-
Edged Sword in IBD-CRC

The pro- or anti-tumour effects of 5-aminosalicylate, traditional 
immunomodulators [e.g. thiopurine] and anti-TNF therapy in IBD 
have been extensively discussed elsewhere.77–79 IBD Cancer and 
Serious Infection in Europe [I-CARE] is an ongoing prospective, lon-
gitudinal, observational, multicentre [n = 16 countries] cohort study 
that aims to determine the risk of developing cancer or serious in-
fections in IBD patients receiving immunosuppressive and biological 
therapies [NCT02377258]. Newly identified signalling pathways 
that can be manipulated to ameliorate inflammation may have unin-
tended carcinogenic effects. This section explores the potential pro- 
or anti-tumour effects of the latest targeted IBD biological and small 
molecule therapies.

5.1.  Therapeutic manipulation of the IL-12/IL-23 axis
Ustekinumab is a humanized monoclonal antibody that binds to 
the p40 subunit that comprises both IL-12 and IL-23.80 The im-
pact of p40 neutralization on IBD-CRC development is mostly 
unknown; however, the impact of neutralizing IL-12 and IL-23 ac-
tivity can be considered separately. IL-12 induces anti-tumour im-
munity [involving IFN-γ, CD4+ and CD8+ T-cells]81 whereas IL-23 
can promote carcinogenesis involving IL-17-associated pathways.52 
Teng and colleagues investigated the impact of IL-23 and IL-12 on 
methylcholanthrene-induced p53 mutant cancers in murine models 
and reported that IL-23p19 inhibition reduced the malignant po-
tential of colonic lesions whereas IL-12/23p40 inhibition enhanced 
tumour outgrowth.82 Therefore, neutralizing p40 may have some 
theoretical or potential pro-tumour effects in humans. A  random-
ized control trial involving 961 patients with moderate-to-severe UC 
reported one case of colonic and one case of rectal cancer in patients 
receiving ustekinumab [n = 825] over 52 weeks, compared with zero 
CRC in patients receiving placebo [n = 319].83 An observational co-
hort study has started recruiting patients to assess the long-term 

safety of ustekinumab compared with other biologics in CD; the pri-
mary outcome is incidence of malignancy with a time frame of up to 
12 years [NCT04372108].

Targeted anti-IL-23 therapies are thus being explored for IBD 
as, theoretically, targeted IL-23 blockade therapy may ameliorate 
inflammation and reduce the risk of IBD-CRC.84 Anti-IL-23 ther-
apies against the p19 subunit are being trialled for CD patients com-
pared with ustekinumab, including risankizumab [NCT04524611], 
mirikizumab [NCT03926130] and guselkumab [NCT03466411]. 
All trials have relatively short follow-up periods, which limits their 
usefulness for inferring overall IBD-CRC risk.

5.2.  Therapies targeting leukocyte trafficking
α4β7 is an integrin [a transmembrane protein that facilitates cell 
adhesion] expressed on lymphocytes and is associated with in-
creased responsiveness to pro-inflammatory cytokines IL-6, IL-7 
and IL-21.85 α4β7 allows peripheral lymphocytes to bind with mu-
cosal addressin cell adhesion molecule-1 [MAdCAM-1] on intestinal 
endothelial cells, which allows lymphocytes to undergo diapedesis 
into the lamina propria.

Vedolizumab is the first humanized, gut-selective antibody used 
to treat IBD that blocks α4β7 integrin-expressing lymphocytes from 
trafficking from the systemic circulation into the lamina propria.86 
Data generally support no increased risk of malignancy in patients 
receiving vedolizumab: a retrospective analysis of 1087 patients re-
ported only one case of IBD-CRC.87 However, median follow-up in 
this study was only 302 days, which is too short to determine the 
true risk of malignancy.87 These findings are supported by other data, 
such as a study that reports four CRC cases in a population of >2800 
patients, which translates to 0.1/100 person years, and is no different 
to the background IBD risk [2.1/1000 person years, 95% CI 1.3, 
3.2].88 A recent retrospective cohort study reported no increased risk 
of new or recurrent cancer among patients with IBD and a history 
of cancer who were treated with vedolizumab or anti-TNF therapy, 
compared with patients who did not receive immunosuppression 
[follow-up median 6.2 person years].89 Caution may be warranted, 
especially in patients with concurrent primary sclerosing cholangitis 
[PSC]. A retrospective observational cohort study [median follow-up 
of 19  months] reported that, of 75 patients with IBD and PSC 
treated with vedolizumab, nine developed digestive neoplasia [ seven 
of which were colorectal cancers].90 While there are no published 
data for similar therapies, there is an ongoing large interventional 
trial investigating etrolizumab in UC [9 years follow-up] that may 
reveal data regarding IBD-CRC risk [NCT02118584].

Preliminary data suggest MAdCAM antibodies are efficacious in 
IBD, especially UC.91 No studies have assessed the impact of MAdCAM 
antibodies on IBD-CRC development; however, MAdCAM-1 expres-
sion is reduced in colonic adenocarcinomas.92 This could suggest that 
blocking MAdCAM may be advantageous for tumour development, 
warranting further investigation. There is an ongoing safety exten-
sion study investigating ontamalimab [MAdCAM-1 inhibitor] for the 
treatment of moderate to severe IBD [NCT03283085].

