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Abstract
Biotechnological advances in sequencing have led to an explosion of publicly
available data via large international consortia such as The Cancer Genome

, , and Atlas (TCGA) The Encyclopedia of DNA Elements (ENCODE) The NIH
. These projects haveRoadmap Epigenomics Mapping Consortium (Roadmap)

provided unprecedented opportunities to interrogate the epigenome of cultured
cancer cell lines as well as normal and tumor tissues with high genomic
resolution. The  project offers more than 1,000 open-sourceBioconductor
software and statistical packages to analyze high-throughput genomic data.
However, most packages are designed for specific data types (e.g. expression,
epigenetics, genomics) and there is no one comprehensive tool that provides a
complete integrative analysis of the resources and data provided by all three
public projects. A need to create an integration of these different analyses was
recently proposed. In this workflow, we provide a series of biologically focused
integrative analyses of different molecular data. We describe how to download,
process and prepare TCGA data and by harnessing several key Bioconductor
packages, we describe how to extract biologically meaningful genomic and
epigenomic data. Using Roadmap and ENCODE data, we provide a work plan
to identify biologically relevant functional epigenomic elements associated with
cancer. To illustrate our workflow, we analyzed two types of brain tumors:
low-grade glioma (LGG) versus high-grade glioma (glioblastoma multiform or
GBM). This workflow introduces the following Bioconductor packages: 

, , , , , , AnnotationHub ChIPSeeker ComplexHeatmap pathview ELMER GAIA
, , .MINET RTCGAToolbox TCGAbiolinks
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Introduction
Cancer is a complex genetic disease spanning multiple molecular events such as point mutations, structural variations, 
translocations and activation of epigenetic and transcriptional signatures and networks. The effects of these events 
take place at different spatial and temporal scales with interlayer communications and feedback mechanisms creating 
a highly complex dynamic system. To gain insight into the biology of tumors most of the research in cancer genomics 
is aimed at the integration of the observations at multiple molecular scales and the analysis of their interplay. Even 
if many tumors share similar recurrent genomic events, their relationships with the observed phenotype are often not 
understood. For example, although we know that the majority of the most aggressive form of brain tumors such as 
glioma harbor the mutation of a single gene (IDH), the mechanistic explanation of the activation of its characteristic 
epigenetic and transcriptional signatures are still far to be well characterized. Moreover, network-based strategies have 
recently emerged as an effective framework for the discovery functional disease drivers that act as main regulators of 
cancer phenotypes.

Indeed, recent technological developments allowed the deposition of large amounts of genomic and epigenomic 
data, such as gene expression, DNA methylation, and genomic localization of transcription factors, into freely avail-
able public international consortia like The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements 
(ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (Roadmap)1. An overview of the three 
consortia is described below: 

• The Cancer Genome Atlas (TCGA): The TCGA consortium, which is a National Institute of Health (NIH) 
initiative, makes publicly available molecular and clinical information for more than 30 types of human 
cancers including exome (variant analysis), single nucleotide polymorphism (SNP), DNA methylation, 
transcriptome (mRNA), microRNA (miRNA) and proteome. Sample types available at TCGA are: primary 
solid tumors, recurrent solid tumors, blood derived normal and tumor, metastatic, and solid tissue normal2.

• The Encyclopedia of DNA Elements (ENCODE): Found in 2003 by the National Human Genome 
Research Institute (NHGRI), the project aims to build a comprehensive list of functional elements that have 
an active role in the genome, including regulatory elements that govern gene expression. Biosamples includes 
immortalized cell lines, tissues, primary cells and stem cells3.

• The NIH Roadmap Epigenomics Mapping Consortium: This was launched with the goal of producing 
a public resource of human epigenomic data in order to analyze biology and disease-oriented research. 
Roadmap maps DNA methylation, histone modifications, chromatin accessibility, and small RNA transcripts 
in stem cells and primary ex vivo tissues4,5.

Briefly, these three consortia provide large scale epigenomic data onto a variety of microarrays and next-generation 
sequencing (NGS) platforms. Each consortium encompasses specific types of biological information on specific 
type of tissue or cell and when analyzed together, it provides an invaluable opportunity for research laboratories to 
better understand the developmental progression of normal cells to cancer state at the molecular level and importantly, 
correlate these phenotypes with tissue of origins.

Although there exists a wealth of possibilities6 in accessing cancer associated data, Bioconductor represent the most 
comprehensive set of open source, updated and integrated professional tools for the statistical analysis of large scale 
genomic data. Thus, we propose our workflow within Bioconductor to describe how to download, process, analyze 
and integrate cancer data to understand specific cancer-related specific questions. However, there is no tool that solves 

            Amendments from Version 1

In this revised version of our workflow, we made the following major changes:
- The introduction now includes the GDC NCI data portal (https://gdc.nci.nih.gov/).
- The codes to acquire TCGA data were rewritten in order to use the new version of the TCGAbiolinks package. TCGAbiolinks 
was entirely redesigned to query, download and prepare data from the GDC NCI data portal (https://gdc.nci.nih.gov/) 
instead of the inactive DCC TCGA data portal (https://tcga-data.nci.nih.gov).

Minor changes includes improvements based on the referee’s comments, such as:
- The inclusion of a paragraph to introduce GISTIC data
- The inclusion of a paragraph explaining the differences between the open (TCGA level 3 and 4 data) and controlled data 
(TCGA level 1 and 2 data) and pointing to sources that might help the user request access to controlled data.
- Hyperlinks and references were corrected.
- Improvements in the text by removing a few redundancies.
- We used data aligned to reference genome hg19 in all steps of the workflow. 

See referee reports

REVISED

Page 3 of 59

F1000Research 2016, 5:1542 Last updated: 06 FEB 2017

http://cancergenome.nih.gov/
https://www.encodeproject.org
http://www.roadmapepigenomics.org
http://www.bioconductor.org
https://gdc.nci.nih.gov/
https://gdc.nci.nih.gov/
https://tcga-data.nci.nih.gov


the issue of integration in a comprehensive sequence and mutation information, epigenomic state and gene expres-
sion within the context of gene regulatory networks to identify oncogenic drivers and characterize altered pathways 
during cancer progression. Therefore, our workflow presents several Bioconductor packages to work with genomic 
and epigenomics data.

Methods
Access to the data
TCGA data is accessible via the the NCI Genomic Data Commons (GDC) data portal, GDC Legacy Archive and the 
Broad Institute’s GDAC Firehose. The GDC Data Portal provides access to the subset of TCGA data that has been 
harmonized against GRCh38 (hg38) using GDC Bioinformatics Pipelines which provides methods to the standardiza-
tion of biospecimen and clinical data, the re-alignment of DNA and RNA sequence data against a common reference 
genome build GRCh38, and the generation of derived data. Whereas the GDC Legacy Archive provides access to an 
unmodified copy of data that was previously stored in CGHub7 and in the TCGA Data Portal hosted by the TCGA Data 
Coordinating Center (DCC), in which uses as references GRCh37 (hg19) and GRCh36 (hg18).

The previously stored data in CGHub, TCGA Data Portal and Broad Institute’s GDAC Firehose, were provided as 
different levels or tiers that were defined in terms of a specific combination of both processing level (raw, normalized, 
integrated) and access level (controlled or open access). Level 1 indicated raw and controlled data, level 2 indicated 
processed and controlled data, level 3 indicated Segmented or Interpreted Data and open access and level 4 indicated 
region of interest and open access data. While the TCGA data portal provided level 1 to 3 data, Firehose only provides 
level 3 and 4. An explanation of the different levels can be found at TCGA Wiki. However, the GDC data portal no 
longer uses this based classification model in levels. Instead a new data model was created, its documentation can be 
found in GDC documentation. In this new model, data can be open or controlled access. While the GDC open access 
data does not require authentication or authorization to access it and generally includes high level genomic data that 
is not individually identifiable, as well as most clinical and all biospecimen data elements, the GDC controlled access 
data requires dbGaP authorization and eRA Commons authentication and generally includes individually identifiable 
data such as low level genomic sequencing data, germline variants, SNP6 genotype data, and certain clinical data 
elements. The process to obtain access to controlled data is found in GDC web site.

Finally, the data provided by GDC data portal and GDC Legacy Archive can be accessed using Bioconductor package 
TCGAbiolinks, while the data provided by Firehose can be accessed by Bioconductor package RTCGAToolbox.

The next steps describes how one could use TCGAbiolinks & RTCGAToolbox to download clinical, genomics, 
transcriptomics, epigenomics data, as well as subtype information and GISTIC results (i.e., identified genes targeted 
by somatic copy-number alterations (SCNAs) that drive cancer growth). All the data used in this workflow has as 
reference the Genome Reference Consortium human genome (build 37 - hg19).

Downloading data from TCGA data portal. The Bioconductor package TCGAbiolinks8 has three main functions 
GDCquery, GDCdownload and GDCprepare that should sequentially be used to respectively search, download and 
load the data as an R object. GDCquery uses GDC API to search the data for a given project and data category and filters 
the results by samples, sample type, file type and others features if requested by the user. This function returns a object 
with a summary table with the results found (samples, files and other useful information) and the arguments used in 
the query. The most important GDCquery arguments are project which receives a GDC project (TCGA-USC, TCGA-
LGG, TARGET-AML, etc), data.category which receives a data category (Transcriptome Profiling, Copy Number 
Variation, DNA methylation, Gene expression, etc), data.type which receives a data type (Gene expression quantifica-
tion, Isoform Expression Quantification, miRNA Expression Quantification, Copy Number Segment, Masked Copy 
Number Segment, etc), workflow.type, which receives a GDC workflow type (HTSeq - Counts, HTSeq - FPKM-UQ, 
HTSeq - FPKM), legacy, which selects to use the legacy database or the harmonized database, file.type, which receives 
a file type for the searches in the legacy database (hg18.seg, hg19.seg, nocnv_,hg18.seg, nocnv_hg19.seg, rsem.
genes.results, rsem.genes.normalized_results, etc) and platform, which receives a the platform for the searches in the 
legacy database (HumanMethylation27, Genome_Wide_SNP_6, IlluminaHiSeq_RNASeqV2, etc). A complete list 
of possible entries for arguments can be found in the TCGAbiolinks vignette. Listing 1 shows an example of this 
function.

After the search step, the user will be able to download the data using the GDCdownload function which can use either 
the GDC API to download the samples, or the gdc client tools. The downloaded data will be saved in a directory with 
the project name and a sub-folder with the data.category, for example “TCGA-GBM/DNA_methylation”.

Finally, GDCprepare transforms the downloaded data into a summarizedExperiment object9 or a data frame. If 
SummarizedExperiment is set to TRUE, TCGAbiolinks will add to the object sub-type information, which was 
defined by The Cancer Genome Atlas (TCGA) Research Network reports (the full list of papers can be seen in 
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TCGAquery_subtype section in TCGAbiolinks vignette), and clinical information. Listing 1 shows how to use these 
functions to download DNA methylation and gene expression data from the GDC legacy database and 2 shows how to 
download copy number variation from harmonized data portal. Other examples, that access the harmonized data can 
be found in the TCGAbiolinks vignette.

 1 library(TCGAbiolinks)
 2
 3 # Obs: The data in the legacy database has been aligned to hg19
 4 query.met.gbm <– GDCquery(project = "TCGA–GBM",
 5                     legacy = TRUE,
 6                     data.category = "DNA methylation",
 7                     platform = "Illumina Human Methylation 450",
 8                     barcode = c("TCGA–76–4926–01B–01D–1481–05", "TCGA–28–5211–01C–11D–1844–05"))
 9 GDCdownload(query.met.gbm)
10
11 met.gbm.450 <– GDCprepare(query = query.met.gbm,
12                       save = TRUE,
13                       save.filename = "gbmDNAmet450k.rda" ,
14                       summarizedExperiment = TRUE)
15 query.met.lgg <– GDCquery(project = "TCGA–LGG",
16                           legacy = TRUE,
17                           data.category = "DNA methylation" ,
18                           platform = "Illumina Human Methylation 450" ,
19                          barcode = c("TCGA–HT–7879–01A–11D–2399–05", "TCGA–HT–8113–01A–11D–2399–05"))
20 GDCdownload(query.met.lgg)
21 met.lgg.450 <– GDCprepare(query = query.met.lgg,
22                           save = TRUE,
23                           save.filename = "lggDNAmet450k.rda" ,
24                           summarizedExperiment = TRUE)
25 met.gbm.lgg <– SummarizedExperiment::cbind(met.lgg.450, met.gbm.450)
26
27
28 query.exp.lgg <– GDCquery(project = "TCGA–LGG",
29                      legacy = TRUE,
30                      data.category = "Gene expression",
31                      data.type = "Gene expression quantification",
32                      platform = "Illumina HiSeq",
33                      file.type = "results",
34                      sample.type = "Primary solid Tumor")
35 GDCdownload(query.exp.lgg)
36 exp.lgg <– GDCprepare(query = query.exp.lgg, save = TRUE, save.filename = "lggExp.
rda")
37
38 query.exp.gbm <– GDCquery(project = "TCGA–GBM",
39                      legacy = TRUE,
40                      data.category = "Gene expression",
41                      data.type = "Gene expression quantification",
42                      platform = "Illumina HiSeq",
43                      file.type = "results",
44                         sample.type = "Primary solid Tumor")
45 GDCdownload(query.exp.gbm)
46 exp.gbm <– GDCprepare(query = query.exp.gbm, save = TRUE, save.filename = "gbmExp.rda")
47 exp.gbm.lgg <– SummarizedExperiment::cbind(exp.lgg, exp.gbm)

Listing  1.  Downloading TCGA  DNA  methylation  and  gene  expression  data  from  GDC  legacy  database  with 
TCGAbiolinks
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 1 library(TCGAbiolinks)
 2 #

__________________________________________________________________________

 3 #               Data.category: Copy number variation aligned to hg38
 4 #__________________________________________________________________________

 5 query <– GDCquery(project = "TCGA–ACC",
 6                   data.category = "Copy Number Variation",
 7                   data.type = "Copy Number Segment",
 8                   barcode = c( "TCGA–OR–A5KU–01A–11D–A29H–01", "TCGA–OR–A5JK–01A–11D–A29H–01"))
 9 GDCDownload(query)
10 data <– GDCPrepare(query)
11
12 query <– GDCquery("TCGA–ACC",
13                   "Copy Number Variation",
14                   data.type = "Masked Copy Number Segment",
15                   sample.type = c("Primary solid Tumor")) # see the barcodes with 
query$ results[[1]]$cases
16 GDCDownload(query)
17 data <– GDCPrepare(query)

Listing 2. Downloading TCGA copy number variation data from GDC harmonized database with TCGAbiolinks

If a summarizedExperiment object was chosen, the data can be accessed with three different accessors: assay for the 
data information, rowRanges to gets the range of values in each row and colData to get the sample information (patient, 
batch, sample type, etc)9,10. An example is shown in Listing 3.

1 library(summarizedExperiment)
2 # get expression matrix
3 data <– assay(exp.gbm.lgg)
4
5 # get genes information
6 genes.info <– rowRanges(exp.gbm.lgg)
7
8 # get sample information
9 sample.info <– colData(exp.gbm.lgg)

Listing 3. summarizedExperiment accessors

The clinical data can be obtained using TCGAbiolinks through two methods. The first one will download only the 
indexed GDC clinical data which includes diagnoses (vital status, days to death, age at diagnosis, days to last follow up, 
days to recurrence), treatments (days to treatment, treatment id, therapeutic agents, treatment intent type), demographic 
(gender, race, ethnicity) and exposures (cigarettes per day, weight, height, alcohol history) information. This indexed 
clinical data can be obtained using the function GDCquery_clinical which can be used as described in Listing 4. This 
function has two arguments project ("TCGA-GBM","TARGETAML", etc) and type ("Clinical" or "Biospecimen"). 
The second method will download the xml files with all clinical data for the patient and retrieve the desired information 
from it. This will give access to all clinical data available which includes patient (tumor tissue site, histological type, 
gender, vital status, days to birth, days to last follow up, etc), drug (days to drug therapy start, days to drug therapy end, 
therapy types, drug name), radiation (days to radiation therapy start, days to radiation therapy end, radiation type, radia-
tion dosage), new tumor event (days to new tumor event after initial treatment, new neoplasm event type, additional 
pharmaceutical therapy), follow up (primary therapy outcome success, follow up treatment success, vital status, days to 
last follow up, date of form completion), stage event (pathologic stage, tnm categories), admin (batch number, project 
code, disease code, Biospecimen Core Resource).

 1 # get indexed clinical patient data for GBM samples
 2 gbm_clin <– GDCquery_clinic(project = "TCGA–GBM", type = "Clinical")
 3
 4 # get indexed clinical patient data for LGG samples
 5 lgg_clin <– GDCquery_clinic(project = "TCGA–LGG", type = "Clinical")
 6
 7 # Bind the results, as the columns might not be the same,
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 8 # we will will plyr rbind.fill, to have all columns from both files
 9 clinical <– plyr::rbind.fill(gbm_clin,lgg_clin)
10
11 # if barcode is not set, it will consider all samples.
12 # We only set it to make the example faster
13 query.clin <– GDCquery(project = "TCGA–GBM",
14                        data.category = "Clinical",
15                        barcode = c("TCGA–08–0516","TCGA–02–0317"))
16 GDCDownload(query.clin)
17 clinical.patient <– GDCPrepare_clinic(query,"patient")
18 clinical.drug <– GDCPrepare_clinic(query,"drug")
19 clinical.radiation <– GDCPrepare_clinic(query,"radiation")
20 clinical.admin <– GDCPrepare_clinic(query,"admin")
21 clinical.followup <– GDCPrepare_clinic(query,"follow_up")
22 clinical.nte <– GDCPrepare_clinic(query, "new_tumor_event")
23 clinical.stage <– GDCPrepare_clinic(query,"stage_event")

Listing 4. Downloading clinical data with TCGAbiolinks

Mutation information is stored in two types of Mutation Annotation Format (MAF): Protected and Somatic (or Public) 
MAF files, which are derived from the GDC annotated VCF files. Annotated VCF files often have variants reported 
on multiple transcripts whereas the protected MAF (*protected.maf) only reports the most critically affected one and 
the Somatic MAFs (*somatic.maf) are further processed to remove low quality and potential germline variants. To 
download Somatic MAFs data using TCGAbiolinks, GDCquery_maf function is provided (see Listing 5).

