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Abstract: During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two
out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest
that the disease could be undetected in many areas. The aim of this study was to identify which
routinely-measured meteorological, environmental, and socio-economic factors are associated to
TBE human risk across Poland, with a particular focus on areas reporting few cases, but where
serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE
incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012.
Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining
variables constant, the predicted rate increased with the increase of air temperature over the previous
10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road
density, and unemployment. The predicted rate decreased with increasing distance from forests.
The map of predicted rates was consistent with the established risk areas. It predicted, however,
high rates in provinces considered TBE-free. We recommend raising awareness among physicians
working in the predicted high-risk areas and considering routine use of household animal surveys
for risk mapping.

Keywords: tick-borne encephalitis; ecologic study; epidemiologic determinants; land use predictors;
zero-inflated Poisson model

1. Introduction

Central European tick-borne encephalitis (TBE) is a viral disease characterized by a strongly
focal distribution [1,2]. The virus persists in endemic areas by circulating in small mammals (mainly
rodents) and is transmitted by an arthropod vector, commonly the tick Ixodes ricinus [1]. The TBE virus
(TBEV) causes lifelong infection in ticks and can be transmitted transovarially, between mating ticks,
and while co-feeding with other infected ticks on the same host. Humans and household animals
are accidental tick hosts. Humans get infected predominantly through tick bites or, less commonly,
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by consumption of unpasteurized milk of infected sheep or goats [3]. TBEV circulation mainly depends
on the abundance of tick vectors, and the abundance of competent rodent hosts [1,4,5]. Tick vector
populations, in turn, rely on suitable conditions of humidity, soil and air temperatures, vegetation cover,
and on the availability of large mammals. These factors were shown to affect TBEV transmission [6,7].
The complex interplay of multiple factors necessary for circulation of the virus may explain the strictly
focal and limited occurrence of TBEV. Although various determinants of TBE endemicity have been
extensively studied, specific aspects have often been investigated separately, for example the role of
weather conditions [8], of land use [9,10], or of socio-economic determinants [11].

Moreover, many environmental factors, especially those related to wildlife, are not monitored
systematically. Therefore, studies investigating TBE risk in a more comprehensive manner are usually
limited to areas where detailed data are available or collected on purpose [10,12–14]. The need to
distinguish between environmental factors, which define conditions for the natural life cycle of TBEV,
and human behaviour, which affects the probability of human exposure to TBEV-infected ticks, has also
been underlined [10].

Only a limited number of Polish municipalities report TBE cases (Figure 1). These northeastern
endemic areas border with the known and well documented foci in the Baltic states and, to a smaller
degree, with highly active endemic areas in Czech Republic in the south.

Figure 1. TBE reported rates by NUTS-5 administrative units, Poland, 1999–2012.

This limited geographical distribution may be, however, a surveillance artefact. Previous
investigations have found comparable levels of seroprevalence in endemic and non-endemic areas
(Figure 2) [15–18]. The presence of anti-TBEV antibodies might reflect travel to high-risk areas,
vaccination (not in routine use in Poland), or exposure to contaminated milk coming from endemic
regions. However, such levels of seroprevalence would only be expected in areas where people are
regularly exposed locally to TBEV. In addition, the aetiology of meningoencephalitis is not routinely
investigated by Polish physicians [19,20]. A survey in 2009 revealed that 70% of Polish hospitals do
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not have access to TBE serologic testing [19]. When physicians in 11 Polish provinces were offered
free serologic diagnosis, the referral rate for testing was seven times lower in non-endemic, compared
to the highly endemic areas [20]. This is a classic example when absence of evidence is incorrectly
interpreted by stakeholders as evidence of absence of TBE risk.

Figure 2. Previous studies of seroprevalence with national coverage at NUTS-4 district level: (a) in the
years 1965–1967, 17,000 healthy subjects were selected from all districts in Poland, tested by complement
fixation test (CFT) [15]; (b) in the years 1971–1972, 20,000 foresters were selected from most regions,
tested by CFT [16]; (c) in the years 1996–2005, 1496 healthy subjects from selected provinces were tested
by ELISA IgG [17]; and (d) in the years 2005–2007, 1122 goat sera from selected regions were tested by
adapted ELISA IgG [18]. Note: the maps were redrawn based on original figures kept at the National
Institute of Public Health, the owner of the data.