5.3.  Small molecule therapies
Compared with monoclonal antibodies, small molecules are at-
tractive as they have no inherent immunogenicity [they are synthetic 
drugs rather than proteins], can be administered orally and have 
relatively stable and predictable pharmacokinetics. Small molecules 
include janus kinase [JAK] inhibitors, tyrosine kinase inhibitors and 
sphingosine-1-phosphate [S1P] receptor antagonists.
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Cytokines principally impact immune cell function by 
signalling through JAK/STAT pathways. As previously discussed, 
targeting these pathways could theoretically improve colitis and 
reduce the risk of IBD-CRC. With JAK inhibitors, the extent of 
signal inhibition is related to the target of the small molecule [i.e. 
pan vs selective JAK inhibition]. Most data relate to tofacitinib: 
data from 1157 patients who received tofacitinib [a JAK3-specific 
inhibitor, with lesser activity against JAK1/JAK2] reported that 
11 patients developed malignancy [excluding non-melanoma 
skin cancer], one of which was colorectal adenocarcinoma—the 
risk of malignancy was not significant [incidence rates (IR) 0.7, 
95% CI 0.3, 1.2].93 However, we must be cautious as these data 
are only over 4.4 years. Another study reported that 2/1124 pa-
tients receiving tofacitinib developed CRC [IR 0.08, 95% CI 0.01, 
0.27], with evaluation up to 6.8 years; however, one cancer pos-
sibly developed prior to tofacitinib therapy.94 Data from other 
JAK inhibitors are on the horizon for IBD, such as TD-1473 
[NCT03920254], filgotinib [NCT02914600, NCT02914535] and 
upadacitinib [NCT03345823, NCT02782663, NCT03006068]. 
Tyrosine kinase inhibitors may also be therapeutic in IBD, and 
deucravacitinib [BMS-986165] is an allosteric inhibitor of tyro-
sine kinase 2 under investigation for CD [NCT03599622] and 
UC [NCT03934216, NCT04613518]. Long-term follow-up 
studies using these patient cohorts will be important to determine 
IBD-CRC risk.

Sphingolipids are ubiquitous bioactive molecules that form part 
of the cell membrane and play a role in a multitude of cell func-
tions such as migration, proliferation and apoptosis. S1P is the 
final product derived from sphingolipids and can activate STAT3 
and NF-κB. STAT3-induced S1P receptor expression is important 
for persistent STAT3 activation [creating a positive feedback loop 
in immune and tumour cells] during carcinogenesis.95 S1P also has 
immunoregulatory activity as T-cells require S1P signalling to egress 
from the thymus and from peripheral lymphoid organs.96 A  pro-
tumour role for S1P, and its regulatory enzyme sphingosine-kinase 
1 [SphK1], has therefore been hypothesized. In a small [n = 20 pa-
tients] translational study, biopsies from curative surgical resections 
reported higher expression of phosphorylated SphK1 in IBD-CRC 
compared with S-CRC, which suggests the S1P pathway is especially 
important for IBD-related malignancy.97 Given the outlined mech-
anism of action, inhibiting S1P may reduce both IBD and IBD-CRC. 
Carcinogenesis may be triggered by S1P lyase1 [SGPL1], which is 
responsible for the irreversible degradation of S1P. In an AOM/
DSS model that utilized isogenic bone marrow transplantation of 
inducible SGPL1 knockout mice, immune-cell SGPL1 knockout 
was associated with colitis and pathological crypt remodelling 
with extracellular S1P signalling, which caused delayed tumour 
formation. However, tissue-SGPL1 knockout reduced immune ac-
tivity and induced immediate tumorigenesis which was associated 
with an IL-12 to IL-23 shift.98 This suggests that understanding the 
difference between tissue vs immune cell S1P lyase activity is im-
portant for optimizing S1P blockade therapy to treat IBD and reduce 
IBD-CRC risk. There are ongoing safety and efficacy trials for the 
S1P receptor modulators, such as etrasimod [NCT03950232] and 
ozanimod [NCT0253112].

6.  Conclusions

Patients with IBD have an increased risk for developing CRC. The 
inflammation–dysplasia–carcinoma sequence of IBD-CRC is distinct 
from the sporadic normal–adenoma–adenocarcinoma sequence and 

confers a poorer prognosis. While key inflammatory pathways have 
been described, the immune cell landscape of IBD-CRC remains 
poorly characterized, although new data suggest Th17 cells and 
macrophages play important roles.

The selection pressure exerted by efficacious therapeutic agents 
is unknown and, although the overall inflammatory burden is less-
ened, the potential disruption to immune cancer surveillance is yet 
to be fully appreciated. Indeed, it will be some time before we see 
the full effect of these therapies on the incidence of IBD-CRC. More 
sensitive tools to detect early dysplasia are needed, and may include 
non-invasive stool testing for DNA methylation markers and im-
proved computer-aided identification of dysplasia during surveil-
lance procedures.99

In the clinic, preventing the burden of inflammation is prob-
ably the most important factor for minimizing IBD-CRC. With the 
growing therapeutic arsenal, caution is warranted that immuno-
suppression can be a double-edged sword, and it will be some time 
before we see the full effect of these therapies on the incidence of 
IBD-CRC.
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