1 mutation <– GDCquery_Maf(tumor = "ACC", pipelines = "mutect2")

Listing 5. Downloading mutation data with TCGAbiolinks

Finally, the Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various 
diseases (ACC11, BRCA12, COAD13, GBM14, HNSC15, KICH16, KIRC17, KIRP18, LGG14, LUAD19, LUSC20, PRAD21, 
READ13, SKCM22, STAD23, THCA24 and UCEC23) which classified them in different subtypes. This classification can 
be retrieved using the TCGAquery_subtype function or by accessing the samples information in the SummarizedEx-
periment object that created by the GDCprepare function.

 1 gbm.subtypes <– TCGAquery_subtype(tumor = "gbm")
 2 brca.subtypes <– TCGAquery_subtype(tumor = "brca")

Listing 6. Accessing subtype information retrieved from TCGA papers

Downloading data from Broad TCGA GDAC. The Bioconductor package RTCGAToolbox25 provides access to 
Firehose Level 3 and 4 data through the function getFirehoseData. The following arguments allows users to select 
the version and tumor type of interest: 

•   dataset - Tumor to download. A complete list of possibilities can be viewed with getFirehoseDatasets 
function.

•  runDate - Stddata run dates. Dates can be viewed with getFirehoseRunningDates function.

•  gistic2_Date - Analyze run dates. Dates can viewed with getFirehoseAnalyzeDates function.

These arguments can be used to select the data type to download: RNAseq_Gene, Clinic, miRNASeq_Gene, 
ccRNAseq2_Gene_Norm, CNA_SNP, CNV_SNP, CNA_Seq, CNA_CGH, Methylation, Mutation, mRNA_Array, 
miRNA_Array, and RPPA.

By default, RTCGAToolbox allows users to download up to 500 MB worth of data. To increase the size of the 
download, users are encouraged to use fileSizeLimit argument. An example is found in Listing 7. The getData 
function allow users to access the downloaded data (see lines 22–24 of Listing 7) as a S4Vector object.

 1 library(RTCGAToolbox)
 2
 3 # Get the last run dates
 4 lastRunDate <- getFirehoseRunningDates()[1]
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 5 lastAnalyseDate <- getFirehoseAnalyzeDates(1)
 6
 7 # get DNA methylation data, RNAseq2 and clinical data for LGG
 8 lgg.data <- getFirehoseData(dataset = "LGG",
 9                             gistic2_Date = getFirehoseAnalyzeDates(1), runDate = lastRunDate,
10                             Methylation = TRUE, RNAseq2_Gene_Norm = TRUE, Clinic = TRUE,
11                        Mutation = T,
12                        fileSizeLimit = 10000)
13
14 # get DNA methylation data, RNAseq2 and clinical data for GBM
15 gbm.data <- getFirehoseData(dataset = "GBM",
16                             runDate = lastDate, gistic2_Date = getFirehoseAnalyzeDates(1),
17                             Methylation = TRUE, Clinic = TRUE, RNAseq2_Gene_Norm = TRUE,
18                          fileSizeLimit = 10000)
19
20 # To access the data you should use the getData function
21 # or simply access with @ (for example gbm.data@Clinical)
22 gbm.mut <- getData(gbm.data,"Mutations")
23 gbm.clin <- getData(gbm.data,"Clinical")
24 gbm.gistic <- getData(gbm.data,"GISTIC")

Listing 7. Downloading TCGA data files with RTCGAtoolbox

Finally, using RTCGAToolbox the user can retrieve CNV level 4 data, including the amplified or deleted genes 
identified by GISTIC which rates each segment based on the frequency of occurrence combined with the amplitude of 
aberration, using a permutation test to assess the statistical significance. Among GISTIC results there are two tables 
that can be accessed by RTCGAToolbox:

•   A gene-level table of copy number values for all samples. The copy number values in the table are in units 
of (copy number -2), so that no amplification or deletion is 0, genes with amplifications have positive values, 
and genes with deletions are negative values. The data are converted from marker level to gene level using 
the extreme method: a gene is assigned the greatest amplification or the least deletion value among the 
markers it covers.

•   A gene-level table of discrete amplification and deletion indicators for all samples. A table value of 0 
means no amplification or deletion above the threshold (diploid normal copy). Amplifications are positive 
numbers: 1 means amplification above the amplification threshold (low-level gain, 1 extra copy); 2 means 
amplifications larger to the arm level amplifications observed for the sample (high-level amplification, 2 
or more extra copies). Deletions are represented by negative table values: -1 represents deletion beyond 
the threshold (possibly a heterozygous deletion); -2 means deletions greater than the minimum arm-level 
deletion observed for the sample (possibly a homozygous deletion).

More details about the GISTIC algorithm and its use are described in 26– 28. (see Listing 8).

 1 # Download GISTIC results
 2 gistic <- getFirehoseData("GBM",gistic2_Date ="20141017" )
 3
 4 # get GISTIC results
 5 gistic.allbygene <- gistic@GISTIC@AllByGene
 6 gistic.thresholedbygene <- gistic@GISTIC@ThresholedByGene

Listing 8. Using RTCGAToolbox to get the GISTIC results

Genomic analysis
Copy number variations (CNVs) have a critical role in cancer development and progression. A chromosomal segment 
can be deleted or amplified as a result of genomic rearrangements, such as deletions, duplications, insertions and 
translocations. CNVs are genomic regions greater than 1 kb with an alteration of copy number between two 
conditions (e.g., Tumor versus Normal).

TCGA collects copy number data and allows the CNV profiling of cancer. Tumor and paired-normal DNA samples 
were analyzed for CNV detection using microarray and sequencing-based technologies. Level 3 processed data are 
the aberrant regions along the genome resulting from CNV segmentation, and they are available for all copy number 
technologies.
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In this section, we will show how to analyze CNV level 3 data from TCGA to identify recurrent alterations in cancer 
genome. We analyzed GBM and LGG segmented CNV from SNP array (Affymetrix Genome-Wide Human SNP 
Array 6.0).

Pre-Processing Data. The only CNV platform available for both LGG and GBM in TCGA is “Affymetrix 
Genome-Wide Human SNP Array 6.0”. Using TCGAbiolinks, we queried for CNV SNP6 level 3 data for primary 
solid tumor samples in the legacy database. Data for selected samples were downloaded and prepared in two separate 
rse objects (RangedSummarizedExperiment).

 1 ###############################
 2 ## CNV data pre–processing  ##
 3 ###############################
 4 library(TCGAbiolinks)
 5
 6 query.lgg.nocnv <– GDCquery(project = "TCGA–LGG",
 7                             data.category = "Copy number variation",
 8                             legacy = TRUE,
 9                             file.type = "nocnv_hg19.seg",
10                             sample.type = c("Primary solid Tumor"))
11 GDCdownload(query.lgg.nocnv)
12 lgg.nocnv <– GDCprepare(query.lgg.nocnv, save = TRUE, save.filename = "LGGnocnvhg19.rda")
13
14 query.gbm.nocnv <– GDCquery(project = "TCGA–GBM",
15                             data.category = "Copy number variation",
16                             legacy = TRUE,
17                             file.type = "nocnv_hg19.seg",
18                             sample.type = c("Primary solid Tumor"))
19 GDCdownload(query.gbm.nocnv)
20 gbm.nocnv <– GDCprepare(query.gbm.nocnv, save = TRUE, save.file name = "GBMnocnvhg19.rda")

Listing 9. Searching, downloading and preparing CNV data with TCGAbiolinks

Identification of recurrent CNV in cancer. Cancer related CNV have to be present in many of the analyzed genomes. 
The most significant recurrent CNV were identified using GAIA29, an iterative procedure where a statistical hypothesis 
framework is extended to take into account within-sample homogeneity. GAIA is based on a conservative permu-
tation test allowing the estimation of the probability distribution of the contemporary mutations expected for non-
driver markers. Segmented data retrieved from TCGA were used to generate a matrix including all needed information 
about the observed aberrant regions. Furthermore, GAIA requires genomic probes metadata (specific for each CNV 
technology), that can be downloaded from broadinstitute website.

  1 #############################
  2 ## CNV data pre–processing ##
  3 #############################
  4 library(TCGAbiolinks)
  5 library(downloader)
  6 library(readr)
  7 library(gaia)
  8
  9 gaiaCNVplot <– function (calls, cancer=NULL, threshold=0.01)
 10 {
 11     Calls <– calls[order(calls[,"Region Start [bp]"]),]
 12     Calls <– Calls[order(Calls[,"Chromosome"]),]
 13     rownames(Calls) <– NULL
 14     Chromo <– Calls[,"Chromosome"]
 15      Gains <– apply(Calls,1,function(x) ifelse(x["Aberration Kind"]==1, x["score"], 0))
 16     Losses <– apply(Calls, 1,function(x) ifelse(x["Aberration Kind"]==0, x["score"], 0))
 17     plot(Gains, ylim  = c(–max(Calls [,"score"]+2), max(Calls[,"score"]+2)), type = "h",
 18         col = "red", xlab = "Chromosome", ylab = "Score",
 19        #main = paste("Recurrent Copy Number Variations",cancer, sep =" – "),
 20        xaxt = "n")
 21     points(–(Losses), type = "h", col = "blue")
 22    abline(h = 0, cex = 4)
 23    abline(h = –log10(threshold), col = "orange", cex = 4, main="test")
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 24     abline(h = log10(threshold), col = "orange", cex = 4, main="test")
 25     uni.chr <– unique(Chromo)
 26     temp <– rep(0, length(uni.chr))
 27     for (i in 1:length(uni.chr))  {
 28         temp[i] <– max(which(uni.chr[i] == Chromo)) 
 29     }
 30     for (i in 1:length(temp)) {
 31         abline(v = temp[i], col = "black",  lty  = "dashed", )
 32     }
 33     nChroms <– length(uni.chr)
 34     begin <– c()
 35     for (d in 1:nChroms)  {
 36         chrom <– sum(Chromo == uni.chr[d])
 37         begin <– append(begin,  chrom)
 38     }
 39     temp2 <– rep(0, nChroms)
 40     for (i in 1:nChroms) {
 41         if (i == 1) {
 42              temp2[1] <– (begin[1] * 0.5)
 43         }
 44         else if (i > 1) {
 45             temp2[i] <– temp[i – 1] + (begin[i] * 0.5)
 46         }
 47     }
 48     uni.chr[uni.chr==23] <– "X"
 49     uni.chr[uni.chr==24] <– "Y"
 50     for (i in 1:length(temp)) {
 51         axis(1, at = temp2[i], labels = uni.chr[i], cex.axis = 1)
 52     }
 53    legend(x=1,y=max(Calls[,"score"]+2),y.intersp=0.8, c("Amp"), pch =15, col=c("red"), text.font=3)
 54       legend(x=1,y=–max(Calls[,"score"]+0.5),y.intersp=0.8, c("Del"), pch =15, col=c("blue"), text.font=3)
 55 }
 56
 57
 58 for(cancer in c("LGG","GBM")){
 59     message(paste0("Starting", cancer))
 60     # Prepare  CNV  matrix
 61     cnvMatrix <–  get(load(paste0(cancer, "nocnvhg19.rda")))
 62
 63     # Add  label  (0  for  loss,  1  for  gain)
 64     cnvMatrix <– cbind(cnvMatrix,Label=NA)
 65     cnvMatrix[cnvMatrix[, "Segment_Mean"] < –0.3, "Label"] <– 0
 66     cnvMatrix[cnvMatrix[, "Segment_Mean"] > 0.3, "Label"] <– 1
 67     cnvMatrix <– cnvMatrix [!is.na(cnvMatrix$Label),]
 68
 69     # Remove "Segment_Mean" and change col.names
 70     cnvMatrix <– cnvMatrix[,–6]
 71     colnames(cnvMatrix) <– c("Sample.Name", "Chromosome", "Start", "End", "Num.of.Markers", "Aberration")
 72
 73     # Substitute  Chromosomes  "X"  and  "Y"  with  "23"  and  "24"
 74     xidx <– which(cnvMatrix$Chromosome=="X")
 75     yidx <– which(cnvMatrix$Chromosome=="Y")
 76     cnvMatrix[xidx,"Chromosome"] <– 23
 77     cnvMatrix[yidx,"Chromosome"] <– 24
 78     cnvMatrix$Chromosome <- sapply(cnvMatrix$Chromosome,as.integer)
 79
 80     # Recurrent CNV identification with GAIA
 81
 82     # Retrieve probes meta file from broadinstitute website
 83     # Recurrent CNV identification with GAIA
 84     gdac.root <- "ftp://ftp.broadinstitute.org/pub/GISTIC2.0/hg19_support/"
 85       file <- paste0(gdac.root, "genome.info.6.0_hg19.na31_minus_frequent_nan_probes_sorted_2.1.txt")
 86     # Retrieve probes meta file from broadinstitute website
 87     if(!file.exists(basename(file))) download(file,  basename(file))
 88       markersMatrix <- readr::read_tsv(basename(file), col_names = FALSE, col_types = "ccn", progress = TRUE)
 89     colnames(markersMatrix) <- c("Probe.Name", "Chromosome", "Start")
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 90     unique(markersMatrix$Chromosome)
 91     xidx <- which(markersMatrix$Chromosome=="X")
 92     yidx <- which(markersMatrix$Chromosome=="Y")
 93     markersMatrix[xidx,"Chromosome"] <- 23
 94     markersMatrix[yidx,"Chromosome"] <- 24
 95     markersMatrix$Chromosome <- sapply(markersMatrix$Chromosome,as.integer)
 96     markerID <- apply(markersMatrix,1,function(x) paste0(x[2],":",x[3]))
 97     print(table(duplicated(markerID)))
 98     ## FALSE    TRUE
 99     ## 1831041     186
100     # There are 186 duplicated markers
101     print(table(duplicated(markersMatrix$Probe.Name)))
102     ## FALSE
103     ## 1831227
104     #  ... with different names!
105     # Removed duplicates
106     markersMatrix <- markersMatrix[-which(duplicated(markerID)),]
107     # Filter markersMatrix for common CNV
108     markerID <- apply(markersMatrix,1,function(x) paste0(x[2],":",x[3]))
109
110     file <- paste0(gdac.root, "CNV.hg19.bypos.111213.txt")
111     if(!file.exists(basename(file))) download(file, basename(file))
112     commonCNV <- readr::read_tsv(basename(file), progress = TRUE)
113     commonID <- apply(commonCNV,1,function(x) paste0(x[2],":",x[3]))
114     print(table(commonID %in% markerID))
115     print(table(markerID %in% commonID))
116     markersMatrix_fil <– markersMatrix[!markerID %in% commonID,]
117
118     markers_obj <– load_markers(as.data.frame(markersMatrix_fil))
119     nbsamples <– length(get(paste0("query.",tolower(cancer),".nocnv"))$results[[1]]$cases)
120     cnv_obj <– load_cnv(cnvMatrix, markers_obj, nbsamples)
121     results <– runGAIA(cnv_obj,
122                        markers_obj,
123                        output_file_name=paste0("GAIA_",cancer,"_flt.txt"),
124             aberrations = –1,
125                         chromosomes = –1,
126             num_iterations = 10,
127             threshold = 0.25)
128
129     # Set q–value threshold
130     threshold <– 0.0001
131
132     # Plot the results
133     RecCNV <– t(apply(results,1,as.numeric))
134     colnames(RecCNV) <– colnames(results)
135     RecCNV <– cbind(RecCNV, score=0)
136     minval <– format(min(RecCNV[RecCNV[,"q–value"]!=0,"q–value"]),scientific=FALSE)
137     minval <– substring(minval,1, nchar(minval)–1)
138     RecCNV[RecCNV[,"q–value"]==0,"q–value"] <– as.numeric(minval)
139     RecCNV[,"score"] <– sapply(RecCNV[,"q–value"],function(x) –log10(as.numeric(x)))
140     RecCNV[RecCNV[,"q–value"]==as.numeric(minval),]
141
142     gaiaCNVplot(RecCNV,cancer,threshold)
143     save(results, RecCNV, threshold, file = paste0(cancer,"_CNV_results.rda"))
144     message(paste0("Results saved as:", cancer,"_CNV_results.rda"))
145 }

Listing 10. Recurrent CNV identification in cancer with GAIA

Recurrent amplifications and deletions were identified for both LGG (Figure 1a) and GBM (Figure 1b), and 
represented in chromosomal overview plots by a statistical score (–log

10
 corrected p-value for amplifications and 

log
10

 corrected p-value for deletions). Genomic regions identified as significantly altered in copy number (corrected 
p-value < 10–4) were then annotated to report amplified and deleted genes potentially related with cancer.
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Figure 1. Recurrent CNV (|score threshold| = 4).

Gene annotation of recurrent CNV. The aberrant recurrent genomic regions in cancer, as identified by GAIA, have 
to be annotated to verify which genes are significantly amplified or deleted. Using biomaRt we retrieved the genomic 
ranges of all human genes and we compared them with significant aberrant regions to select full length genes. An 
example of the result is shown in Table 1.