Taking the assumption that most Polish regions do not record TBE cases, we aimed to
identify which spatially-referenced meteorological, environmental, and socio-economic factors that
are routinely measured best determine TBE human risk, in order to assess TBE risk across the
Polish territory.
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2. Materials and Methods

To build a comprehensive model to study the determinants of TBE endemicity, we reviewed all
available data sources that give access to measurements at the lowest administrative level.

2.1. Spatial Resolution

The finest spatial resolution available in the routinely collected data is the municipality, NUTS
level 5. Most of the municipalities in Poland have urban or rural status, but some are classified as
mixed and contain distinct urban and rural components. The most detailed administrative division
consists of four categories: urban and rural municipalities, urban parts of mixed municipalities, and
rural parts of mixed municipalities. We decided to use only three categories and merged urban and
rural parts of mixed municipalities. This was because some of the longitudinal data were not available
for each of the four categories.

2.2. Study Period and Area

We decided to use data covering 14 years (1999–2012). In 1999, there was an administrative reform
changing the administrative divisions of the country, making it difficult to build a coherent spatial
dataset further back in the past.

We assigned the most temporally variable measurements to ‘dekads’—10-day periods routinely
used in meteorology. Since each month was divided into three dekads, the third had variable
length—from 8 to 11 days, depending on the duration of each month.

We selected TBE endemic areas as 17 (out of 379) NUTS-4 districts with a mean TBE incidence
of over 5/100,000 during the study period, comprising 108 NUTS-5 municipalities. We assumed that
TBE diagnosis was available in these endemic districts. Other districts were classified as of unknown
endemicity due to concerns about diagnostic capacities in the area.

2.3. Selection of Variables for the Model

We prioritized data available at the NUTS-5 level that were routinely collected over the study
period. This was to ensure that a working model could be routinely used in the future for predictive
purposes. We reviewed the available data from the Central Statistical Office and from national agencies
dealing with public health surveillance, forestry and environment. We also searched for map layers
that would have sufficient resolution to assign measurements to NUTS-5 administrative units.

The definition of variables for the model is explained in Table 1 and in more detail in the
Supplementary file 1. The TBE cases were assigned to their municipality of exposure, indicated
in the case investigation form. Therefore, the case counts included both inhabitants of the respective
municipalities and tourists visiting them. To address this, we adjusted the population denominator to
the estimated tourist traffic. To assess the impact of adding non-residents on the model predictions
we also performed sensitivity analyses including only cases among residents with the unadjusted
population as denominator.
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Table 1. Characterisation of variables preparation for the predictive model, Poland, 1999–2012.

Variable Description Granularity Unit Source Data Processing

Number of TBE cases By dekaddekad of
onset Count National Institute of Public

Health We assigned notified cases to their municipality of exposure, by dekaddekad of onset.

Population denominator By year Count Central Statistical Office

For each municipality, we obtained the population estimates on the 30 June of each year. Since we assigned cases by
municipality of exposure, the numerator included both residents and tourists. Therefore, we added to the
denominator the estimated number of visiting tourists (Polish nationals), based on the Central Statistical Office
estimate of the number of bed-days occupied by visitors, divided the number of days in a year. For 1999–2003, we
imputed the proportions of municipality population increases.

Mean temperature By dekaddekad ◦C Institute of Meteorology

We used mean daily air temperature measurements from 54 synoptic weather stations evenly distributed in Poland.
To assign measurements to each municipality, we used residual kriging—a spatial interpolation method [21,22]
previously validated for use with Polish meteorological data [23]. For each dekaddekad, we calculated the mean
temperature and created a raster map at 250 m spatial resolution, including the values interpolated from the 54
stations. Then we used a vector map of NUTS-5 boundaries to assign the average value to each municipality.

Sum of precipitation By dekaddekad Mm Institute of Meteorology

We used daily sum of precipitation measurements from 54 meteorological stations. To assign measurements to each
municipality, we used co-kriging, recommended when spatial correlation is found between covariables and the
variable of interest and when the covariables are oversampled with respect to the primary variable [21]. The method
was previously validated with Polish data [24]. For each dekaddekad, we calculated the total precipitation and
created a raster map at 250 m spatial resolution, including the values interpolated from the 54 stations. Then we used
a vector map of NUTS-5 boundaries to assign the average value to each municipality.