 1 ##############################
 2 ## Recurrent CNV annotation ##
 3 ##############################
 4 library(biomaRt)
 5 library(GenomicRanges)
 6
 7 mart <– useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
 8 genes <– getBM(attributes = c("hgnc_symbol", "chromosome_name","start_position","end_position"),
 9         mart=mart)
10 genes <– genes[genes[,1]!="" & genes[,2]%in%c(1:22,"X","Y"),]
11 xidx <– which(genes[,2]=="X")
12 yidx <– which(genes[,2]=="Y")
13 genes[xidx, 2] <– 23
14 genes[yidx, 2] <– 24
15 genes[,2] <– sapply(genes[,2],as.integer)
16 genes <– genes[order(genes[,3]),]
17 genes <– genes[order(genes[,2]),]
18 colnames(genes) <– c("GeneSymbol","Chr","Start","End")
19 genes_GR <– makeGRangesFromDataFrame(genes,keep.extra.columns = TRUE)
20
21 for(cancer in c("LGG","GBM")){
22    load(paste0(cancer,"_CNV_results.rda"))
23    sCNV <– RecCNV[RecCNV[,"q–value"]<=threshold,c(1:4,6)]
24    sCNV <– sCNV[order(sCNV[,3]),]
25    sCNV <– sCNV[order(sCNV[,1]),]
26    colnames(sCNV) <– c("Chr","Aberration","Start","End","q–value")
27    sCNV_GR <– makeGRangesFromDataFrame(sCNV,keep.extra.columns = TRUE)
28
29    hits <– findOverlaps(genes_GR, sCNV_GR, type="within")
30    sCNV_ann <– cbind(sCNV[subjectHits(hits),],genes[queryHits(hits),])
31    AberrantRegion <– paste0(sCNV_ann[,1],":",sCNV_ann[,3],"–",sCNV_ann[,4])
32    GeneRegion <– paste0(sCNV_ann[,7],":",sCNV_ann[,8],"–",sCNV_ann[,9])
33    AmpDel_genes <– cbind(sCNV_ann[,c(6,2,5)],AberrantRegion,GeneRegion)
34    AmpDel_genes[AmpDel_genes[,2]==0,2] <– "Del"
35    AmpDel_genes[AmpDel_genes[,2]==1,2] <– "Amp"
36    rownames(AmpDel_genes) <– NULL
37
38    save(RecCNV, AmpDel_genes, file = paste0(cancer,"_CNV_results.rda"))
39 }

Listing 11. Gene annotation of recurrent CNV
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Visualizing multiple genomic alteration events. In order to visualize multiple genomic alteration events we recom-
mend using OncoPrint plot which is provided by Bioconductor package complexHeatmap30. The Listing 12 shows 
how to download mutation data using GDCquery_maf (line 4), then we filtered the genes to obtain genes with muta-
tions found among glioma specific pathways (lines 6 – 12). The following steps prepared the data into a matrix to fit 
oncoPrint function. We defined SNPs as blue, insertions as green and deletions as red. The upper barplot indicates the 
number of genetic mutation per patient, while the right barplot shows the number of genetic mutations per gene. Also, 
it is possible to add annotations to rows or columns. For the columns, an insertion made at the top will remove the 
barplot. The final result for adding the annotation to the bottom is highlighted in Figure 2.

Table 1. Chromosome 20 recurrent deleted genes in LGG.

GeneSymbol Aberration q-value AberrantRegion GeneRegion

1 EIF4E2P1 Del 5.74967741935484e-05 20:20540891-21005246 20:20659710-20659964

2 LLPHP1 Del 5.74967741935484e-05 20:20540891-21005246 20:20721187-20721879

3 RN7SL607P Del 5.74967741935484e-05 20:20540891-21005246 20:20738433-20738731

4 MRPS11P1 Del 5.74967741935484e-05 20:20540891-21005246 20:20854121-20854642

5 RPL24P2 Del 5.74967741935484e-05 20:21091497-21220212 20:21114723-21115197

 1 library(ComplexHeatmap)
 2 library(TCGAbiolinks)
 3
 4 LGGmut <– GDCquery_Maf(tumor = "LGG", pipelines = "mutect2")
 5 GBMmut <– GDCquery_Maf(tumor = "GBM", pipelines = "mutect2")
 6
 7 mut <– plyr::rbind.fill(LGGmut,GBMmut)
 8 
 9 # Filtering mutations in gliomas 
10 EA_pathways <– TCGAbiolinks:::listEA_pathways
11 Glioma_pathways <– EA_pathways[grep("glioma", tolower(EA_pathways$Pathway)),]
12 Glioma_signaling <– Glioma_pathways[Glioma_pathways$Pathway == "Glioma Signaling",]
13 Glioma_signaling_genes <– unlist(strsplit(as.character(Glioma_signaling$Molecules),","))
14
15 mut <– mut[mut$Hugo_Symbol %in% Glioma_signaling_genes,]
16
17 samples <– unique(mut$Tumor_Sample_Barcode)
18 genes <– unique(mut$Hugo_Symbol)
19 mat <– matrix(0,length(genes),length(samples))
20 colnames(mat) <– samples
21 rownames(mat) <– genes
22
23 pb <– txtProgressBar(min = 0, max = nrow(mat), style = 3)
24
25 for (i in 1:nrow(mat)) {
26     curGene <– rownames(mat)[i]
27     setTxtProgressBar(pb, i)
28     for (j in 1:ncol(mat)) {
29         curSample <– colnames(mat)[j]
30
31         if (length(intersect(mut$Tumor_Sample_Barcode, curSample))==1){
32             mat1 <– mut[mut$Tumor_Sample_Barcode == curSample,]
33             if (length(intersect(mat1$Hugo_Symbol, curGene))==1){
34                 mat3 <– mat1[mat1$Hugo_Symbol == curGene,]
35                 mat[curGene,curSample]<– as.character(mat3$Variant_Type)[1]
36             }
37         }
38    }
39 }
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40 close(pb)
41
42 mat[mat==0] <– ""
43 colnames(mat) <– substr(colnames(mat),1,12)
44
45 mat[is.na(mat)] = ""
46 mat[1:3, 1:3]
47
48 alter_fun = list(
49     background = function(x, y, w, h) {
50         grid.rect(x, y, w–unit(0.5, "mm"), h–unit(0.5, "mm"), gp = gpar(fill = "#CCCCCC", col = NA))
51     },
52     SNP = function(x, y, w, h) {
53         grid.rect(x, y, w–unit(0.5, "mm"), h–unit(0.5, "mm"), gp = gpar(fill = "blue", col = NA))
54     },
55     DEL = function(x, y, w, h) {
56         grid.rect(x, y, w-unit(0.5, "mm"), h-unit(0.5, "mm"), gp = gpar(fill = "red", col = NA))
57     },
58     INS = function(x, y, w, h) {
59         grid.rect(x, y, w-unit(0.5, "mm"), h*0.33, gp = gpar(fill = "#008000", col = NA))
60     }
61 )
62
63 col = c("INS" = "#008000", "DEL" = "red", "SNP" = "blue")
64
65 clin.gbm <– GDCquery_clinic("TCGA–GBM", "Clinical")
66 clin.lgg <– GDCquery_clinic("TCGA–LGG", "Clinical")
67 clinical <– plyr::rbind.fill(clin.lgg,clin.gbm)
68 annotation <– clinical[match(colnames(mat),clinical$bcr_patient_barcode),
69                       c("disease","vital_status","ethnicity")]
70 annotation <– HeatmapAnnotation(annotation_height = rep(unit(0.3, "cm"),ncol(annotation)),
71                               df = annotation,
72                               col = list(disease = c("LGG"="green",
73                              "GBM"="orange"),
74                                          vital_status = c("alive"="blue",
75                             "dead"="red",
76                             "not reported"="grey"),
77            ethnicity = c("hispanic or latino"="purple",
78                          "not hispanic or latino"="black",
79              "not reported" = "grey")),
80                                  annotation_legend_param = list(title_gp = gpar(fontsize = 16, 
fontface = "bold"),
81                                                             labels_gp = gpar(fontsize = 16), 
# size labels
82                                                           grid_height = unit(8, "mm")))
83
84 pdf("LGG_GBM_oncoprint.pdf",width = 20,height = 20)
85 p <– oncoPrint(mat, get_type = function(x) strsplit(x, ";")[[1]],
86           remove_empty_columns = FALSE,
87           column_order = NULL, # Do not sort the columns
88           alter_fun = alter_fun, col = col,
89           row_names_gp = gpar(fontsize = 16), # set size for row names
90           pct_gp = gpar(fontsize = 16), # set size for percentage labels
91           axis_gp = gpar(fontsize = 16),# size of axis
92           column_title = "OncoPrint for TCGA LGG, genes in Glioma signaling",
93           column_title_gp = gpar(fontsize = 22),
94           pct_digits = 2,
95           row_barplot_width = unit(4, "cm"), #size barplot
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96           bottom_annotation = annotation,
97            heatmap_legend_param = list(title = "Mutations", at = c("DEL", "INS", "SNP"),
98                                      labels = c("DEL", "INS", "SNP"),
99                                      title_gp = gpar(fontsize = 16, fontface = "bold"),
100                                     labels_gp = gpar(fontsize = 16), # size labels
101                                     grid_height = unit(8, "mm")
102          )
103 )
104 draw(p, annotation_legend_side = "bottom")
105 dev.off()

Listing 12. Oncoprint

Overview of genomic alterations by circos plot
Genomic alterations in cancer, including CNV and mutations, can be represented in an effective overview plot named 
circos. We used circlize CRAN package to represent significant CNV (resulting from GAIA analysis) and recurrent 

Figure 2. Oncoprint  for LGG samples. Blue defines SNP, green defines insertions and red defines deletions. The 
upper barplot shows the number of these genetic mutations for each patient, while the right barplot shows the number 
of genetic mutations for each gene. The bottom bar shows the group of each sample.
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mutations (selecting curated genetic variations retrieved from TCGA that are identified in at least two tumor samples) 
in LGG. Circos plot can illustrate molecular alterations genome-wide or only in one or more selected chromosomes. 
The Figure 3 shows the resulting circos plot for all chromosomes, while the Figure 4 shows the plot for only the 
chromosome 17.

  1 ###############################################
  2 ## Genomic aberration overview – Circos plot ##
  3 ###############################################
  4
  5 # Retrieve curated mutations for selected cancer (e.g. "LGG")
  6 library(TCGAbiolinks)
  7 mut <- GDCquery_Maf(tumor = "LGG")
  8 # Select only potentially damaging mutations
  9 mut <- mut[mut$Variant_Classification %in% c("Missense_Mutation", "Nonsense_Mutation", "Nonstop_Mutation", 
"Frame_Shift_Del", "Frame_Shift_Ins"),]
 10 # Select recurrent mutations (identified in at least two samples)
 11 mut.id <- paste0(mut$Chromosome, ":", mut$Start_position, "-", mut$End_position, "|", 
mut$Reference_Allele)
 12 mut <- cbind(mut.id, mut)
 13 numSamples <- table(mut.id)
 14 s.mut <- names(which(numSamples>=2))
 15 # Prepare selected mutations data for circos plot
 16 s.mut <- mut[mut$mut.id %in% s.mut,]
 17 s.mut <- s.mut[,c("Chromosome", "Start_position", "End_position", "Variant_Classification", 
"Hugo_Symbol")]
 18 s.mut <- unique(s.mut)
 19 s.mut[,1] <- as.character(s.mut[,1])
 20 s.mut[,4] <- as.character(s.mut[,4])
 21 s.mut[,5] <- as.character(s.mut[,5])
 22 typeNames <- unique(s.mut[,4])
 23 type <- c(4:1)
 24 names(type) <- typeNames[1:4]
 25 Type <- type[s.mut[ ,4]]
 26 s.mut <- cbind(s.mut,Type)
 27 s.mut <- s.mut[,c(1:3,6,4,5)]
 28
 29 # Load recurrent CNV data for selected cancer (e.g. "LGG")
 30 load("LGG_CNV_results.rda")
 31 # Prepare selected sample CNV data for circos plot
 32 s.cnv <- as.data.frame(RecCNV[RecCNV[ ,"q—value"]<=10^—4,c(1:4,6)])
 33 s.cnv <- s.cnv[,c(1,3,4,2)]
 34 xidx <- which(s.cnv$Chromosome==23)
 35 yidx <- which(s.cnv$Chromosome==24)
 36 s.cnv[xidx, "Chromosome"] <- "X"
 37 s.cnv[yidx, "Chromosome"] <- "Y"
 38 Chromosome <- sapply(s.cnv[,1],function(x) paste0("chr",x))
 39 s.cnv <- cbind(Chromosome, s.cnv[,-1])
 40 s.cnv[,1] <- as.character(s.cnv[,1])
 41 s.cnv[,4] <- as.character(s.cnv[,4])
 42 s.cnv <- cbind(s.cnv,CNV=1)
 43 colnames(s.cnv) <- c("Chromosome", "Start_position", "End_position", "Aberration_Kind", "CNV")
 44
 45 # Draw genomic circos plot
 46 library(circlize)
 47 pdf("CircosPlot.pdf", width=15, height=15)
 48 par(mar=c(1, 1, 1, 1), cex=1)
 49 circos.initializeWithIdeogram()
 50 # Add CNV results
 51 colors <- c("forestgreen", "firebrick")
 52 names(colors) <- c(0,1)
 53 circos.genomicTrackPlotRegion(s.cnv, ylim = c(0,1.2),
 54                               panel.fun = function(region, value, ...) {
 55                                          circos.genomicRect(region, value, ytop.column = 2, ybottom = 0,
 56                                                  col = colors[value[[1]]],
 57                                                  border="white")
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 58                                   cell.xlim = get.cell.meta.data("cell.xlim")
 59                                    circos.lines(cell.xlim, c(0,0), lty = 2, col = "#00000040")
 60                               })
 61 # Add mutation results
 62 colors <- c("blue","green","red","gold")
 63 names(colors)  <- typeNames[1:4]
 64 circos.genomicTrackPlotRegion(s.mut, ylim = c(1.2,4.2),
 65                               panel.fun = function(region, value, ...) {
 66                                                circos.genomicPoints(region, value, cex = 0.8, pch = 16, col = 
colors[value[[2]]], ...)
 67                               })
 68
 69 circos.clear()
 70
 71 legend(−0.2, 0.2, bty="n", y.intersp=1, c("Amp","Del"), pch=15, col=c("firebrick","forestgreen"),
 title="CNVs", text.font=3, cex=1.2, title.adj=0)
 72 legend(-0.2, 0, bty="n", y.intersp=1, names(colors), pch=16, col=colors, title="Mutations", 
text.font=3, cex=1.2, title.adj=0)
 73 dev.off()
 74
 75 # Draw single chromosome circos plot (e.g. "Chr 17")
 76 pdf("CircosPlotChr17.pdf",width=18,height=13)
 77 par(mar=c(1,1,1,1),cex=1.5)
 78 circos.par("start.degree" = 90, canvas.xlim = c(0,1), canvas.ylim = c(0,1),
 79            gap.degree = 270, cell.padding = c(0,0,0,0), track.margin = c(0.005,0.005))
 80 circos.initializeWithIdeogram(chromosome.index = "chr17")
 81 circos.par(cell.padding = c(0,0,0,0))
 82 # Add CNV results
 83 colors <- c("forestgreen","firebrick")
 84 names(colors) <- c(0,1)
 85 circos.genomicTrackPlotRegion(s.cnv, ylim = c(0,1.2),
 86                               panel.fun = function(region, value, ...) {
 87                                   circos.genomicRect(region, value, ytop.column = 2, ybottom = 0,
 88                                                   col = colors[value[[1]]],
 89                                          border="white")
 90                                   cell.xlim = get.cell.meta.data("cell.xlim")
 91                                   circos.lines(cell.xlim, c(0,0), lty = 2, col = "#00000040")
 92                               })
 93
 94 # Add mutation results representing single genes
 95 genes.mut <- paste0(s.mut$Hugo_Symbol,"-",s.mut$Type)
 96 s.mutt <- cbind(s.mut,genes.mut)
 97 n.mut <- table(genes.mut)
 98 idx <- !duplicated(s.mutt$genes.mut)
 99 s.mutt <- s.mutt[idx,]
100 s.mutt <- cbind(s.mutt,num=n.mut[s.mutt$genes.mut])
101 genes.num <- paste0(s.mutt$Hugo_Symbol," (",s.mutt$num.Freq,")")
102 s.mutt <- cbind(s.mutt[,–c(6:8)],genes.num)
103 s.mutt[,6] <- as.character(s.mutt[,6])
104 s.mutt[,4] <- s.mutt[,4]/2
105 s.mutt$num.Freq <- NULL
106 colors <- c("blue","green","red","gold")
107 names(colors)  <- typeNames[1:4]
108 circos.genomicTrackPlotRegion(s.mutt, ylim = c(0.3,2.2), track.height = 0.05,
109                               panel.fun = function(region, value, ...) {
110                                   circos.genomicPoints(region, value, cex = 0.8, pch = 16, 
col = colors[value[[2]]], ...)
111                               })
112
113 circos.genomicTrackPlotRegion(s.mutt, ylim = c(0, 1), track.height = 0.1, bg.border = NA)
114 i_track = get.cell.meta.data("track.index")
115
116 circos.genomicTrackPlotRegion(s.mutt, ylim = c(0, 1),
117                               panel.fun = function(region, value, ...) {
118                                   circos.genomicText(region, value,
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119                                                      y = 1,
120                                                      labels.column = 3,
121                                                      col = colors[value[[2]]],
122                                                          facing = "clockwise", adj = c(1,0.5),
123                                                      posTransform = posTransform.text, 
cex = 1.5, niceFacing = T)
124                               }, track.height = 0.1, bg.border = NA)
125
126 circos.genomicPosTransformLines(s.mutt,
127                                 posTransform = function(region, value)
128                                     posTransform.text(region,
129                                                       y = 1,
130                                                       labels = value[[3]],
131                                                       cex = 0.8, track.index = i_track+1),
132                                 direction = "inside", track.index = i_track)
133
134 circos.clear()
135
136 legend(0.25, 0.2, bty="n", y.intersp=1, c("Amp","Del"), pch=15, col=c("firebrick", 
"forestgreen"), title="CNVs", text.font=3, cex=1.3,  title.adj=0)
137 legend(0, 0.2, bty="n", y.intersp=1, names(colors), pch=16, col=colors, title="Mutations", 
text.font=3, cex=1.3, title.adj=0)
138 dev.off()

Listing 13. Genomic aberration overview by circos plot

Figure 3. Circos plot of recurrent CNVs and mutations in LGG.
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Transcriptomic analysis
Pre-Processing Data. The LGG and GBM data used for following transcriptomic analysis were downloaded using 
TCGAbiolinks. We downloaded only primary solid tumor (TP) samples, which resulted in 516 LGG samples and 
156 GBM samples, then prepared it in two separate rse objects (RangedSummarizedExperiment) saving them as an 
R object with a file name including both the name of the cancer and the name of the platform used for gene expression 
data (see Listing 14).

 1 library(TCGAbiolinks)
 2
 3 query <- GDCquery(project = "TCGA-GBM",
 4                   data.category = "Gene expression",
 5                   data.type = "Gene expression quantification",
 6                   platform = "Illumina HiSeq",
 7                   file.type = "results",
 8                   sample.type = c("Primary solid Tumor"),
 9                   legacy = TRUE)
10 GDCdownload(query)
11 gbm.exp <- GDCprepare(query,
12                        save = TRUE,
13                        summarizedExperiment = TRUE,
14                        save.filename = "GBMIllumina_HiSeq.rda")
15
16 query <- GDCquery(project = "TCGA-LGG",
17                   data.category = "Gene expression",
18                   data.type = "Gene expression quantification",
19                   platform = "Illumina HiSeq",
20                   file.type = "results",
21                   sample.type = c("Primary solid Tumor"),
22                   legacy = TRUE)
23 GDCdownload(query)
24 lgg.exp <- GDCprepare(query, save = TRUE,
25                       summarizedExperiment = TRUE,
26                       save.filename = "LGGIllumina_HiSeq.rda")

Listing 14. Searching, downloading and preparing RNA-seq data with TCGAbiolinks

Figure 4. Circos plot of chromosome 17 recurrent CNVs and mutations in LGG.
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To pre-process the data, first, we searched for possible outliers using the TCGAanalyze_Preprocessing function, which 
performs an Array Array Intensity correlation AAIC (lines 14–17 and 26–29 of Listing 15). The Array-array intensity 
correlation plot (AAIC) is a re-adaptation of the function correlationPlot from the R/Bioconductor affyQCReport 
package31 that shows an heat map of the array-array Spearman/Pearson rank correlation coefficients. The arrays are 
ordered using the phenotypic data (if available) in order to place arrays with similar samples adjacent to each other. 
Self-self correlations are on the diagonal and by definition have a correlation coefficient of 1.0. Data from similar 
tissues or treatments will tend to have higher coefficients. This plot is useful for detecting outliers, failed hybridizations, 
or mistracked samples.

In our example, we defined a square symmetric matrix of Pearson correlation among all samples in each cancer type 
(LGG or GBM). This matrix found 0 samples with low correlation (cor.cut = 0.6) that can be identified as possible 
outliers.

Second, using the TCGAanalyze_Normalization function, which encompasses the functions of the EDASeq package, 
we normalized mRNA transcripts.

The TCGAanalyze_Normalization performs normalization using the following functions from EDASeq: 
newSeqExpressionSet, withinLaneNormalization, betweenLaneNormalization, counts. The within-lane normalization 
procedures to adjust for GC-content effect (or other gene-level effects) on read counts32. The between-lane normali-
zation procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and 
full-quantile normalization33.

 1 library(TCGAbiolinks)
 2
 3 rse <- get(load("LGGIllumina_HiSeq.rda"))
 4 dataClin_LGG <- GDCquery_clinic("TCGA-LGG", "Clinical")
 5
 6 dataPrep_LGG <- TCGAanalyze_Preprocessing(object = rse,
 7                                       cor.cut = 0.6,
 8                                       datatype = "raw_count",
 9                                       filename = "LGG_IlluminaHiSeq_RNASeqV2.png")
10
11 rse <- get(load("GBMIllumina_HiSeq.rda"))
12 dataClin_GBM <- GDCquery_clinic("TCGA-GBM", "Clinical")
13
14 dataPrep_GBM <- TCGAanalyze_Preprocessing(object = rse,
15                                           cor.cut = 0.6,
16                                           datatype = "raw_count",
17                                           filename = "GBM_IlluminaHiSeq_RNASeqV2.png")
18
19 dataNorm <- TCGAanalyze_Normalization(tabDF = cbind(dataPrep_LGG, dataPrep_GBM),
20                                       geneInfo = geneInfo,
21                                       method = "gcContent")
22
23 dataFilt <- TCGAanalyze_Filtering(tabDF = dataNorm,
24                                   method = "quantile",
25                                   qnt.cut = 0.25)
26
27 save(dataFilt, file = paste0("LGG_GBM_Norm_IlluminaHiSeq.rda"))
28
29 dataFiltLGG <- subset(dataFilt, select = substr(colnames(dataFilt),1,12) %in% dataClin_LGG$bcr_
        patient_barcode)
30 dataFiltGBM <- subset(dataFilt, select = substr(colnames(dataFilt),1,12) %in% dataClin_GBM$bcr_
        patient_barcode)
31
32 dataDEGs <- TCGAanalyze_DEA(mat1 = dataFiltLGG,
33                             mat2 = dataFiltGBM,
34                             Cond1type = "LGG",
35                             Cond2type = "GBM",
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36                             fdr.cut = 0.01, 
37                             logFC.cut = 1,
38                             method = "glmLRT")

Listing 15. Normalizing mRNA transcripts and differential expression analysis with TCGAbiolinks

Using TCGAanalyze_DEA, we identified 2,901 differentially expressed genes (DEG) (log fold change >=1 and 
FDR < 1%) between 515 LGG and 155 GBM samples.

EA: enrichment analysis. In order to understand the underlying biological process of DEGs we performed an 
enrichment analysis using TCGAanalyze_EA_complete function (see Listing 16).

 1 ansEA <– TCGAanalyze_EAcomplete(TFname="DEA genes LGG Vs GBM", RegulonList = 
rownames(dataDEGs))
 2
 3 TCGAvisualize_EAbarplot(tf = rownames(ansEA$ResBP),
 4                         GOBPTab = ansEA$ResBP, GOCCTab = ansEA$ResCC,
 5                         GOMFTab = ansEA$ResMF, PathTab = ansEA$ResPat,
 6                         nRGTab = rownames(dataDEGs),
 7                         nBar = 20)

Listing 16. Enrichment analysis

TCGAanalyze_EAbarplot outputs a bar chart as shown in Figure 5 with the number of genes for the main categories of 
three ontologies (i.e., GO:biological process, GO:cellular component, and GO:molecular function).

The Figure 5 shows canonical pathways significantly over-represented (enriched) by the DEGs. The most statistically 
significant canonical pathways identified in the DEGs are ranked according to their p-value corrected FDR (-Log10) 
(colored bars) and the ratio of list genes found in each pathway over the total number of genes in that pathway (ratio, 
red line).

PEA: Pathways enrichment analysis. To verify if the genes found have a specific role in a pathway, the Bioconductor 
package pathview34 can be used. Listing 17 shows an example how to use it. It can receive, for example, a named vector 
of gene with the expression level, the pathway.id which can be found in KEGG database, the species (’hsa’ for Homo 
sapiens) and the limits for the gene expression (see Figure 6).

 1 GenelistComplete <– rownames(assay(rse,1))
 2
 3 # DEGs TopTable
 4 dataDEGsFiltLevel <– TCGAanalyze_LevelTab(dataDEGs,"LGG","GBM",
 5                                           dataFilt[,colnames(dataFiltLGG)],
 6                                           dataFilt[,colnames(dataFiltGBM)])
 7
 8 dataDEGsFiltLevel$GeneID <– 0
 9
10 # Converting Gene symbol to geneID
11 library(clusterProfiler)
12 eg = as.data.frame(bitr(dataDEGsFiltLevel$mRNA,
13                         fromType="SYMBOL",
14                         toType="ENTREZID",
15                         OrgDb="org.Hs.eg.db"))
16 eg <– eg[!duplicated(eg$SYMBOL),]
17
18 dataDEGsFiltLevel <– dataDEGsFiltLevel[dataDEGsFiltLevel$mRNA %in% eg$SYMBOL,]
19
20 dataDEGsFiltLevel <– dataDEGsFiltLevel[order(dataDEGsFiltLevel$mRNA,decreasing=FALSE),]
21 eg <– eg[order(eg$SYMBOL,decreasing=FALSE),]
22
23 # table(eg$SYMBOL == dataDEGsFiltLevel$mRNA) should be TRUE
24 all(eg$SYMBOL == dataDEGsFiltLevel$mRNA)
25 dataDEGsFiltLevel$GeneID <– eg$ENTREZID
26
27 dataDEGsFiltLevel_sub <– subset(dataDEGsFiltLevel, select = c("GeneID", "logFC"))
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28 genelistDEGs <– as.numeric(dataDEGsFiltLevel_sub$logFC)
29 names(genelistDEGs) <– dataDEGsFiltLevel_sub$GeneID
30
31 require("pathview")
32 # pathway.id: hsa05214 is the glioma pathway
33 # limit: sets the limit for gene expression legend and color
34 hsa05214 <– pathview(gene.data  = genelistDEGs,
35                      pathway.id = "hsa05214",
36                      species    = "hsa",
37                      limit      = list(gene=as.integer(max(abs(genelistDEGs)))))

Listing 17. Pathways enrichment analysis with pathview package

Figure 5. The plot shows canonical pathways significantly over-represented (enriched) by the DEGs (differentially 
expressed genes) with the number of genes for the main categories of three ontologies (GO:biological process, 
GO:cellular  component,  and  GO:molecular  function,  respectively).  The most statistically significant canonical 
pathways identified in DEGs are listed according to their p-value corrected FDR (-Log10) (colored bars) and the ratio of 
listed genes found in each pathway over the total number of genes in that pathway (ratio, red line).
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The red genes are up-regulated and the green genes are down-regulated in the LGG samples compared to GBM.

Inference of gene regulatory networks. Starting with the set of differentially expressed genes, we infer gene regulatory 
networks using the following state-of-the art inference algorithms: ARACNE35, CLR36, MRNET37 and C3NET38. These 
methods are based on mutual inference and use different heuristics to infer the edges in the network. These methods 
have been made available via Bioconductor/CRAN packages (MINET39 and c3net38, respectively).

Many gene regulatory interactions have been experimentally validated and published. These ‘known’ interactions can 
be accessed using different tools and databases such as BioGrid40 or GeneMANIA41. However, this knowledge is far 
from complete and in most cases only contains a small subset of the real interactome. The quality assessment of the 
inferred networks can be carried out by comparing the inferred interactions to those that have been validated. This 
comparison results in a confusion matrix as presented in Table 2.

Table 2. Confusion matrix, comparing inferred network 
to network of validated interactions.

validated not validated/non-existing

inferred TP FP

not inferred FN TN

Figure  6.  Pathways  enrichment  analysis  :  glioma  pathway.  Red defines genes that are up-regulated and green 
defines genes that are down-regulated.

Page 23 of 59

F1000Research 2016, 5:1542 Last updated: 06 FEB 2017

http://bioconductor.org/packages/minet/
https://cran.r-project.org/web/packages/c3net/index.html


Different quality measures can then be computed such as the false positive rate 
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the true positive rate (also called recall) 
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and the precision 
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The performance of an algorithm can then be summarized using ROC (false positive rate versus true positive rate) or 
PR (precision versus recall) curves.

A weakness of this type of comparison is that an edge that is not present in the set of known interactions can either 
mean that an experimental validation has been tried and did not show any regulatory mechanism or (more likely) has 
not yet been attempted.

In the following, we ran the nce on i) the 2,901 differentially expressed genes identified in Section “Transcriptomic 
analysis”.

Retrieving known interactions
As previously stated, different sources for protein-protein interactions are available (e.g. I2D, BioGrid database). In 
this example, we obtained a set of known interactions from the BioGrid database, but the users can chose their preferred 
database.

 1 get.adjacency.biogrid <– function(tmp.biogrid, names.genes = NULL){
 2
 3   if(is.null(names.genes)){
 4     names.genes <– sort(union(unique(tmp.biogrid[,"Official.Symbol.Interactor.A"]),
 5     unique(tmp.biogrid[,"Official.Symbol.Interactor.B"])))
 6     ind <– seq(1,nrow(tmp.biogrid))
 7   }else{
 8     ind.A <– which(tmp.biogrid[,"Official.Symbol.Interactor.A"]%in%names.genes)
 9     ind.B <– which(tmp.biogrid[,"Official.Symbol.Interactor.B"]%in%names.genes)
10
11     ind <– intersect(ind.A, ind.B)
12   }
13
14   mat.biogrid <– matrix(0, nrow=length(names.genes), ncol=length(names.genes), dimnames=list(names.
       genes, names.genes))
15
16  for(i in ind){
17     mat.biogrid[tmp.biogrid[i,"Official.Symbol.Interactor.A"], tmp.biogrid[i,"Official.Symbol.
       Interactor.B"]] <– mat.biogrid[tmp.biogrid[i,"Official.Symbol.Interactor.B"], tmp.biogrid[i,"
       Official.Symbol.Interactor.A"]] <– 1
18  }
19   diag(mat.biogrid) <– 0
20
21   return(mat.biogrid)
22 }

There are 3,941 unique interactions between the 2,901 differentially expressed genes.

Using differentially expressed genes from TCGAbiolinks workflow
We start this analysis by inferring two gene regulatory networks (the corresponding number of edges are presented in 
Table 3) for the GBM data set and one gene set for the LGG data.
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 1 ### plot details (colors & symbols)
 2 mycols<–c(’#e41a1c’,’#377eb8’,’#4daf4a’,’#984ea3’,’#ff7f00’,’#ffff33’,’#a65628’)
 3
 4 ### load network inference libraries
 5 library(minet)
 6 library(c3net)
 7
 8 ### deferentially identified genes using TCGAbiolinks
 9 names.genes.de <– rownames(dataDEGs)
10
11 ### read biogrid info
12 library(downloader)
13 file <– "http://thebiogrid.org/downloads/archives/Release%20Archive/BIOGRID–3.4.133/BIOGRID–ALL
        –3.4.133.tab2.zip"
14 download(file ,basename(file))
15 unzip(basename(file),junkpaths =T)
16 tmp.biogrid <– read.csv(gsub("zip","txt",basename(file)), header=TRUE, sep="\t", stringsAsFactors=
       FALSE)
17 
18 net.biogrid.de <– get.adjacency.biogrid(tmp.biogrid, names.genes.de)
19
20 for (cancertype in c("LGG", "GBM")) {
21
22     if(cancertype == "GBM"){
23         mydata <– dataFiltGBM[names.genes.de, ]
24     }else if(cancertype == "LGG"){
25         mydata <– dataFiltLGG[names.genes.de, ]
26     }
27     ### infer networks
28     net.aracne <– minet(t(mydata), method = "aracne")
29     net.mrnet <– minet(t(mydata))
30     net.clr <– minet(t(mydata), method = "clr")
31     net.c3net <– c3net(mydata)
32
33     ### validate compared to biogrid network
34     tmp.val <– list(validate(net.aracne, net.biogrid.de), validate(net.mrnet, net.biogrid.de),
35                      validate(net.clr, net.biogrid.de), validate(net.c3net, net.biogrid.de))
36
37     ### plot roc and compute auc for the different networks
38     dev1 <– show.roc(tmp.val[[1]],cex=0.3,col=mycols[1],type="l")
39     res.auc <– auc.roc(tmp.val[[1]])
40     for(count in 2:length(tmp.val)){
41         show.roc(tmp.val[[count]],device=dev1,cex=0.3,col=mycols[count],type="l")
42         res.auc <– c(res.auc, auc.roc(tmp.val[[count]]))
43     }
44
45     legend("bottomright", legend=paste(c("aracne","mrnet","clr","c3net"), signif(res.auc,4), sep=": "),
46           col=mycols[1:length(tmp.val)],lty=1, bty="n" )
47      dev.copy2pdf(width=8,height=8,device = dev1, file = paste0("roc_biogrid_",cancertype,".pdf"))
48     save(net.aracne, net.mrnet, net.clr, net.c3net, file=paste0("nets_",cancertype,".RData"))
49
50 }

In Figure 7, the obtained ROC curve and the corresponding area under curve (AUC) are presented. It can be observed 
that CLR and MRNET perform best when comparing the inferred network with known interactions from the BioGrid 
database.

Table 3. Number of edges in the inferred gene regulatory networks; first 
two lines: networks inferred using 2,901 differentially expressed genes.

gene set inference algorithm aracne c3net clr mrnet

DE
GBM 5,903 2,678 1,718,328 1,682,334

LGG 4,443 2,684 1,939,142 1,859,121
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Figure 7. ROC with corresponding AUC for inferred GBM networks compared to BioGrid interactions using 2901 
genes.

Epigenetic analysis
The DNA methylation is an important component in numerous cellular processes, such as embryonic development, 
genomic imprinting, X-chromosome inactivation, and preservation of chromosome stability42.

In mammals DNA methylation is found sparsely but globally, distributed in definite CpG sequences throughout the 
entire genome; however, there is an exception. CpG islands (CGIs) which are short interspersed DNA sequences that 
are enriched for GC. These islands are normally found in sites of transcription initiation and their methylation can lead 
to gene silencing43.

Thus, the investigation of the DNA methylation is crucial to understanding regulatory gene networks in cancer as the 
DNA methylation represses transcription44. Therefore, the DMR (Differentially Methylation Region) detection can 
help us investigate regulatory gene networks.