Unemployed By year Count Central Statistical Office
Data at the municipality level on the number of registered unemployed were available for 2003–2012. For 1999–2002,
we imputed these numbers to each municipality based on the numbers recorded in districts (NUTS-4), according to
the proportional distribution between municipalities forming each district, as observed during 2003–2012.

Forested area Calculated once for
study period Ha CORINE Land Cover 2006

NUTS-5 boundaries
We merged all polygons representing forest classes (CLC code 3.1). We intersected the forest layer with the map of
NUTS-5 administrative boundaries to obtain the area of forests contained in each municipality.

Length of forest edge Calculated once for
study period Km CORINE Land Cover 2006

NUTS-5 boundaries

Using the above described forest layer, we converted the forest polygons to lines. Then we intersected the resulting
layer with the NUTS-5 administrative boundaries. We excluded segments overlaying with the municipality
boundaries or located within a 50 m buffer, to account for the results of the intersection between forest edges with
administrative boundaries. Then we computed the remaining length of lines for each municipality in km.

Average distance from
settlements to forests

Calculated once for
study period Km

CORINE Land Cover 2006
IMAGIS settlement map

NUTS-5 boundaries

We used the proximity (raster distance) function of QGIS to calculate the distances between forests (from CORINE
CLC 3.1) at 100 m resolution. Then we converted the data raster into a polygon distance layer, where each
100 × 100 m polygon had an attribute describing the distance from the nearest forest. Next, we intersected the above
described distance polygon layer with two complementary maps: the polygon CORINE map (CLC code 1.1 urban
fabric), containing more precise information on urban settlements and a more detailed point map of smaller
settlements (after deleting points overlapping with urban fabric polygons). We intersected both maps with the
polygon distance layer, and calculated the average distance from settlements to forests, using the mean of both values
for each municipality.

Length of forest roads Calculated once for
study period Km

CORINE Land Cover 2006
www.geofabrik.de/
NUTS-5 boundaries

We intersected the layer containing the road network with the CORINE map of forests (CLC 3.1) and with the
NUTS-5 boundaries. We extracted all types of roads crossing the forests polygons. We calculated the total length in
km in each municipality.

NOTE: A “dekad” is a 10-day period.

www.geofabrik.de/
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Meteorological measures were previously considered among the most important determinants
of tick survival and activity [5,13,14], but also important factors of human outdoor activities [25].
They may play an important role in the predictive model as they are the most dynamically changing
factors that are routinely measured and relatively easily accessible in public institutions. Among many
measurements available, we have selected those routinely collected across the country, on a daily basis.
We hypothesized that the air temperature affects both tick activity and influences outdoor activities of
humans. Precipitation may be important for tick activity, as ticks can function only when air humidity
is optimal. It has also a complex effect on human activity. Rainy days prevent people from spending
time outdoors for recreation, but may also increase the likelihood that time is spent outdoors collecting
mushrooms, an activity previously identified as a key determinant of individual-level TBE risk [26].

Land use factors were emphasized as key determinants of TBE risk, though likely the most
temporally stable in our study. We prioritized variables related to forest accessibility: a combination of
forested area, length of forest edge (a measure of forest fragmentation as introduced in [27]), average
distance from forests, and forest road density, which permits better access to tick habitats by humans.

According to our previous investigations, socio-economic factors play a major role in TBE
individual risk in Poland [26]. However, few were collected consistently at NUTS-5 level. We included
unemployment, which was among the most important individual risk factors, established in the
previous national case-control study.

2.4. Statistical Analysis

A total of 96.5% of the 54,432 observations (36 dekadal measurements × 108 municipalities ×
14 years) had zero TBE case counts. We assumed that a zero-inflated Poisson model would fit the data
better, which was confirmed by the Vuong test (p-value < 0.001). The mean and the variance of time
series with TBE counts were similar (mean equal 0.040, variance equal 0.053), so we concluded that there
was no overdispersion. We, therefore, decided to model the data as a panel (1 panel = 1 municipality)
time series with zero-inflated Poisson regression (ZIP) that would accommodate both time series
variables, as well as multiple categorical and continuous variables. The ZIP model is a combination of
Poisson distribution with degenerated distribution concentrated on 0 (Equation (1)). The existence of
a latent binary variable is assumed, that indicates from which of those two distributions each count
comes from. Therefore, the ZIP model has two parts: a logistic part and a log-linear part [28]. Roughly
the logistic part predicts whether or not the case count in a municipality during a dekad could be
greater than zero and the Poisson part predicts the actual number of cases given that cases could occur:

Yt|ut ∼ Poisson((1− ut)λt), ut ∼ Bernoulli(ωt) (1)

To select predictors in the ZIP model we firstly performed a time series analysis of the total number
of TBE cases from all endemic municipalities by dekad. We used periodograms to determine cycles,
checked the partial autocorrelation function and performed the Dickey-Fuller test for stationarity,
which is necessary for building the predictive model as outlined above. Partial autocorrelation analysis
allowed identification of the lag term to be included in the predictive model. An autocorrelation
analysis was also performed for temperature and precipitation.

We considered focusing on temperature and precipitation measurements during the exposure
period, which for TBE spans from two to four weeks before the onset of symptoms. In order to choose
appropriate lags, we compared models including various combinations of lags using the Akaike
Information Criterion (AIC). We examined only lags of order 1, 2, 3, and 4, which corresponds to taking
into account observations from approximately 10, 20, 30, and 40 days, respectively.

We checked for linear associations between the logarithm of continuous variables and TBE
incidence to assess the need for categorization.

Instead of fitting a final model by eliminating variables, we left all predictors in both, logistic and
log-linear, parts of model. Since the interpretation of the ZIP model necessitates taking into account
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covariates from both parts of the model, its straightforward interpretation is not possible. Therefore,
we used the marginsplot function (R software) to display predicted TBE rates, stratified by different
levels of explanatory variables.

In order to investigate the goodness of fit of final ZIP model, we calculated the McFadden ρ2

(Equation (2)):

ρ2 = 1− LL(β)

LL(0)
(2)

where LL(β) is the log-likelihood for the final model and LL(0) is the log-likelihood for the
intercept-only model. The ρ2 coefficient is a pseudo R2 measure for general linear models indicating
the proportion of variability of data which is accounted for by the model.

Similarly, we calculated the ρ2 coefficient for each risk factor separately, substituting the
log-likelihood for the final model in Equation (2) by the log-likelihood of the model containing
this particular risk factor only.

2.5. Mapping the Predicted Rates in All Municipalities

We applied the final model to predict the incidence rate in all municipalities in Poland, even those
with no cases recorded. We summed the number of cases predicted for each dekad and calculated
the annual predicted TBE incidences (1999–2012 averages) for each NUTS-5 municipality. Then we
mapped the predicted rates on the NUTS-5 administrative division map, by assigning each rate to the
centroid of the respective municipality polygon. Then we used the spline tension type interpolation,
then visualized the rates for very small spatial units and their spatial variation more comfortably.

2.6. Validation of the Model

We assumed that the majority of Poland does not record TBE cases. Therefore, we could not
validate the rates predicted by our model using the observed rates. We used the historical data from
human seroprevalence surveys as the only valid source of information available both in the regions that
report TBE and those non-reporting (Figure 2a–c). We calculated the Pearson correlation coefficients
between the predicted rates by NUTS-4 areas and the proportion of their inhabitants tested positive in
historical surveys.

2.7. Statistical Software Used

All statistical calculations were conducted in Stata® 12 software (StataCorp LP, College Station, TX,
USA). Figures were plotted using R 3.4.0. software (R Foundation for Statistical Computing, Vienna,
Austria). For mapping, we used ArcGIS ver. 9.2 (Environmental Systems Research Institute, Redlands,
CA, USA), QuantumGIS ver. 2.6 (The Open Source Geospatial Foundation, Beaverton, OR, USA) and
Surfer ver 12.0 (Golden Software LLC, Golden, CO, USA). The Supplementary file 2 includes the
STATA code used for this study.

3. Results

3.1. Descriptive Statistics

Our analysis included data from 2478 NUTS-5 municipalities. During 1999–2012, these
municipalities reported 3182 TBE cases (mean annual incidence 0.59/100,000 inhabitants). Removing
non-residents from the numerator and denominator did not have a large effect on the model
(see Supplementary file 3). We, therefore, left them in our analysis to improve the precision of
the model estimates.