This section describes the analysis of DNA methylation using the Bioconductor package TCGAbiolinks8. For this 
analysis, and due to the time required to perform it, we selected only 10 LGG samples and 10 GBM samples that have 
both DNA methylation data from Infinium HumanMethylation450 and gene expression from Illumina HiSeq 2000 
RNA Sequencing Version 2 analysis (lines 1–56 of the Listing 18 describes how to make the data acquisition). We 
started by checking the mean DNA methylation of different groups of samples, then performed a DMR in which we 
search for regions of possible biological significance, (e.g., regions that are methylated in one group and unmethylated 
in the other). After finding these regions, they can be visualized using heatmaps.

Visualizing the mean DNA methylation of each patient. It should be highlighted that some pre-processing of the DNA 
methylation data was done. The DNA methylation data from the 450k platform has three types of probes cg (CpG loci), 
ch (non-CpG loci) and rs (SNP assay). The last type of probe can be used for sample identification and tracking and 
should be excluded for differential methylation analysis according to the ilumina manual. Therefore, the rs probes were 
removed (see Listing 18 lines 68). Also, probes in chromosomes X, Y were removed to eliminate potential artifacts 
originating from the presence of a different proportion of males and females45. The last pre-processing steps were to 
remove probes with at least one NA value (see Listing 18 lines 65).
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After this pre-processing step and using the function TCGAvisualize_meanMethylation function, we can look at the 
mean DNA methylation of each patient in each group. It receives as argument a summarizedExperiment object with 
the DNA methylation data, and the arguments groupCol and subgroupCol which should be two columns from the 
sample information matrix of the summarizedExperiment object (accessed by the colData function) (see Listing 18 
lines 70–74).

 1 #––––––––––––––––––––––––––––
 2 # Obtaining DNA methylation
 3 #––––––––––––––––––––––––––––
 4 library(TCGAbiolinks)
 5 library(stringr)
 6 # Samples
 7 matched_met_exp <– function(project, n = NULL){
 8     # get primary solid tumor samples: DNA methylation
 9     message("Download DNA methylation information")
10     met450k <- GDCquery(project = project,
11                         data.category = "DNA methylation",
12                         platform = "Illumina Human Methylation 450",
13                         legacy = TRUE,
14                         sample.type = c("Primary solid Tumor"))
15     met450k.tp <- met450k$results[[1]]$cases
16
17     # get primary solid tumor samples: RNAseq
18     message("Download gene expression information")
19     exp <- GDCquery(project = project,
20                     data.category = "Gene expression",
21                     data.type = "Gene expression quantification",
22                     platform = "Illumina HiSeq",
23                     file.type = "results",
24                     sample.type = c("Primary solid Tumor"),
25                     legacy = TRUE)
26     exp.tp <- exp$results[[1]]$cases
27     print(exp.tp[1:10])
28      # Get patients with samples in both platforms
29      patients <– unique(substr(exp.tp,1,15)[substr(exp.tp,1,12) %in% substr(met450k.tp,1,12)])
30      if(!is.null(n)) patients <– patients[1:n] # get only n samples
31      return(patients)
32 }
33 lgg.samples <– matched_met_exp("TCGA–LGG", n = 10)
34 gbm.samples <– matched_met_exp("TCGA–GBM", n = 10)
35 samples <– c(lgg.samples,gbm.samples)
36
37
38 #–––––––––––––––––––––––––––––––––––
39 # 1 – Methylation
40 # ––––––––––––––––––––––––––––––––––
41 # For methylation it is quicker in this case to download the tar.gz file
42 # and get the samples we want instead of downloading files by files
43 query.lgg <- GDCquery(project = "TCGA-LGG",
44                       data.category = "DNA methylation",
45                       platform = "Illumina Human Methylation 450",
46                       legacy = TRUE, barcode = lgg.samples)
47 GDCdownload(query.lgg)
48 met.lgg <-GDCprepare(query.lgg, save = FALSE)
49
50 query.gbm <- GDCquery(project = "TCGA-GBM",
51                       data.category = "DNA methylation",
52                       platform = "Illumina Human Methylation 450",
53                       legacy = TRUE, barcode = gbm.samples)
54 GDCdownload(query.gbm)
55 met.gbm <- GDCprepare(query.gbm, save = FALSE)
56 met <- SummarizedExperiment::cbind(met.lgg, met.gbm)
57
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58 #––––––––––––––––––––––––––––
59 # Mean methylation
60 #––––––––––––––––––––––––––––
61 # Plot a barplot for the groups in the disease column in the
62 # summarizedExperiment object
63
64 # remove probes with NA (similar to na.omit)
65 met <– subset(met,subset = (rowSums(is.na(assay(met))) == 0))
66
67 # remove probes in chromossomes X, Y and NA
68 met <– subset(met,subset = !as.character(seqnames(met)) %in% c("chrNA","chrX","chrY"))
69
70 TCGAvisualize_meanMethylation(met,
71                               groupCol = "disease_type",
72                               group.legend  = "Groups",
73                               filename = "mean_lgg_gbm.png",
74                               print.pvalue = TRUE)

Listing 18. Visualizing the DNA mean methylation of groups

Figure 8 illustrates a mean DNA methylation plot for each sample in the GBM group (140 samples) and a mean DNA 
methylation for each sample in the LGG group. Genome-wide view of the data highlights a difference between the 
groups of tumors (p-value = 6.1x10−06).

Searching for differentially methylated CpG sites. The next step is to define differentially methylated CpG sites 
between the two groups. This can be done using the TCGAanalyze_DMR function (see Listing 19). The DNA 
methylation data (level 3) is presented in the form of beta-values that uses a scale ranging from 0.0 (probes 
completely unmethylated) up to 1.0 (probes completely methylated).

To find these differentially methylated CpG sites, first, the function calculates the difference between the mean DNA 
methylation (mean of the beta-values) of each group for each probe. Second, it test for differential expression between 
two groups using the Wilcoxon test adjusting by the Benjamini-Hochberg method. Arguments of TCGAanalyze_DMR 
was set to require a minimum absolute beta-values difference of 0.25 and an adjusted p-value of less than 10−2.

Figure 8. Boxplot of mean DNA methylation of each sample (black dots).
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After these tests, a volcano plot (x-axis: difference of mean DNA methylation, y-axis: statistical significance) is created 
to help users identify the differentially methylated CpG sites and return the object with the results in the rowRanges. 
Figure 9 shows the volcano plot produced by Listing 19. This plot aids the user in selecting relevant thresholds, as we 
search for candidate biological DMRs.

 1 # Becareful! Depending on the number of probes and samples this function might take some days.
 2 # To make this example faster we used only the chromosome 9
 3 # This should take some minutes
 4 met.chr9 <– subset(met,subset = as.character(seqnames(met)) %in% c("chr9"))
 5
 6 met.chr9 <– TCGAanalyze_DMR(met.chr9,
 7                              groupCol = "disease_type", # a column in the colData matrix
 8                                        group1 = "Glioblastoma Multiforme", # a type of the the disease type column
 9                                  group2= "Brain Lower Grade Glioma", # a type of the the disease column
10                             p.cut = 10^–2,
11                             diffmean.cut = 0.25,
12                             legend = "State",
13                             plot.filename = "LGG_GBM_metvolcano.png",
14                             cores = 1 # if set to 1 there will be a progress bar
15 )

Listing 19. Finding differentially methylated CpG sites

To visualize the level of DNA methylation of these probes across all samples, we use heatmaps that can be generate 
by the bioconductor package complexHeatmap30. To create a heatmap using the complexHeatmap package, the user 
should provide at least one matrix with the DNA methylation levels. Also, annotation layers can be added and placed 
at the bottom, top, left side and right side of the heatmap to provide additional metadata description. The Listing 20 
shows the code to produce the heatmap of a DNA methylation datum (Figure 10).

Figure  9.  Volcano  plot:  searching  for  differentially  methylated  CpG  sites  (x-axis:difference  of  mean  DNA 
methylation, y-axis: statistical significance).
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 1 #–––––––––––––––––––––––––
 2 # DNA methylation heatmap
 3 #–––––––––––––––––––––––––
 4 library(ComplexHeatmap)
 5
 6 clin.gbm <– GDCquery_clinic("TCGA-GBM", "Clinical")
 7 clin.lgg <– GDCquery_clinic("TCGA-LGG", "Clinical")
 8 clinical <– plyr::rbind.fill(clin.lgg, clin.gbm)
 9
10 # get the probes that are Hypermethylated or Hypomethylated
11 # met is the same object of the section ’DNA methylation analysis’
12 sig.met <– met.chr9[values(met.chr9)[,"status.Glioblastoma.Multiforme.Brain.Lower.Grade.Glioma"] %in%
        c("Hypermethylated","Hypomethylated"),]
13
14 # To speed up the example, we will select no more than 100 probes
15 nb.probes <- ifelse(nrow(sig.met) > 100, 100, nrow(sig.met)) # If there is more than 100 get 100
16 sig.met.100 <– sig.met[1:nb.probes,]
17
18 # top annotation, which sampples are LGG and GBM
19 # We will add clinical data as annotation of the samples
20 # we will sort the clinical data to have the same order of the DNA methylation matrix
21 clinical.order <– clinical[match(substr(colnames(sig.met.100),1,12),clinical$bcr_patient_barcode),]
22 ta = HeatmapAnnotation(df = clinical.order[,c("disease","gender","vital_status","race")],
23                       col = list(disease = c("LGG" = "grey", "GBM" = "black"),
24                                  gender = c("male"="blue","female"="pink")))
25
26 # row annotation: add the status for LGG in relation to GBM
27 # For exmaple: status.gbm.lgg Hypomethyated means that the
28 # mean DNA methylation of probes for lgg are hypomethylated
29 # compared to GBM ones.
30 ra = rowAnnotation(df = values(sig.met.100)["status.Glioblastoma.Multiforme.Brain.Lower.Grade.Glioma"],
31                   col = list("status.Glioblastoma.Multiforme.Brain.Lower.Grade.Glioma" = c(" 
       Hypomethylated" = "orange",
32                                               "Hypermethylated" = "darkgreen")),
33                   width = unit(1, "cm"))
34
35 heatmap <– Heatmap(assay(sig.met.100),
36                    name = "DNA methylation",
37                    col = matlab::jet.colors(200),
38                    show_row_names = F,
39                    cluster_rows = T,
40                    cluster_columns = F,
41                    show_column_names = F,
42                    bottom_annotation = ta,
43                    column_ title = "DNA methylation") 
44 # Save to pdf
45 pdf("heatmap.pdf",width = 10, height = 8)
46 draw(heatmap, annotation_legend_side = "bottom")
47 dev.off()

Listing 20. Creating heatmaps for DNA methylation using ComplexHeatmap

Motif analysis. Motif discovery is the attempt to extract small sequence signals hidden within largely non-functional 
intergenic sequences. These small sequence nucleotide signals (6–15 bp) might have a biological significance as 
they can be used to control the expression of genes. These sequences are called Regulatory motifs. The bioconductor 
package rGADEM46,47 provides an efficient de novo motif discovery algorithm for large-scale genomic sequence data.

The user may be interested in looking for unique signatures in the regions defined by ‘differentially methylated’ to 
identify candidate transcription factors that could bind to these elements affected by the accumulation or absence of 
DNA methylation. For this analysis we use a sequence of 100 bases before and after the probe location (See lines 6–8 
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Figure 10. Heatmap of DNA methylation in probes. Rows are probes and columns are samples (patients). The DNA 
methylation values range from 0.0 (completely DNA unmethylated, blue) to 1.0 (completely DNA methylated, red). The 
groups of each sample were annotated in the top bar and the DNA methylation status for each probe was annotated in 
the right bar.

in the Listing 21). An object will be returned which contains all relevant information about your motif analysis (i.e., 
sequence consensus, pwm, chromosome, p-value, etc).

Using bioconductor package motifStack48 it is possible to generate a graphic representation of multiple motifs with 
different similarity scores (see Figure 11).

 1 library(rGADEM)
 2 library(BSgenome.Hsapiens.UCSC.hg19)
 3 library(motifStack)
 4
 5 probes <– rowRanges(met.chr9)[values(met.chr9)[,"status.Glioblastoma.Multiforme. 
        Brain.Lower.Grade.Glioma"] %in% c("Hypermethylated" ,"Hypomethylated"),]
 6 # Get hypo/hyper methylated probes and make a 200bp window
 7 # surrounding each probe.
 8 sequence <– RangedData(space=as.character(probes@seqnames),
 9                        IRanges(start=probes@ranges@start – 100,
10                                end=probes@ranges@start + 100), strand="*")
11 #look for motifs
12 gadem <– GADEM(sequence, verbose=FALSE, genome=Hsapiens)
13
14 # How many motifs were found?
15 length(gadem@motifList)

DNA Methylation

DNA methylation
0.8
0.6
0.4
0.2

disease
LGG
GBM

gender
male
female

vital_status
alive
dead

race
white
not reported
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16
17 # get the number of occurences
18 nOccurrences(gadem)
19
20 # view all sequences consensus
21 consensus(gadem)
22
23 # print motif
24 pwm <– getPWM(gadem)
25 pfm  <– new("pfm",mat=pwm[[1]],name="Novel Site 1")
26 plotMotifLogo(pfm)
27
28 # Number of instances of motif 1?
29 length(gadem@motifList[[1]]@alignList)

Listing 21. rGADEM: de novo motif discovery

After rGADEM returns it’s results, the user can use MotIV package49–52 to start the motif matching analysis (line 4 of 
Listing 22). The result is shown in Figure 12.

 1 library(MotIV)
 2
 3 analysis.jaspar <– motifMatch(pwm)
 4 summary(analysis.jaspar)
 5 plot(analysis.jaspar, ncol=1, top=5, rev=FALSE,
 6      main="", bysim=TRUE, cex=0.3)
 7
 8 #  visualize the quality of the results around the alignments
 9 # E–value give an estimation of the match.
10 alignment <– viewAlignments(analysis.jaspar )
11 print(alignment[[1]])

Listing 22. MotIV: motifs matches analysis.

Figure 11. Motif logos found during de-novo motif analysis.
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Integrative (Epigenomic & Transcriptomic) analysis
Recent studies have shown that providing a deep integrative analysis can aid researchers in identifying and extracting 
biological insight from high through put data42,53,54. In this section, we will introduce a Bioconductor package called 
ELMER to identify regulatory enhancers using gene expression + DNA methylation data + motif analysis. In addition, 
we show how to integrate the results from the previous sections with important epigenomic data derived from both the 
ENCODE and Roadmap.

Integration of DNA methylation & gene expression data. After finding differentially methylated CpG sites, one might 
ask whether nearby genes also undergo a change in expression either an increase or a decrease. DNA methylation 
at promoters of genes has been shown to be associated with silencing of the respective gene. The starburst plot is 
proposed to combine information from two volcano plots and is applicable for studies of DNA methylation and gene 
expression55. Even though, being desirable that both gene expression and DNA methylation data are from the same 
samples, the starburst plot can be applied as a meta-analysis tool, combining data from different samples56. We used 
the TCGAvisualize_starburst function to create a starburst plot. The log

10
 (FDR-corrected P value) for DNA methyla-

tion is plotted on the x axis, and for gene expression on the y axis, for each gene. The horizontal black dashed line 
shows the FDR-adjusted P value of 10–2 for the expression data and the vertical ones shows the FDR-adjusted P value 

Figure 12. Identified transcription factors: the sequence logo, the name of the motif match and the p-value of the 
alignment.
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of 10–2 for the DNA methylation data. The starburst plot for the Listing 23 is shown in Figure 13. While the argument 
met.p.cut and exp.p.cut controls the black dashed lines, the arguments diffmean.cut and logFC.cut will be used to 
highlight the genes that respects these parameters (circled genes in Figure 13). For the example below we set higher 
p.cuts trying to get the most significant list of pair gene/probes. But for the next sections we will use exp.p.cut = 0.01 
and logFC.cut = 1 as the previous sections.

 1 #------------------- Starburst plot ------------------------------
 2 starburst <– TCGAvisualize_starburst(met.chr9,    # DNA methylation with results
 3                                      dataDEGs,    # DEG results
 4                                      group1 = "Glioblastoma Multiforme",
 5                                      group2 = "Brain Lower Grade Glioma",
 6                                      filename = "starburst.png",
 7                                      met.p.cut = 10^−2,
 8                                      exp.p.cut = 10^−2,
 9                                      diffmean.cut = 0.25,
10                                      logFC.cut = 1,width = 15,height = 10,
11                                      names = TRUE)

Listing 23. Starburst plot for comparison of DNA methylation and gene expression

ChIP-seq analysis. ChIP-seq is used primarily to determine how transcription factors and other chromatin-associated 
proteins influence phenotype-affecting mechanisms. Determining how proteins interact with DNA to regulate gene 
expression is essential for fully understanding many biological processes and disease states. The aim is to explore 
significant overlap datasets for inferring co-regulation or transcription factor complex for further investigation. A 
summary of the association of each histone mark is shown in Table 4. Besides, ChIP-seq data exists in the ROADMAP 
database and can be obtained through the AnnotationHub package57 or from Roadmap web portal. The Table 5 shows 
the description for all the Roadmap files that are available through AnnotationHub. After obtaining the ChIP-seq data, 
we can then identify overlapping regions with the regions identified in the starburst plot. The narrowPeak files are the 
ones selected for this step.

Figure 13. Starburst plot: x-axis is the log10 of the correct P-value for DNA methylation and the y-axis is the log10 
of the correct P-value for the expression data. The starburst plot highlights nine distinct quadrants. Highlighted genes 
might have the potential for activation due to epigenetic alterations.
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For a complete pipeline with Chip-seq data, bioconductor provides excellent tutorials to work with ChIP-seq and we 
encourage our readers to review the following article66.