We summarized the dekad-level descriptive statistics, comparing the endemic areas in which the
model was fitted with all the municipalities in Poland (Figure 3). The mean municipality population
was 15,438 inhabitants (SD: 50,753; range: 1281–1,715,517), as compared to the municipality population
adjusted for tourist traffic—15,509 inhabitants (SD: 50,995; range: 1595–1,722,457). Compared to
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the entire country, the TBE-endemic municipalities recorded lower total precipitations (16.1 mm vs.
17.4 mm), and a lower mean air temperature (7.9 ◦C vs. 8.4 ◦C).

Figure 3. Box plots displaying the distribution of selected variables, comparing the area included in
the model building (108 endemic municipalities) and the entire country territory, Poland, 1999–2012.
The middle bars of the boxes show the median, and the red dots with the accompanying numbers
display the mean value.
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The forested area, the length of the forest edge and length of forest roads were proportional to the
NUTS-5 municipality area. Therefore, we divided these measurements by the respective municipality’s
area forming, respectively, new variables: forestation, forest edge density, and forest road density.
Compared to the entire country, TBE endemic municipalities had a lower forest road density (4.5 m/ha
vs. 4.9 m/ha), shorter average distance to forests (0.97 km vs. 1.1 km), but higher unemployment
(12.4% vs. 11.2%), larger forestation (30.0% vs. 26.0%), and higher forest edge density (7.8 m/ha vs.
7.4 m/ha).

3.2. Time Series Analysis

Preliminary analysis of TBE cases time series highlighted stationarity (p-value of Dickey-Fuller
test close to 0), annual cycle (peak at frequency at periodogram about 0.028 ≈ 1/36, indicating a
36-dekad, i.e., 12-month, cycle) and strong first-order partial autocorrelation (see Supplementary file 4
for details). The observed cycle confirms the association between TBE risk and meteorological annual
cycles, which is accounted for by inclusion of temperature as a predictor. Therefore, we decided to
include only the first-order autocorrelation term in the final model.

Autocorrelation analyses demonstrated a very high correlation of consecutive lags in mean air
temperature (around 0.9) and significant correlation of lags in precipitation (around 0.3), thus, we
decided to consider only one predictor connected with each of those variables. The analysis of all
possible combinations of models with various lags (see Supplementary file 5) enabled the selection
of a model including precipitation with lag −3 dekads and temperature with lag −2 dekads. The
decomposition of the 14-year time series indicated no longitudinal trend in TBE occurrence.

3.3. Variable Type Selection

All variables displayed approximate linear associations with TBE risk in log scale, aside from
lagged temperature and forest edge density (see Supplementary file 6). Roughly no TBE cases were
recorded in dekads preceded by negative mean air temperatures, however an increase in temperature
was associated with an increase in TBE incidence. Therefore, we included an interaction term of two
variables: the continuous mean temperature with lag 2 and its binary analogue indicating whether the
temperature 2 dekads before was above 0. To account for the non-linear association with forest edge
density, we categorized this variable into 5 intervals with equal length.

3.4. The Final Model

The final model (Table 2) included the same variables in the logistic and log-linear components:

1. Number of TBE cases in the previous dekad (first-order autocorrelation term);
2. Sum of precipitation three dekads before (in mm);
3. Temperature index: a binary variable indicating whether the mean air temperature two dekads

before was above 0;
4. Mean air temperature two dekads before (in ◦C);
5. An interaction term between the above binary variable with the mean air temperature recorded

two dekads before;
6. Forestation (forested area divided by municipality area, in %);
7. Forest edge density (length of forest edge divided by municipality area), categorized: 0–3 m/ha,

3–6, 6–9, 9–12, 12 and more (the most numerous category 6–9 km selected as reference level);
8. Forest road density (length of forest roads divided by the municipality area, in m/ha);
9. Average distance from settlements to forests (in kilometres); and
10. Unemployment (number of unemployed divided by population in working age, in %).
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Table 2. Final model assessing the associations between determinants of TBE endemicity with the TBE
occurrence, 108 endemic municipalities, 1999–2012.