The first step shown in Listing 24 is to download the chip-seq data. The function query received as argument the 
annotationHub database (ah) and a list of keywords to be used for searching the data, EpigenomeRoadmap is selecting 
the roadmap database, consolidated is selecting only the consolidate epigenomes, brain is selecting the brain 
samples, E068 is one of the epigenomes for brain (keywords can be seen in the summary table) and narrowPeak is 
selecting the type of file. The data downloaded is a processed data from an integrative Analysis of 111 reference 
human epigenomes67.

 1 library(AnnotationHub)
 2 library(pbapply)
 3 #–––––––––––––––––– Working with ChipSeq data –––––––––––––––
 4 # Step 1: download histone marks for a brain samples.
 5 #––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
 6 ah = AnnotationHub() # loading annotation hub database
 7

Table 4. Histone marks that define genomic elements.

Histone marks Role

Histone H3 lysine 4 trimethylation (H3K4me3) Promoter regions58,59 

Histone H3 lysine 4 monomethylation (H3K4me1) Enhancer regions58 

Histone H3 lysine 36 trimethylation (H3K36me3) Transcribed regions

Histone H3 lysine 27 trimethylation (H3K27me3) Polycomb repression60 

Histone H3 lysine 9 trimethylation (H3K9me3) Heterochromatin regions61 

Histone H3 acetylated at lysine 27 (H3K27ac) Increase activation of genomic 
elements62–64 

Histone H3 lysine 9 acetylation (H3K9ac) Transcriptional activation65 

Table 5. ChIP-seq data file types available in AnnotationHub.

File Description

fc.signal.bigwig Bigwig File containing fold enrichment signal tracks

pval.signal.bigwig Bigwig File containing -log10(p-value) signal tracks

hotspot.fdr0.01.broad.bed.gz Broad domains on enrichment for DNase-seq for 
consolidated epigenomes

hotspot.broad.bed.gz Broad domains on enrichment for DNase-seq for 
consolidated epigenomes

broadPeak.gz Broad ChIP-seq peaks for consolidated epigenomes

gappedPeak.gz Gapped ChIP-seq peaks for consolidated epigenomes

narrowPeak.gz Narrow ChIP-seq peaks for consolidated epigenomes

hotspot.fdr0.01.peaks.bed.gz Narrow DNasePeaks for consolidated epigenomes

hotspot.all.peaks.bed.gz Narrow DNasePeaks for consolidated epigenomes

.macs2.narrowPeak.gz Narrow DNasePeaks for consolidated epigenomes

coreMarks_mnemonics.bed.gz 15 state chromatin segmentations

mCRF_FractionalMethylation.bigwig MeDIP/MRE(mCRF) fractional methylation calls

RRBS_FractionalMethylation.bigwig RRBS fractional methylation calls

WGBS_FractionalMethylation.bigwig Whole genome bisulphite fractional methylation calls
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 8 # Searching for brain consolidated epigenomes in the roadmap database
 9 bpChipEpi_brain <– query(ah, c("EpigenomeRoadMap", "narrowPeak", "chip", "consolidated", 
"brain", "E068"))
10
11 # Get chip–seq data
12 histone.marks <– pblapply(names(bpChipEpi_brain), function(x){ah[[x]]})
13 names(histone.marks) <– names(bpChipEpi_brain)

Listing 24. Download chip-seq data

The Chipseeker package68 implements functions that uses Chip-seq data to retrieve the nearest genes around the peak, 
to annotate genomic region of the peak, among others. Also, it provides several visualization functions to summarize 
the coverage of the peak, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance 
to TSS and overlap of peaks or genes.

After downloading the histone marks (see Listing 24), it is useful to verify the average profile of peaks binding to 
hypomethylated and hypermethylated regions, which will help the user understand better the regions found. Listing 25 
shows an example of code to plot the average profile. Figure 14 shows the result.

To help the user better understand the regions found in the DMR analysis, we downloaded histone marks spe-
cific for brain tissue using the AnnotationHub package that can access the Roadmap database (Listing 24). Next, 
the Chipseeker was used to visualize how histone modifications are enriched onto hypomethylated and hypermeth-
ylated regions, (Listing 25). The enrichment heatmap and the average profile of peaks binding to those regions is 
shown in Figure 14 and Figure 15 respectively.

The hypomethylated and hypermethylated regions are enriched for H3K4me3, H3K9ac, H3K27ac and H3K4me1 
which indicates regions of enhancers, promoters and increased activation of genomic elements. However, these regions 
are associated neither with transcribed regions nor Polycomb repression as the H3K36me3 and H3K27me3 heatmaps 
does not show an enrichment nearby the position 0, and the average profile also does not show a peak at position 0.

 1 library(ChIPseeker)
 2 library(pbapply)
 3 library(SummarizedExperiment)
 4 library(GenomeInfoDb)
 5 library(ggplot2)
 6 library(AnnotationHub)
 7
 8 # Create a GR object based on the hypo/hypermethylated probes.
 9 probes <– keepStandardChromosomes(rowRanges(met.chr9)[values(met.chr9)[,"status.Glioblastoma 
        Multiforme.Brain Lower Grade Glioma"] %in% c("Hypermethylated", "Hypomethylated"),])
10 # Defining a window of 3kbp – 3kbp_probe_3kbp
11 probes@ranges <– IRanges(start = c(probes@ranges@start – 3000), end = c(probes@ranges@start 
+ 3000))
12
13 ### Profile of ChIP peaks binding to TSS regions
14 # First of all, for calculate the profile of ChIP peaks binding to TSS regions, we should
15 # prepare the TSS regions, which are defined as the flanking sequence of the TSS sites.
16 # Then align the peaks that are mapping to these regions, and generate the tagMatrix.
17 tagMatrixList <– pblapply(histone.marks, function(x) {
18     getTagMatrix(keepStandardChromosomes(x), windows = probes, weightCol = "score")
19 })
20 names(tagMatrixList) <– basename(bpChipEpi_brain$title)
21 names(tagMatrixList) <– gsub(".narrowPeak.gz","",names(tagMatrixList)) # remove file type from name
22 names(tagMatrixList) <– gsub("E068–","",names(tagMatrixList)) # remove file type from name
23
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24 pdf("chip_heatmap.pdf", height = 5, width = 10)
25 tagHeatmap(tagMatrixList, xlim=c(–3000, 3000),color = NULL)
26 dev.off()
27
28 p <– plotAvgProf(tagMatrixList, xlim = c(–3000,3000), xlab = "Genomic Region (5’–>3’, centered on CpG)")
29 # We are centreing in the CpG instead of the TSS. So we’ll change the labels manually
30  p <– p + scale_x_continuous(breaks=c(–3000,–1500,0,1500,3000),labels=c(–3000,–1500,"CpG",1500,3000))
31 library(ggthemes)
32 pdf("chip–seq.pdf", height = 5, width = 7)
33 p + theme_few() + scale_colour_few(name="Histone marks") +guides(colour = guide_legend(override.aes =
        list(size=4)))
34 dev.off()

Listing 25. Average profile plot

To annotate the location of a given peak in terms of genomic features, annotatePeak assigns peaks to genomic 
annotation in “annotation” column of the output, which includes whether a peak is in the TSS, Exon, 5’ UTR, 3’ UTR, 
Intronic or Intergenic location.

 1 require(TxDb.Hsapiens.UCSC.hg19.knownGene)
 2 txdb <– TxDb.Hsapiens.UCSC.hg19.knownGene
 3 peakAnno <– annotatePeak(probes, tssRegion=c(−3000, 3000), TxDb=txdb, annoDb="org.Hs.eg.db")
 4 plotAnnoPie(peakAnno)

Listing 26. Annotate the location of a given peak in terms of genomic features

Figure 14. Average profiles for histone markers H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac, 
and H3K9me3. The figure indicates that the differentially methylated regions overlaps regions of enhancers, promoters 
and increased activation of genomic elements.
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Identification of Regulatory Enhancers. Recently, many studies suggest that enhancers play a major role as regula-
tors of cell-specific phenotypes leading to alteration in transcriptomes realated to diseases69–72. In order to investigate 
regulatory enhancers that can be located at long distances upstream or downstream of target genes Bioconductor 
offer the Enhancer Linking by Methylation/Expression Relationship (ELMER) package. This package is designed to 
combine DNA methylation and gene expression data from human tissues to infer multi-level cis-regulatory networks. 
It uses DNA methylation to identify enhancers and correlates their state with expression of nearby genes to identify 
one or more transcriptional targets. Transcription factor (TF) binding site analysis of enhancers is coupled with 
expression analysis of all TFs to infer upstream regulators. This package can be easily applied to TCGA public 
available cancer data sets and custom DNA methylation and gene expression data sets73.

ELMER analysis have 5 main steps: 

 1. Identify distal enhancer probes on HM450K.

 2. Identify distal enhancer probes with significantly different DNA methylation level in control group and 
experiment group.

 3. Identify putative target genes for differentially methylated distal enhancer probes.

 4. Identify enriched motifs for the distal enhancer probes which are significantly differentially methylated 
and linked to putative target gene.

 5. Identify regulatory TFs whose expression associate with DNA methylation at motifs.

Figure 15. Heatmap of histone marks H3K4me1, H3K4me3, H3K27ac, H3K9ac, H3K9me3, H3K27me3 and H3K36me3 
for brain tissues.

Figure 16. Feature distribution: annotation the region of the probes.
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This section shows how to use ELMER to analyze TCGA data using as example LGG and GBM samples.

Preparing the data for ELMER package. After downloading the data with TCGAbiolinks package, some steps are 
still required to use TCGA data with ELMER. These steps can be done with the function TCGAprepare_elmer. This 
function for the DNA methylation data will remove probes with NA values in more than 20% samples and remove 
the annotation data, for RNA expression data it will take the log2(expression + 1) of the expression matrix in order to 
linearize the relation between DNA methylation and expression. Also, it will prepare the row names of the matrix as 
required by the package.

The Listing 27 shows how to use TCGAbiolinks8 to search, download and prepare the data for the ELMER package. 
Due to time and memory constraints, we will use in this example only data from 10 LGG patients and 10 GBM patients 
that have both DNA methylation and gene expression data. This samples are the same used in the previous steps.

 1 #----------- 8.3  Identification of Regulatory Enhancers -------
 2 library(TCGAbiolinks)
 3 library(stringr)
 4 # Samples: primary solid tumor w/ DNA methylation and gene expression
 5 matched_met_exp <- function(project, n = NULL){
 6     # get primary solid tumor samples: DNA methylation
 7     message("Download DNA methylation information")
 8     met450k <- GDCquery(project = project,
 9                         data.category = "DNA methylation",
10                         platform = "Illumina Human Methylation 450",
11                         legacy = TRUE,
12                         sample.type = c("Primary solid Tumor"))
13     met450k.tp <-  met450k$results[[1]]$cases
14
15     # get primary solid tumor samples: RNAseq
16     message("Download gene expression information")
17     exp <- GDCquery(project = project,
18                     data.category = "Gene expression",
19                     data.type = "Gene expression quantification",
20                     platform = "Illumina HiSeq",
21                     file.type =  "results",
22                     sample.type = c("Primary solid Tumor"),
23                     legacy = TRUE)
24      exp.tp <-  exp$results[[1]]$cases
25      print(exp.tp[1:10])
26      # Get patients with samples in both platforms
27      patients <- unique(substr(exp.tp,1,15)[substr(exp.tp,1,12) %in% substr(met450k.tp,1,12)])
28      if(!is.null(n)) patients <- patients[1:n] # get only n samples
29      return(patients)
30 }
31 lgg.samples <- matched_met_exp("TCGA-LGG", n = 10)
32 gbm.samples <- matched_met_exp("TCGA-GBM", n = 10)
33 samples <- c(lgg.samples,gbm.samples)
34
35 #-----------------------------------
36 # 1 -  Methylation
37 #----------------------------------
38 query.lgg <- GDCquery(project = "TCGA-LGG",
39                       data.category = "DNA methylation",
40                       platform = "Illumina Human Methylation 450",
41                       legacy = TRUE,
42                       barcode = lgg.samples)
43 GDCdownload(query.lgg)
44 met.lgg <-GDCprepare(query.lgg, save = FALSE)
45
46 query.gbm <- GDCquery(project = "TCGA-GBM",
47                       data.category = "DNA methylation",
48                       platform = "Illumina Human Methylation 450",
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49                       legacy = TRUE,
50                       barcode = gbm.samples)
51 GDCdownload(query.gbm)
52 met.gbm <- GDCprepare(query.gbm, save = FALSE)
53 met.elmer <- SummarizedExperiment::cbind(met.lgg, met.gbm)
54 met.elmer <- TCGAprepare_elmer(met.elmer,
55                                platform = "HumanMethylation450")
56
57 #-----------------------------------
58 # 2 - Expression
59 # ----------------------------------
60 query.exp.lgg <- GDCquery(project = "TCGA-LGG",
61                 data.category = "Gene expression",
62                 data.type = "Gene expression quantification",
63                 platform = "Illumina HiSeq",
64                 file.type = "results",
65                 legacy = TRUE, barcode = lgg.samples )
66 GDCdownload(query.exp.lgg)
67 exp.lgg <- GDCprepare(query.exp.lgg, save = FALSE)
68
69 query.exp.gbm <- GDCquery(project = "TCGA-GBM",
70                 data.category = "Gene expression",
71                 data.type = "Gene expression quantification",
72                 platform = "Illumina HiSeq",
73                 file.type = "results",
74                 legacy = TRUE, barcode = gbm.samples)
75 GDCdownload(query.exp.gbm)
76 exp.gbm <-GDCprepare(query.exp.gbm, save = FALSE)
77 exp.elmer <- SummarizedExperiment::cbind(exp.lgg, exp.gbm)
78 exp.elmer <- TCGAprepare_elmer(exp.elmer, platform = "IlluminaHiSeq_RNASeqV2")

Listing 27. Preparing TCGA data for ELMER’s mee object

Finally, the ELMER input is a mee object that contains a DNA methylation matrix, an gene expression matrix, a probe 
information GRanges, the gene information GRanges and a data frame summarizing the data. It should be highlighted 
that samples without both the gene expression and DNA methylation data will be removed from the mee object.

By default the function fetch.mee that is used to create the mee object will separate the samples into two groups, the 
control group (normal samples) and the experiment group (tumor samples), but the user can relabel the samples to 
compare different groups. For the next sections, we will work with both the experimental group (LGG) and control 
group (GBM).

 1 library(ELMER)
 2 geneAnnot <– txs()
 3 geneAnnot$GENEID <– paste0("ID",geneAnnot$GENEID)
 4 geneInfo <– promoters(geneAnnot,upstream = 0, downstream = 0)
 5 probe <– get.feature.probe()
 6
 7 # create mee object, use @ to access the matrices inside the object
 8 mee <– fetch.mee(meth = met.elmer, exp = exp.elmer,
 9                  TCGA = TRUE, probeInfo = probe, geneInfo = geneInfo)
10
11 # Relabel GBM samples in the mee object: GBM is control
12 mee@sample$TN[mee@sample$ID %in% lgg.samples] <– "Control"

Listing 28. Creating mee object with TCGA data to be used in ELMER

ELMER analysis. After preparing the data into a mee object, we executed the five ELMER steps for both the hypo 
(distal enhancer probes hypomethylated in the LGG group) and hyper (distal enhancer probes hypermethylated in the 
LGG group) direction. The code is shown below. A description of how these distal enhancer probes are identified is 
found in the ELMER.data vignette.
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 1 library(parallel)
 2 # Available directions are hypo and hyper, we will use only hypo
 3 # due to speed constraint
 4 direction <– c("hyper")
 5
 6 for (j in direction){
 7     print(j)
 8     dir.out <– paste0("elmer/",j)
 9     dir.create(dir.out, recursive = TRUE)
10     #––––––––––––––––––––––––––––––––––––––
11     # STEP 3: Analysis                     |
12     #––––––––––––––––––––––––––––––––––––––
13     # Step 3.1: Get diff methylated probes |
14     #––––––––––––––––––––––––––––––––––––––
15     Sig.probes <– get.diff.meth(mee, cores=detectCores(),
16                                 dir.out =dir.out,
17                                 diff.dir=j,
18                                 pvalue = 0.01)
19
20     #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
21     # Step 3.2: Identify significant probe–gene pairs            |
22     #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
23     # Collect nearby 20 genes for Sig.probes
24     nearGenes <– GetNearGenes(TRange=getProbeInfo(mee, probe=Sig.probes$probe),
25                               cores=detectCores(),
26                               geneAnnot=getGeneInfo(mee))
27
28     pair <– get.pair(mee=mee,
29                      probes=na.omit(Sig.probes$probe),
30                      nearGenes=nearGenes,
31                      permu.dir=paste0(dir.out,"/permu"),
32                      dir.out=dir.out,
33                      cores=detectCores(),
34                      label= j,
35                      permu.size=100, # For significant results use 10000
36                      Pe = 0.01) # For significant results use 0.001
37
38     Sig.probes.paired <– fetch.pair(pair=pair,
39                                     probeInfo = getProbeInfo(mee),
40                                     geneInfo = getGeneInfo(mee))
41     Sig.probes.paired <–read.csv(paste0(dir.out,
42                                         "/getPair.",j,
43           ".pairs.significant.csv"),
44                                 stringsAsFactors=FALSE)[,1]
45
46
47     #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
48     # Step 3.3: Motif enrichment analysis on the selected probes |
49     #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
50     if(length(Sig.probes.paired) > 0){
51         #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
52         # Step 3.3: Motif enrichment analysis on the selected probes |
53         #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
54         enriched.motif <– get.enriched.motif(probes=Sig.probes.paired,
55                                              dir.out=dir.out, label=j,
56                                              background.probes = probe$name)
57         motif.enrichment <– read.csv(paste0(dir.out,
58                                     "/getMotif.",j,
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59               ".motif.enrichment.csv"),
60                                     stringsAsFactors=FALSE)
61         if(length(enriched.motif) > 0){
62             #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
63             # Step 3.4: Identifying regulatory TFs                        |
64             #–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
65            print("get.TFs")
66
67            TF <– get.TFs(mee = mee,
68                          enriched.motif = enriched.motif,
69                          dir.out = dir.out,
70                          cores = detectCores(), label = j)
71            TF.meth.cor <– get(load(paste0(dir.out,
72                                     "/getTF.",j,
73             ".TFs.with.motif.pvalue.rda")))
74            save(TF, enriched.motif, Sig.probes.paired,
75                 pair, nearGenes, Sig.probes, 
76                 motif.enrichment, TF.meth.cor,
77                 file=paste0(dir.out,"/ELMER_results_",j,".rda"))
78         }
79     }
80 }

Listing 29. Running ELMER analysis

When ELMER Identifies the enriched motifs for the distal enhancer probes which are significantly differentially 
methylated and linked to putative target gene, it will plot the Odds Ratio (x axis) for the each motifs found. The list 
of motifs for the hyper direction (probes hypermethylated in LGG group compared to the GBM group) is found in 
the Figure 17. We selected motifs that had a minimum incidence of 10 in the given probes set and the smallest lower 
boundary of 95% confidence interval for Odds Ratio of 1.1. These both values are the default from the ELMER 
package.