Variable Coefficient Level of Significance

LOG-LINEAR PART

Number of TBE cases (−1 dekad) 0.215 ***
Sum of precipitation (−3 dekads) 0.009 ***
Temperature index (if > 0 ◦C) 2.071 ***
Mean temperature (−2 dekads) −0.227 NS
Interaction (temp. index ×mean temp.) 0.203 NS
Forestation 0.036 ***
Forest edge density (ref: 6–9 m/ha) - -

0–3 0.321 NS
3–6 −0.505 ***
9–12 0.299 **
>12 0.736 ***

Forest road density −0.059 **
Average distance to forests 0.139 NS
Unemployment 0.047 ***
Constant in the model −11.197 ***

LOGISTIC PART

Number of TBE cases (−1 dekad) −0.839 ***
Sum of precipitation (−3 dekads) −0.010 *
Temperature index (if >0 ◦C) 1.600 *
Mean temperature (−2 dekads) −0.493 ***
Interaction (temp. index * mean temp.) 0.219 NS
Forestation 0.032 ***
Forest edge density (ref: 6–9 m/ha) - -

0–3 0.148 NS
3–6 −0.374 NS
9–12 0.472 *
>12 1.074 ***

Forest road density −0.194 ***
Average distance to forests 0.568 NS
Unemployment 0.072 ***
Constant in the model 0.704 NS

Levels of significance: NS—p > 0.05; * 0.05 > p > 0.01; ** 0.01 > p > 0.001; *** p < 0.001. In bold are variables significant
at level p < 0.01.

The coefficients in the model are included for completeness, but they do not have immediate
interpretation, as the two parts of the model have to be considered in conjunction. To illustrate the
impact of the covariates included in our final model, we plotted the predictions of this model at fixed
values of a particular covariate and averaging over the remaining variables (Figure 4). A clear increase
of incidence was predicted by higher temperature two dekads before, especially if the temperature
had increased from 10 to 20 ◦C, and when precipitation had increased three dekads before. Incidence
increased with higher forestation, when this proportion remained below 60%, flattening for the
forestation exceeding 70%. Similarly, the increase of incidence associated with higher unemployment
was the steepest for the unemployment below 15%, subsequently flattening out. A higher incidence was
associated with higher forest road density when this indicator remained below 9 km/km2. Moreover,
a larger forest edge and closer distance to the nearest forest also predicted higher incidence.

The ρ2 coefficients were 0.205 for the full final model, 0.145 for the mean temperature, 0.061 for
the sum of precipitation, 0.068 for the forestation, 0.051 for the forest edge density, 0.042 for the forest
road density, 0.048 for the average distance to forests, and 0.041 for unemployment.
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Figure 4. TBE predicted rates estimated at fixed values of continuous variables and stratified by
categorical variable levels (forest edge density) (marginplots), 108 endemic municipalities, 1999–2012.

The predicted TBE rates by the NUTS-5 municipality show that most areas had some predicted
TBE risk, but some areas were particularly affected (Figure 5). Within the 108 endemic municipalities
used for model building, the predicted rates slightly underestimated and decreased the variability as



Int. J. Environ. Res. Public Health 2018, 15, 677 12 of 17

compared with the observed rates (predicted mean 16.8, SD 10.9, range 4.2–48.8 vs. observed mean
18.5, SD 16.8, range 0–81.6).

Figure 5. TBE rates predicted by the model per 100,000 inhabitants by NUTS-5 municipalities,
Poland, 1999–2012.

3.5. Validation of the Model

There was no correlation between the rates predicted at NUTS-4 level and the results of 1967–1971
surveys [15,16] (r = −0.0283 and −0.1382, respectively). We found a moderate correlation between the
predicted rates and the 1996–2005 survey of healthy subjects [17] (r = 0.2816, p = 0.0004).

4. Discussion

We built a predictive model which could be applied in the future to better understand TBE risk
and guide prophylactic interventions in Poland. This model, using the highest resolution available
in the routinely-collected administrative data, accommodated both highly variable measurements
(meteorological conditions, TBE cases occurrence), less dynamically changing socio-economic status
(unemployment), and variables fairly stable in time (land use, measures of forest accessibility). In order
to avoid the surveillance artefact, we trained the model using data only from the region where TBE
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testing was available and accessed by clinicians [20]. Still, we argue that the prediction could be
extended countrywide.

We predicted high rates in most previously-established endemic areas. This was anticipated since
the occurrence of TBE was an important component of the predictive model. There was, however,
heterogeneity in the spatial distribution of the predicted rates even in known endemic areas. The model
produced the highest predicted rates in some areas within the known endemic region, where the
conditions were especially favourable for tick activity and facilitated contact between humans and
ticks, rather than in areas with the highest observed TBE rates. While this could represent the lack of fit
of the model, we should also acknowledge that assigning a case to a particular municipality relies on
the history of travel and it may be, to some extent, arbitrary, with potential misclassification between
neighbouring communes.

Factors determining TBE endemicity identified by our model are biologically plausible. High
forestation, soil humidity, and air temperature increasing over the I. ricinus nymphal activity threshold,
favour tick activity. On the other hand, higher forest accessibility (distance to forests, forest edge
density, and forest roads density), increased temperatures and higher unemployment favour outdoor
human activity within the tick habitats. These factors were investigated previously and confirmed as
predicting TBE incidence in known endemic areas. Heterogeneous results of these studies suggest,
however, that the predictive factors may be country specific, with a prominent role of land use and
socio-economic determinants [4,7,9,10,12].

We predicted high TBE rates in areas considered previously as free of TBE. There is no valid
explanation for the persistence of TBE foci in such limited regions as apparent from the case-based
surveillance. In contrast to some countries reporting limited TBE foci, like the Scandinavian countries
or Italy, where the latitudinal extent results in contrasted environmental and climatic conditions,
Poland has a temperate climate and a fairly uniform geography, consisting of an almost unbroken
plain reaching from the Baltic Sea in the north, to the Carpathian Mountains in the south. Most of
Poland’s territory has suitable tick habitats, illustrated, for example, by the distribution of forested areas
(Figure S1 in the Supplementary file 1). Many investigations carried out across the country confirmed
the abundance of I. ricinus ticks in virtually all Polish regions, including highly urbanized ones [29–33].
What is making the regions that report numerous cases different is the access to TBE serological testing.
In the TBE endemic areas, physicians uniformly and universally test all suspect meningo-encephalitis
cases for TBE, and in the non-endemic areas, testing is seldom done. Accordingly, we believe that
if suspect cases of meningo-encephalitis are not routinely referred for TBE testing in all regions in
a country, the TBE reported rates cannot be considered a valid measurement of TBE risk. Indeed,
circumstantial evidence from serological surveys [15–18], some environmental investigations [32],
and also from an investigation comparing TBE rates in cross-border regions of Poland and Czech
Republic [34], strongly suggest that such unmonitored TBE endemic areas do exist in Poland. In fact,
our predicted rates correlate with some of the areas pointed previously as high-risk by seroprevalence
surveys. These areas should be targeted first for improved monitoring and diagnostics.

To prepare and correctly interpret this analysis we formed a team of researchers representing
several agencies in the field of public health and environmental sciences. This interdisciplinary
approach is necessary to study zoonotic diseases efficiently. Indeed, the reported human cases are
often simply the tip of the iceberg of processes of unknown size and intensity. Currently, little data
are collected in a systematic and uniform way on variables which would better inform this kind of
model, for example, human behaviours in relation to outdoor activities, data on microclimate, soil
types, relative humidity, rodent density, large mammal density, etc. Having developed a framework
with the best available proxy variables, we will be able to look for more precise data in the future
or advocate for their systematic collection. The increasing digitization of various registers in Poland
and the possibility to use large social network data to understand human behaviours may create new
opportunities to predict communicable diseases in the near future. Predictive models have proven
useful to estimate the burden of disease, identify the most effective prevention strategies, or to predict



Int. J. Environ. Res. Public Health 2018, 15, 677 14 of 17

outbreaks and long-term trends. However, this can also be a useful exercise to better understand the
data sources (i.e., surveillance systems), identify data gaps, and stimulate the extension of the research
teams to include more disciplines, as well as data sources. Previous TBE predictive models were either
restricted to small areas having access to large amounts of high-quality measurements [4,9,10,12] or
were using remotely-sensed data [35]. In the latter case, the authors were drawing broad conclusions
for Europe, which may not address local discrepancies and human behaviour peculiarities. We think
that predictive models cannot replace real data in making public health decisions, but can be a valuable
addition, if interpreted carefully.