The analysis found 16 enriched motifs for the hyper direction and no enriched motifs for the hypo direction. After 
finding the enriched motifs, ELMER identifies regulatory transcription factors (TFs) whose expression is associ-
ated with DNA methylation at motifs. ELMER automatically creates a TF ranking plot for each enriched motif. This 
plot shows the TF ranking plots based on the association score (−log(Pvalue)) between TF expression and DNA 
methylation of the motif. We can see in Figure 18 that the top three TFs that are associated with that FOX motif are 
FOXD3, HMGA2 and HIST1H2BH.

The output of this step is a data frame with the following columns: 

 1. motif: the names of motif.

 2. top.potential.TF: the highest ranking upstream TFs which are known recognized the motif.

 3. potential.TFs: TFs which are within top 5% list and are known recognized the motif. top5percent: all TFs 
which are within top 5% list considered candidate upstream regulators

Also, for each motif we can take a look at the three most relevant TFs. For example, Figure 19 shows the average 
DNA methylation level of sites with the FOX motif plotted against the expression of the TFs FOXD3, HIST1H1D, 
HIST1H2BH and HMGA2. We can see that the experiment group (LGG samples) has a lower average methylation 
level of sites with the FOX motif plotted and a higher average expression of the TFs.

 1 scatter.plot(mee, category="TN", save=T, lm_line=TRUE,
 2              byTF=list(TF=c("FOXD3","HIST1H1D","HIST1H2BH","HMGA2"),
 3              probe=enriched.motif[["FOX"]]))

Listing 30. Visualizing the average DNA methylation level of sites with a chosen motif vs TF expression
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Figure 17. The plot shows the Odds Ratio (x axis) for the selected motifs. The range shows the 95% confidence 
interval for each Odds Ratio.
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And for each relevant TF we will use the clinical data to analyze the survival curves for the 30% patients with higher 
expression of that TF versus the 30% with lower expression. The code below shows that analysis.

 1 TCGAsurvival_TFplot <– function(TF,mee, clinical, percentage = 0.3){
 2
 3    # For the transcription factor, gets it getGeneID
 4    gene <– getGeneID(mee,symbol=TF)
 5    # Get the expression values for the genes.
 6    # (getExp is a ELMER function)
 7    exp <– getExp(mee,geneID=gene)
 8
 9    # Get the names of the 30% patients with lower expression
10    g1 <– names(sort(exp)[1:ceiling(length(exp) * percentage)])
11
12    # Get the names of the 30% patients with higher expression
13    g2 <– names(sort(exp, decreasing = T)[1:ceiling(length(exp) * percentage)])
14
15    # get the data of only these patients
16    idx <–  clinical$bcr_patient_barcode %in% substr(c(g1, g2),1,12)
17    clinical <– clinical[idx,]
18    # Create the labels for each sample
19    clinical$tf_groups <– "high"
20    low.idx <– clinical$bcr_patient_barcode %in%  substr(c(g1),1,12)
21    clinical[low.idx,]$tf_groups <– "low"
22
23    # Use TCGAbiolinks to create the survival curve
24    TCGAanalyze_survival(clinical, "tf_groups",
25                         legend=paste0(TF," Exp level"),
26                         filename = paste0(TF,".pdf"))
27 }
28
29 # get clinical patient data for GBM samples
30 gbm_clin <– GDCquery_clinic("TCGA-GBM","Clinical")
31
32 # get clinical patient data for LGG samples
33 lgg_clin <– GDCquery_clinic("TCGA-LGG","Clinical")
34
35 # Bind the results, as the columns might not be the same,
36 # we will will plyr rbind.fill, to have all columns from both files
37 clinical <– plyr::rbind.fill(gbm_clin,lgg_clin)
38 # Call the function we created
39 TCGAsurvival_TFplot("ELF4",mee,clinical)
40 TCGAsurvival_TFplot("HMGA2",mee,clinical)
41 TCGAsurvival_TFplot("FOXD3",mee,clinical)

Listing 31. Survival analysis for samples with both lower and higher expression of regulatory TFs.

The Figure 20, shows that the samples with lower expression of some of these TFs have a better survival than those 
with higher expression.
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Figure 18. TF ranking plots based on the score (–log(Pvalue)) of association between TF expression and DNA 
methylation of the FOX motif. The dashed line indicates the boundary of the top 5% association scores and the TFs 
within this boundary were considered candidate upstream regulators. The top three associated TFs and the TF family 
members (dots in red) that are associated with that specific motif are labeled in the plot.

Figure 19. Each scatter plot shows the average DNA methylation level of sites with the FOX motif plotted against 
the expression of the TFs FOXD3, HIST1H1D, HIST1H2BH, HMGA2 respectively.

Figure 20. A) Survival plot for the 30% patients with high expression and low expression of ELF4 TF. B) Survival plot for 
the 30% patients with high expression and low expression of HGMA2 TF.
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Conclusion
This workflow outlines how one can use specific Bioconductor packages for the analysis of cancer genomics and 
epigenomics data derived from the TCGA. In addition, we highlight the importance of using ENCODE and Roadmap 
data to inform on the biology of the non-coding elements defined by functional roles in gene regulation. We 
introduced TCGAbiolinks and RTCGAToolbox Bioconductor packages in order to illustrate how one can acquire 
TCGA specific data, followed by key steps for genomics analysis using GAIA package, for transcriptomic analysis 
using TCGAbiolinks, dnet, pathview packages and for DNA methylation analysis using TCGAbiolinks package. An 
inference of gene regulatory networks was also introduced by MINET package. Finally, we introduced Bioconductor 
packages AnnotationHub, ChIPSeeker, ComplexHeatmap, and ELMER to illustrate how one can acquire 
ENCODE/Roadmap data and integrate these data with the results obtained from analyzing TCGA data to identify 
and characterize candidate regulatory enhancers associated with cancer.

Data and software availability
This workflow depends on various packages from version 3.2 of the Bioconductor project, running on R version 
3.2.2 or higher. It requires a number of software packages, including AnnotationHub, ChIPSeeker, ELMER, 
ComplexHeatmap, GAIA, rGADEM, MotIV, MINET, RTCGAToolbox and TCGAbiolinks. Version numbers for all 
packages used are in section “Session Information”. Listing 32 shows how to install all the required packages.

 1 source("https://bioconductor.org/biocLite.R")
 2 packages <– c("TCGAbiolinks","ELMER","gaia","ChIPseeker",
 3               "AnnotationHub", "ComplexHeatmap",
 4               "clusterProfiler", "RTCGAToolbox",
 5               "minet","biomaRt","pathview", "MotifDb",
 6               "MotIV","motifStack","rGADEM")
 7 new.packages <– packages[!(packages %in% installed.packages()[,"Package"])]
 8 if(length(new.packages)) biocLite(new.packages)
 9 if(!require("dnet")) install.packages("dnet")
10 if(!require("circlize")) install.packages("circlize")
11 if(!require("VennDiagram")) install.packages("VennDiagram")
12 if(!require("c3net")) install.packages("c3net")
13 if(!require("pbapply")) install.packages("pbapply")
14 if(!require("gplots")) install.packages("gplots")

Listing 32. Installing packages

All data used in this workflow is freely available and some of them can be accessed using a R/Bioconductor 
package. There are three main sources of data: The NCI Genomic Data Commons (GDC), a supplementary data 
repository with processed datasets from the Roadmap Epigenomics Project and from The Encyclopedia of DNA 
Elements (ENCODE)67 and the BioGRID database with physical and genetic interactions information. For the first, 
a summary of the data available can be seen in https://gdc-portal.nci.nih.gov/ and its data can be accessed using the 
R/Bioconductor TCGAbiolinks package. For the second, a summary of the data available can be found in this spread 
sheet and the data can be accessed using the R/Bioconductor AnnotationHub package. For the third, the data should be 
directly download from the data portal.

Session information
  1 R version 3.3.0 (2016–05–03)
  2 Platform: x86_64–pc–linux–gnu (64–bit )
  3 Running under: Ubuntu 16.04.1 LTS
  4
  5 locale:
  6  [1] LC_CTYPE=pt_BR.UTF–8       LC_NUMERIC=C
  7  [3] LC_TIME=pt_BR.UTF–8        LC_COLLATE=en_US.UTF–8
  8  [5] LC_MONETARY=pt_BR.UTF–8    LC_MESSAGES=en_US.UTF–8
  9  [7] LC_PAPER=pt_BR.UTF–8       LC_NAME=C
 10  [9] LC_ADDRESS=C               LC_TELEPHONE=C
 11 [11] LC_MEASUREMENT=pt_BR.UTF–8 LC_IDENTIFICATION=C
 12
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http://bioconductor.org/packages/TCGAbiolinks/
http://bioconductor.org/packages/RTCGAToolbox/
http://bioconductor.org/packages/gaia/
http://bioconductor.org/packages/TCGAbiolinks/
http://bioconductor.org/packages/pathview/
http://bioconductor.org/packages/TCGAbiolinks/
http://bioconductor.org/packages/minet
http://bioconductor.org/packages/AnnotationHub/
http://bioconductor.org/packages/ChIPseeker/
http://bioconductor.org/packages/ComplexHeatmap/
http://bioconductor.org/packages/ELMER/
http://bioconductor.org/packages/AnnotationHub/
http://bioconductor.org/packages/ChIPseeker/
http://bioconductor.org/packages/ELMER/
http://bioconductor.org/packages/ComplexHeatmap/
http://bioconductor.org/packages/gaia/
http://bioconductor.org/packages/rGADEM/
http://bioconductor.org/packages/MotIV/
http://bioconductor.org/packages/minet
http://bioconductor.org/packages/RTCGAToolbox/
http://bioconductor.org/packages/TCGAbiolinks/
https://cancergenome.nih.gov/
http://egg2.wustl.edu/roadmap/web_portal/
http://egg2.wustl.edu/roadmap/web_portal/
https://WWW.thebiogrid.org/
https://gdc-portal.nci.nih.gov/
http://bioconductor.org/packages/TCGAbiolinks/
https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15
https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15
http://bioconductor.org/packages/AnnotationHub/


 13 attached base packages:
 14  [1] stats4    parallel  grid      stats     graphics  grDevices utils
 15  [8] datasets  methods   base
 16
 17 other attached packages:
 18  [1] rGADEM_2.20.0
 19  [2] seqLogo_1.38.0
 20  [3] BSgenome_1.40.1
 21  [4] rtracklayer_1.32.1
 22  [5] motifStack_1.16.2
 23  [6] ade4_1.7–4
 24  [7] grImport_0.9–0
 25  [8] XML_3.98–1.4
 26  [9] MotIV_1.28.0
 27 [10] pathview_1.12.0
 28 [11] biomaRt_2.28.0
 29 [12] minet_3.30.0
 30 [13] clusterProfiler_3.0.4
 31 [14] DOSE_2.10.7
 32 [15] AnnotationHub_2.4.2
 33 [16] ChIPseeker_1.8.7
 34 [17] ELMER_1.4.2
 35 [18] ELMER.data_1.2.2
 36 [19] Homo.sapiens_1.3.1
 37 [20] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
 38 [21] org.Hs.eg.db_3.3.0
 39 [22] GO.db_3.3.0
 40 [23] OrganismDbi_1.14.1
 41 [24] GenomicFeatures_1.24.5
 42 [25] AnnotationDbi_1.34.4
 43 [26] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.2.1
 44 [27] minfi_1.18.2
 45 [28] bumphunter_1.12.0
 46 [29] locfit_1.5–9.1
 47 [30] iterators_1.0.8
 48 [31] foreach_1.4.3
 49 [32] Biostrings_2.40.2
 50 [33] XVector_0.12.1
 51 [34] SummarizedExperiment_1.2.3
 52 [35] GenomicRanges_1.24.2
 53 [36] GenomeInfoDb_1.8.3
 54 [37] IRanges_2.6.1
 55 [38] S4Vectors_0.10.2
 56 [39] lattice_0.20–33
 57 [40] Biobase_2.32.0
 58 [41] BiocGenerics_0.18.0
 59 [42] ComplexHeatmap_1.10.2
 60 [43] dnet_1.0.9
 61 [44] supraHex_1.10.0
 62 [45] hexbin_1.27.1
 63 [46] igraph_1.0.1
 64 [47] circlize_0.3.7
 65 [48] pbapply_1.2–1
 66 [49] gplots_3.0.1
 67 [50] gaia_2.16.0
 68 [51] readr_0.2.2
 69 [52] downloader_0.4
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 70 [53] TCGAbiolinks_2.1.0
 71
 72 loaded via a namespace (and not attached):
 73   [1] SparseM_1.7                   ggthemes_3.2.0
 74   [3] prabclus_2.2–6                GGally_1.2.0
 75   [5] R.methodsS3_1.7.1             pkgmaker_0.22
 76   [7] tidyr_0.5.1                   ggplot2_2.1.0
 77   [9] knitr_1.13                    aroma.light_3.2.0
 78  [11] multcomp_1.4–6                R.utils_2.3.0
 79  [13] data.table_1.9.6              hwriter_1.3.2
 80  [15] KEGGREST_1.12.2               RCurl_1.95–4.8
 81  [17] GEOquery_2.38.4               doParallel_1.0.10
 82  [19] preprocessCore_1.34.0         cowplot_0.6.2
 83  [21] TH.data_1.0–7                 RSQLite_1.0.0
 84  [23] chron_2.3–47                  xml2_1.0.0
 85  [25] httpuv_1.3.3                  assertthat_0.1
 86  [27] BiocInstaller_1.22.3          DEoptimR_1.0–6
 87  [29] caTools_1.17.1                dendextend_1.2.0
 88  [31] Rgraphviz_2.16.0              DBI_0.4–1
 89  [33] geneplotter_1.50.0            reshape_0.8.5
 90  [35] stringdist_0.9.4.1            EDASeq_2.6.2
 91  [37] matlab_1.0.2                  dplyr_0.5.0
 92  [39] trimcluster_0.1–2             annotate_1.50.0
 93  [41] gridBase_0.4–7                robustbase_0.92–6
 94  [43] GenomicAlignments_1.8.4       mclust_5.2
 95  [45] mnormt_1.5–4                  cluster_2.0.4
 96  [47] ape_3.5                       genefilter_1.54.2
 97  [49] edgeR_3.14.0                  nlme_3.1–128
 98  [51] nnet_7.3–12                   diptest_0.75–7
 99  [53] sandwich_2.3–4                registry_0.3
100  [55] affyio_1.42.0                 matrixStats_0.50.2
101  [57] graph_1.50.0                  rngtools_1.2.4
102  [59] base64_2.0                    Matrix_1.2–6
103  [61] boot_1.3–18                   zoo_1.7–13
104  [63] whisker_0.3–2                 GlobalOptions_0.0.10
105  [65] png_0.1–7                     rjson_0.2.15
106  [67] bitops_1.0–6                  R.oo_1.20.0
107  [69] ConsensusClusterPlus_1.36.0   KernSmooth_2.23–15
108  [71] doRNG_1.6                     shape_1.4.2
109  [73] stringr_1.0.0                 qvalue_2.4.2
110  [75] nor1mix_1.2–1                 coin_1.1–2
111  [77] ShortRead_1.30.0              scales_0.4.0
112  [79] GSEABase_1.34.0               magrittr_1.5
113  [81] plyr_1.8.4                    gdata_2.17.0
114  [83] zlibbioc_1.18.0               RColorBrewer_1.1–2
115  [85] illuminaio_0.14.0             plotrix_3.6–3
116  [87] KEGGgraph_1.30.0              lme4_1.1–12
117  [89] Rsamtools_1.24.0              affy_1.50.0
118  [91] MASS_7.3–45                   stringi_1.1.1
119  [93] GOSemSim_1.30.3               latticeExtra_0.6–28
120  [95] ggrepel_0.5                   tools_3.3.0
121  [97] gridExtra_2.2.1               sjPlot_2.0.1
122  [99] digest_0.6.9                  shiny_0.13.2
123 [101] quadprog_1.5–5                fpc_2.1–10
124 [103] Rcpp_0.12.6                   siggenes_1.46.0
125 [105] httr_1.2.1                    psych_1.6.6
126 [107] kernlab_0.9–24                effects_3.1–1
127 [109] sjstats_0.2.0                 colorspace_1.2–6
128 [111] rvest_0.3.2                   topGO_2.24.0
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129 [113] splines_3.3.0                 RBGL_1.48.1
130 [115] multtest_2.28.0               flexmix_2.3–13
131 [117] xtable_1.8–2                  jsonlite_1.0
132 [119] nloptr_1.0.4                  UpSetR_1.2.2
133 [121] modeltools_0.2–21             R6_2.1.2
134 [123] htmltools_0.3.5               mime_0.5
135 [125] minqa_1.2.4                   BiocParallel_1.6.3
136 [127] DESeq_1.24.0                  class_7.3–14
137 [129] interactiveDisplayBase_1.10.3 beanplot_1.2
138 [131] codetools_0.2–14              mvtnorm_1.0–5
139 [133] tibble_1.1                    gtools_3.5.0
140 [135] openssl_0.9.4                 survival_2.39–5
141 [137] limma_3.28.17                 munsell_0.4.3
142 [139] DO.db_2.9                     GetoptLong_0.1.3
143 [141] sjmisc_1.8                    haven_0.2.1
144 [143] reshape2_1.4.1                gtable_0.2.0
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This article provides a comprehensive overview of how to query, download and analyze data from large
cancer consortia using R and Bioconductor. Overall, I find it a useful contribution to the field, and it
illustrates many of the use cases that will likely be of interest to other researchers. However, as it currently
is, I find that it suffers from a few problems that I think that the authors could relatively easily fix.