Our analysis has several limitations. First, our model could suffer from “ecologic bias”, if it
missed determinants of TBEV survival that affect processes at a much finer spatial resolution. For
example, previous investigations have shown that air temperatures measured at 2 m above ground
do not necessarily reflect the microclimate of tick habitats, and the sum of precipitation displays poor
correlation with atmospheric saturation deficit and relative humidity, which are key determinants
of tick activity [13]. In addition, we did not consider any direct measurements of human activity
or animal populations. This can explain the moderate value of McFadden’s R2 (0.205) for the full
model. Our analysis was not aimed, however, at explaining the local biological processes, but rather an
attempt to use routinely-collected measurements as proxy indicators influencing the local microclimate,
and to identify a broad-scale set of determinants that makes high-risk TBE areas different from areas
with non-existing or lower risk. The fit of the model and strong effects of meteorological variables
indicate that this approach is justified. Second, the assignment of TBE cases to the municipality of
exposure may be biased by its non-standardized recording in the surveillance forms. If the interviewer
misses information on recent travel, the case could be wrongly assigned to its residence address.
Additionally, travel to multiple locations during the exposure period, or travel abroad, could lead to
misclassification. Since most cases are among residents of rural areas, they are likely mostly exposed
in their residence municipality, compared to urban dwellers. Furthermore, only 11.4% of TBE cases
had recorded a place of exposure outside of their municipality of residence. We, therefore, believe the
effect of such misclassification to be limited in our analysis. Third, our population denominator was
likely underestimated, because the number of bed-days of tourist accommodations does not reflect all
visitors (i.e., those visiting for one day, tourists sleeping in tents or in unregistered accommodations).
Our adjustment of population denominator, although largely underestimated, permitted differentiation
between highly popular tourist destinations from the rest. The underestimated adjustments for tourists
should not have a major impact on our analysis, which was supported by the results of our sensitivity
analysis (Supplementary file 3). Fourth, the land use measures were only calculated once, with the
assumption that they do not change over time. This is not completely accurate, as there may be changes
in the forest structure which may affect tick habitats and forest accessibility. If we would choose to
study longer time series of data, we would definitely have to account for annual changes in the land
use, possibly involving agencies collecting such data. For a 14-year period we can however assume a
relative stability of land use. Fifth, an important limitation of our analysis is the lack of proper model
validation. The historical seroprevalence data were assigned to larger areas than NUTS-4 district
because of insufficient sample sizes. Since we are missing the case-based results of the old surveys, we
had to assign values to particular districts from low-resolution maps. Additionally, the oldest surveys
were using the complement fixation test, which had higher specificity but low sensitivity, compared to
the IgG ELISA test. This could lead to underestimation of these surveys results, as compared to the
newer ones.

5. Conclusions

Our study permitted identification of regions in Poland where a set of modifiable and
non-modifiable factors favoured persistence of TBE virus and increased TBE risk. On the basis
of our results, supported by available circumstantial evidence, we can conclude that TBE is currently
not appropriately monitored. Our predicted TBE risk map is partly consistent with high risk areas
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identified by surveillance, but high TBE risk was also predicted in many areas where no TBE cases
were reported over the past three dekads.

We recommend raising awareness amongst doctors in the areas with the highest predicted
incidence. Additionally, our results should be validated by ensuring the availability of TBE diagnosis
in all Polish hospitals, and considering adding alternative sources of data on TBE risk, for example,
routine household animal or wildlife surveys. We also recommend increasing the capacity in infectious
disease modelling in the field of Public Health field by bringing more expertise, and new data sources,
for routine monitoring of zoonosis risk, understanding data gaps, and identifying the most efficient
prevention measures.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/4/677/s1;
Supplementary file 1: preparation of variables, Supplementary file 2: selected STATA code, Supplementary file
3: comparison of the final model with all cases with a model excluding imported cases, Supplementary file 4:
results of the preliminary analysis of time series with number of cases reported from endemic municipalities,
Supplementary file 5: selection of lags for the meteorological measurements, Supplementary file 6: checking for
the possibility to use independent variables as continuous in the log-linear model, Figure S1: map of CORINE
landcover forest classes (CLC code 3.1) areas, Poland, 2006.
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