Most importantly, it should be asserted that all the code actually runs. For example, the code in listings 2
and 4 will not run since the functions are capitalized in the wrong way, and the code in listing 7 will not
work since the "lastDate" variable is not defined. Also, the session info does not seem to correspond to
the same session as was used in the workflow since, for example, the RTCGAToolbox package is not
listed as being loaded. 

Also, as the code is currently provided (in listings, with row numbers), I could not find a way to directly cut
and paste it into an R session. Given the amount of code included in this workflow, it would be good if that
could be resolved. 

Since the workflow contains a lot of code, it would be useful to add a bit more comments, explaining what
each code chunk, and each part of a chunk, is doing. Moreover, the different code chunks have different
formatting styles, and it would be easier to read if this was harmonized. For example, comments are
formatted differently, spaces are used inconsistently, and even within a listing (e.g., listing 2) the function
calls use different formatting (with or without named arguments). Finally, not all code chunks are in
"listings", and it is not clear to me why. 

Throughout the text, the authors should also make sure to be consistent in terms of capitalization. In
several places there are differences in capitalization between the text and the code (e.g.,
GDCquery_Maf()), or between different places in the text. There are also discrepancies in whether
function names are italicized or not. The function GDCquery_clinic is referred to as GDCquery_clinical in
the text. Within one section, the AAIC is spelled out as "Array Array", "Array-array" and "array-array".

Just after listing 2, it is stated that you can use "rowRanges to gets the range of values in each row" of the
SummarizedExperiment object. This should be clarified, since it returns a GRanges object describing the
features in the rows. 

The "p-value corrected FDR" should also be replaced by e.g. "corrected (or adjusted) p-value" or "FDR". 

Bioconductor should be capitalized. 
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Bioconductor should be capitalized. 

The "broadinstitute website" should be changed to "Broad Institute website" and include a link.

The "nce" is not defined as far as I could see, and the sentence just before the "Retrieving known
interactions" seems unfinished. It is not clear to me how the information that "There are 3,941 unique
interactions between the 2,901 differentially expressed genes" was obtained, since the function in the
code chunk above is not run until later. 

It would be easier to get an overview of the text of the headers were more consistent. For example, the
gene regulatory network section has subheaders that are larger than the main section header. 

Finally, as mentioned by one of the other reviewers, the paper would benefit from modifications to the text
in order to make it more readable. There are many grammatical errors, long and complicated sentences,
and sentences that are unfinished and thus difficult to understand. 

I believe that if the authors can make sure that all the code in the workflow runs as expected, and the text
and code is clarified and harmonized throughout the manuscript, this can be a very valuable addition to
the literature.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.
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 Elena Papaleo
Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society
Research Center, Copenhagen, Denmark

As it has been pointed out already by the first reviewer, it is important to verify that the pipeline is updated
according to the data migration to the GCD server.

Apart from this, I find this manuscript very nice and the workflow an important contribution in the field,
allowing to make accessible large datasets with genomics profiling of cancer patients to the community
and even for not advanced R-users. I would like to compliment with the authors to make such a
comprehensive workflow available.

Some minor points before final publication is indexed:
The main issue with this manuscript is that it will need an extensive revision by a native English
speaker since some sentences are hard to read and very often they risk to convey the wrong

message or to be misinterpreted. One example from the abstract, "we provide a series of
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message or to be misinterpreted. One example from the abstract, "we provide a series of
biologically focused integrative downstream analyses of different molecular data" includes to many
adjectives. Few lines below "we provide a workplan to identify candidate biologically relevant
functional epigenomic elements associated with cancer", this sentence does not sound that right in
English.
 
Be also careful in the style use to call the software or Bioconductor packages in the text since
sometimes they are italics and other times they are not.
 
There is also a lot of redundancy on some of the statements in the introduction that if removed will
improve the readability. For example the sentence at the end of the first paragraph of the
introduction starting with " Here we describe a comprehensive workflow that integrates many
bioconductor packages..." is probably not needed since the same concept is provided at the end of
the introduction in the same page.
 
In the Introduction when TCGA data are illustrated I would also mention metastatic samples (they
are there, isn't it? or may be I don't recall correctly...)
 
I suggest to change the title of the first section of the methods from 'Experimental data' to 'Access
to the data' or something similar so that it will better reflect the content of the paragraph.
 
I felt that sometimes the manuscript sounds more a user guide than an article, so I would suggest
taking as an example the section on methylation to improve the discussion of the analyses
outcome and aims in the other paragraphs.
 
Also please be careful to make things accessible to any readers for example at page 4, the authors
introduce the GISTIC data without explaining them in details.
 
The sentence at page 4 "the data used in this workflow are published data and freely
available" might be redundant so the authors could remove it.
 
Page 4 summarizedExperiment object is missing the reference to the original paper about
summarizedExperiment format.
 
Page 5: in the text the authors illustrate assay, rowRanges and colData but in the example the
order is different, i.e. assay, colData, rowRanges - I would suggest to keep consistency in the order
between main text and examples (it also holds for other places in the paper).
 
I am not sure I can understand the sentence at page 5, "the users should use all the follow up files
in your analyses, not just the latest version".
 
Page 6: the sentence beginning with "Finally, the Cancer Genome Atlas (TCGA) Research
Network has reported integrated genome-wide studies of various diseases, in what is called 'Pan
Cancer'..." I am not sure fits within the paragraph where the main focus is on subtypes. It sounds a
bit confusing for the reader.
 
Not sure that Listing 5 also fits there... why not mention it before together with the others
summ.exp. accessors.
 

In writing it is important that the authors really pay attention to convey the message that it is an
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In writing it is important that the authors really pay attention to convey the message that it is an
integrative approach ... at the very first reading of the manuscript I felt that it was more a list of
tools. and the integrative part of it was missing
 
Page 18: a reference is missing for the AAIC method and an explanation to the reader about the
choice of the 0.6 correlation cutoff.
 
In the list at page 18 with the normalization, I believe that there are some repetitions (i.e. global
scaling and full-quantile are appearing twice, also there are some typos).
 
Page 19, I might have missed something but I cannot find in maintext any explanation of the DEA
pipeline and more comments would be needed there for a new user to really appreciate it and its
importance.
 
Page 20 on the second line I believe a ). is missing.
 
On PEA, I was wondering why for example the R package for Reactome was not integrated here
and if the authors could comment on this.
 
Page 23, why for protein-protein interactions only BioGrid is used and not for example a more
comprehensive resource such as I2D (Interologous Interaction Database).

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 28 Dec 2016
, University of São Paulo, BrazilTiago Chedraoui Silva

Dear Elena Papaleo,  

First, we would like to thank you for your review and for providing a detailed feedback for our
workflow. We have made several changes in this new version (2) of the workflow. The changes
and responses of all authors to these points are described below:

"As it has been pointed out already by the first reviewer, it is important to verify that the
pipeline is updated according to the data migration to the GCD server."

TCGAbiolinks package was entirely redesigned to query, download and prepare data
from the GDC NCI data portal ( ). All the codes are workinghttps://gdc.nci.nih.gov/
and we will submit very soon the workflow to Bioconductor. For the moment, the
RMarkdown can be found in our Github repository (
https://github.com/BioinformaticsFMRP/f1000_TCGA_Workflow/blob/master/f1000.Rmd
).
 

"Be also careful in the style use to call the software or Bioconductor packages in the text
since sometimes they are italics and other times they are not."

We applied the following pattern: name of the packages normal with a link to the
package, name of functions and objects in italics.
 

"I felt that sometimes the manuscript sounds more a user guide than an article, so I would
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"I felt that sometimes the manuscript sounds more a user guide than an article, so I would
suggest taking as an example the section on methylation to improve the discussion of the
analyses outcome and aims in the other paragraphs."

Our main focus was on using the tools (in a reasonable time) rather than analyzing
the results. The analysis itself can be verified with some articles of our group, for
example, the DNA methylation analysis was described in Ceccarelli, Michele,  " et al.
Molecular profiling reveals biologically discrete subsets and pathways of progression

" Cell 164.3 (2016): 550-563 as well as the analysis performed byin diffuse glioma.
the ELMER tool which is described in Yao, Lijing,  "et al. Inferring regulatory element

." Genomelandscapes and transcription factor networks from cancer methylomes
biology 16.1 (2015): 1.
 

"In writing it is important that the authors really pay attention to convey the message that it is
an integrative approach ... at the very first reading of the manuscript I felt that it was more a
list of tools. and the integrative part of it was missing"

We agree with you. The article starts with specific analysis, which might cover 65% of
the content and unfortunately it might lead to the feeling of the missing integrative
approach. Also, we decided not to go much deeper into the analyzes because they
already exist in the referenced articles and we focus more on the execution of the
analyzes with the tools of the bioconductor project, something that was not covered
by the cited articles, which might also give the feeling of  a "list of tools". But, the
integrative analysis is shown strongly in the last two sections. We may highlight that
ELMER, for example, uses DNA methylation, gene expression, histone marks, motif
information and clinical data for its analysis. Also, after the DNA methylation analysis
available in TCGAbiolinks package, we do a motif analysis on those regions and
integrated the roadmap histone marks data to evaluate them. Finally, another
integrative analysis presented in the TCGAbiolinks package is the starburst plot
which integrates the differential expression analysis results with the DNA methylation
results and we try to identify if the nearest gene might have been affected by the
change of the DNA methylation.
 

"Page 18: a reference is missing for the AAIC method and an explanation to the reader
about the choice of the 0.6 correlation cutoff."

Array-array intensity correlation plot (AAIC) is a re-adaptation of a
affyQCReport::correlationPlot working with data from gene expression of class
RangedSummarizedExperiment as output of GDCprepare.Reference from 
https://www.bioconductor.org/packages/devel/bioc/vignettes/affyQCReport/inst/doc/affyQCReport.pdf
. AAIC shows an heat map of the array-array Spearman / Pearson rank correlation
coefficients. The arrays are ordered using the phenotypic data (if available) in order
to place arrays with similar samples adjacent to each other. Self-self correlations are
on the diagonal and by definition have a correlation coefficient of 1.0. Data from
similar tissues or treatments will tend to have higher coefficients. This plot is useful
for detecting outliers, failed hybridizations, or mistracked samples.
The 0.6 threshold came out from unsupervised hierarchical clustering with ward
methodology that obtained distinct groups of samples and first one had pearson
correlation lower than 0.6 considering them as possible outliers.
 

"Page 19, I might have missed something but I cannot find in maintext any explanation of
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"Page 19, I might have missed something but I cannot find in maintext any explanation of
the DEA pipeline and more comments would be needed there for a new user to really
appreciate it and its importance."

For DEA pipeline we used the TCGAanalyze_DEA function from our package
TCGAbiolinks, that allows user to perform Differentially expression analysis (DEA),
using edgeR package to identify differentially expressed genes (DEGs). It is possible
to do a two-class analysis.
TCGAanalyze_DEA performs DEA using following functions from edgeR:

edgeR::DGEList converts the count matrix into an edgeR object.
edgeR::estimateCommonDisp each gene gets assigned the same dispersion
estimate.
edgeR::exactTest performs pair-wise tests for differential expression between
two groups.
edgeR::topTags takes the output from exactTest(), adjusts the raw p-values
using the False Discovery Rate (FDR) correction, and returns the top
differentially expressed genes.

"On PEA, I was wondering why for example the R package for Reactome was not integrated
here and if the authors could comment on this."

Thank you for this suggestion we are working to integrate Reactome as source of
genes annotated within pathways.
Our PEA provided only one plot to show Gene ontologies and pathways enriched by
a list of genes to have an overview of top biological functions and pathways altered
by molecules inside the gene signature. We focused mainly on Bioconductor
packages, but in particular we are interested to add wrapping to some functionalities
of the ReactomePA package.
 

"Page 23, why for protein-protein interactions only BioGrid is used and not for example a
more comprehensive resource such as I2D (Interologous Interaction Database)."

Different sources for protein-protein interactions are available. We used BioGrid as
an example, but the users can chose their preferred database such as I2D

Regarding the other points:
We revised the text to correct links, references and remove redundancies.
We added metastatic samples as one of the available sample types
We changed the name of the section 'Experimental data' to 'Access to the data'
We included a paragraph introducing GISTIC data

 No competing interests were disclosed.Competing Interests:

 18 July 2016Referee Report

doi:10.5256/f1000research.9601.r14695

 Kyle Ellrott
Oregon Health & Science University, Portland, OR, USA

This review comes at a very inopportune moment. The entire software pipeline is based on the
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This review comes at a very inopportune moment. The entire software pipeline is based on the
TCGAbiolinks tool kit, which downloads files from the TCGA DCC service. Unfortunately, just as this
paper was being sent for review, the NCI began their migration to the GDC service. This means that all of
the data services at DCC TCGA data portal (https://tcga-data.nci.nih.gov) are no longer active, and users
are being directed to the GDC NCI data portal (https://gdc.nci.nih.gov/). This means that the
TCGAbiolinks tool kit is broken. My attempts to run some of the examples listed in the paper where
stopped by this issue. Many parts of the TCGAbiolinks will have to be fixed and/or re-written to deal with
this change. This isn’t the fault of the authors, but it does render the example and pipelines described in
the paper inoperable.

There are a few technical issues that need to be addressed. The package ‘RTCGAtoolbox’ is mentioned,
but actually its name is ‘RTCGAToolbox’. (lower-case T to upper-case), and because the bioconductor
website is case-sensitive the provided URL ( http://bioconductor.org/packages/RTCGAtoolbox/ ) doesn’t
work. On page 3, ‘TCGA Wikipedia’ should be ‘TCGA Wiki’. In the methods section on page 3, where the
various data levels of TCGA are explained, on the most important aspects about the different levels is of
access requirements. Data levels 1 and 2 cannot be accessed without dbGap, while level 3 and 4 are
generally available for public access. 

There is also the question of whether or not this paper fits the criteria of the Software Tools Article
guidelines. The authors have presented a loose set of examples that utilize various existing, and
previously published, tools. In the guidelines of F1000Research's Software Tool Articles, the criteria for a
paper is “We welcome the description of new software tools. A Software Tool Article should include the
rationale for the development of the tool and details of the code used for its construction.”  The authors
refer to the code included in the paper as a workflow, but reads more like a series of point example that
the reader can copy and alter for their own research. In introducing a new piece of software, one expects
that the authors of the article are responsible for the software being presented. And while this article
mentioned an extensive number of R packages, I believe only one of them, TCGAbiolinks, was written by
the authors, and was published last year. While the analysis they present is very detailed and covers an
expansive number of topics, I’m not sure if this should be classified as ‘Software Tool Article’. On my first
read through, my assumption was that the authors were responsible for all of the tools mentioned in the
abstract. And this wasn’t clarified in the text. For example, in the conclusion section on page 43, they
include the phrase ‘We introduced TCGAbiolinks and RTCGAtoolbox bioconductor packages in order to
illustrate how one can acquire TCGA specific data’, it wasn’t until later, that I realized that the author of the
RTCGAToolbox wasn’t in the author list of the paper. 

Of course, this is at the discretion of the editors. I would feel that this material would better be presented
as a review article covering the different methods of TCGA data analysis, with better notation and
attributions about the source of different pieces of software.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 28 Dec 2016

, University of São Paulo, BrazilTiago Chedraoui Silva
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, University of São Paulo, BrazilTiago Chedraoui Silva

Dear Kyle Ellrott,

Thank you for your comments and suggestions. We made several changes in the version 2 of the
workflow, some of the changes and answers to your points are below:

TCGAbiolinks package was entirely redesigned to query, download and prepare data from
the GDC NCI data portal ( ). All the codes are working and we willhttps://gdc.nci.nih.gov/
submit very soon the workflow to Bioconductor. For the moment, the RMarkdown can be
found in our Github repository (

).https://github.com/BioinformaticsFMRP/f1000_TCGA_Workflow/blob/master/f1000.Rmd
 
We also highlighted the difference between open (TCGA level 3 and 4 data) and controlled
data (TCGA level 1 and 2 data) and we added some useful sources that can help the user
request access to the controlled data.
 
Despite the description of a software article, we decided by this type of article simply
because there were already other workflows with that choice and we did not find any other
possibility that best described this type of article. In addition, our main focus was on using
the tools (in a reasonable time) rather than analyzing the results. The analysis itself can be
verified with some articles of our group, for example, the DNA methylation analysis was
described in Ceccarelli, Michele, . "et al Molecular profiling reveals biologically

" Cell 164.3 (2016):discrete subsets and pathways of progression in diffuse glioma.
 as well as the analysis performed by the ELMER tool which is described in 550-563 Yao,

Lijing,  "et al. Inferring regulatory element landscapes and transcription factor
." Genome biology 16.1 (2015): 1.networks from cancer methylomes

 
We added to "Author contributions" that we are the authors from the R/Bioconductor
packages  and . Also, I'm working on a new version of the ELMERTCGAbiolinks GAIA
package.
 
We corrected links and references such as . RTCGAToolbox

 No competing interests were disclosed.Competing Interests:
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