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Kuźma, M.; Kiliszek, D. Modeling of

Various Spatial Patterns of

SARS-CoV-2: The Case of Germany. J.

Clin. Med. 2021, 10, 1409. https://

doi.org/10.3390/jcm10071409

Academic Editor: John G. Kellett

Received: 17 February 2021

Accepted: 30 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Civil Engineering and Geodesy, Military University of Technology, 00908 Warsaw, Poland;
albina.moscicka@wat.edu.pl (A.M.); andrzej.araszkiewicz@wat.edu.pl (A.A.); jakub.wabinski@wat.edu.pl (J.W.);
damian.kiliszek@wat.edu.pl (D.K.)
* Correspondence: marta.kuzma@wat.edu.pl

Abstract: Among numerous publications about the SARS-CoV-2, many articles present research
from the geographic point of view. The cartographic research method used in this area of science
can be successfully applied to analyze the spatiotemporal characteristics of the pandemic using
limited data and can be useful for a quick and preliminary assessment of the spread of infections.
In this paper, research on the spatial differentiation of the structure and homogeneity of the system in
which SARS-CoV-2 occurs, as well as spatial concentration of people infected was undertaken. The
phenomena were investigated in a period of two infection waves in Germany: in spring and autumn
2020. We applied the potential model, entropy, centrographic method, and Lorenz curve in spatial
analysis. The potentials model made it possible to distinguish core regions with a high level of the
growth of new infections, along with areas of their impact, and regions with a low level of generation
of new infections. The entropy showed the spatial distribution of differentiation of the studied
system and the change of these characteristics between spring and autumn. The concentration
method allowed for spatial and numerical demonstration of the concentration of infected population
in a given area. We wanted to show that it is possible to draw meaningful conclusions about the
pandemic characteristics using only basic data about infections, along with proper cartographic
methods. The results can be used to designate the zones of the greatest threats, and thus, the areas
where the most intense actions should be taken.

Keywords: decision-making; geographic information system; spatial analyses; temporal analyses;
entropy; concentration; potential model

1. Introduction

The spread of the SARS-CoV-2 coronavirus in 2020 has created many challenges not
only for health systems around the world, but also for scientists from various disciplines.
Since the World Health Organization (WHO) [1] declared a pandemic on 11 March 2020,
numerous publications have been published about the SARS-CoV-2 virus and the COVID-
19 disease that it causes. Among them, many articles present research from the geographic
point of view, undertaken by scientists from the fields of cartography, spatial analysis,
and geographic information systems (GIS). It has been established that the spread of the
SARS-CoV-2 virus is attributable to mobility, and also to some extent to weather.

The large impact of human mobility on the spread of COVID-19 has been analyzed in
many studies. Air travel was identified by Wang et al. [2] as one of such factors. The authors
identified strong positive correlation between locations of core airports in the United States
and COVID-19 clustering regions, whereas in China, rail transport is cited as one of the
main factors contributing to the transmission of the virus [3]. Research on people’s mobility
is based on data from mobile phones [4–6] and Google’s Community Mobility Reports
for human mobility modeling [7] to predict degrees of disease spread and to evaluate the
effectiveness of health policy strategies. Correlation between distribution of the COVID-19
and population emigration from Wuhan was identified by Chen et al. [8]. Studies also show
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the impact of lockdowns on SARS-CoV-2 spread [9], its mortality, and reveal the relationship
between air pollution, public transport networks, and the development of SARS-CoV-
2 [10,11], and the impact of administrative restrictions on the SARS-CoV-2 spread was
presented by Warren et al. [6]. These studies cover most continents: Africa [12,13], Asia [14],
Europe [15], North America and South America [16,17], and Australia [18]. Gao et al.
compared how people in different counties and states reacted to the social distancing
guidelines [5]. An analysis of infections by state, incorporating inflows and outflows of
interstate travelers, was carried out by Chen et al. [19]. Modeling revealed that curbing
interstate travel when the disease is already widespread makes little difference. Increased
testing capacity, strict social-distancing, and self-quarantine rules are most effective in
abating the outbreak.

Among other publications, papers that revealed a correlation between weather (mainly
temperature and humidity) and the pandemic growth are worth mentioning [20–23]. They
present the impact of temperature and humidity on the outbreak [22] and mortality of
COVID-19 [20], as well as virus spread and seasonality [21,23]. It turned out that despite
the correlation, the role of weather itself as contributing factor to the pandemic growth
was relatively insignificant in comparison with other factors, such as people’s mobility and
population density [24].

Advanced virus spread analyses are often based on machine learning. Niu et al. [25]
included Google Trends and machine learning algorithms to build prediction models
in order to monitor the virus spread in Italy. Pourghasemi et al. [26] performed spatial
modeling, risk mapping, and change detection of COVID-19 in Iran using regression
modelling and random forest classification. A more general review of artificial intelligence
usage on COVID-19 spatio-temporal data in 49 selected research papers was presented by
Jayatilaka et al. [27].

Methods used to model SARS-CoV-2 spread using machine learning as well as tra-
ditional mathematical modeling of the infections spread through space and time require
multiple data inputs such as place of infection, contacts with other people, environmental
and climatic factors, and migration. The key point in such research is to collect data from
multiple sources, analyze them, and provide spatial information support for decision
making [28]. Detailed and up-to-date data are not always available (especially in devel-
oping countries), and researchers are still looking for answers to the questions about the
interdependence of factors influencing the spread of SARS-CoV-2. At the current stage of
knowledge, decisions made based on the results of such studies are subject to a significant
degree of uncertainty, which is confirmed by different strategies used to fight the virus in
various countries around the world.

Thus, it was assumed that the essential knowledge necessary in SARS-CoV-2 spread
limitation is what we can know very quickly with limited data sources, i.e., data about
infected people along with data about people living in a given area. Having only such data,
we can analyze the spatial structure of the area where virus infections occur. The aim of our
research was to define the spatial differentiation of the structure of occurrence, homogeneity
and spatial concentration of people infected with SARS-CoV-2, along with determination of
the changes of these properties over time. To date, no studies of SARS-CoV-2 have examined
these aspects by methods used in physics [29], mathematical information theory [30] and
econometrics [31,32]. In the study, we have used these methods to address the following
research questions:

1. What new information can a study of the spatial structure of SARS-CoV-2 occurrence
provide?

2. What spatial relations and dependencies exist between the elements of the tested
system?

3. What directions of changes over time can be observed in the distribution, structure,
homogeneity (or differentiation), and concentration of SARS-CoV-2 infections?

4. What decisions can be made based on the results of the analysis of the spatial structure
of SARS-CoV-2 occurrence?
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The novelty of our approach is to use only basic data for quick and preliminary
assessment of the spread of infections. It can be valuable to make first decisions and
indicate the directions of more detailed analyses requiring new data. The results of our
analyses may be useful especially in the initial period of the pandemic, when detailed data
are lacking. This creates premises for drawing very important conclusions related primarily
to quick decision-making on restrictions and threats, both at the central and local level.

2. Materials and Methods
2.1. Test Area and Data

The area of Germany was adopted as the test area of research. The necessary data
are provided by the Robert Koch Institute in Berlin (RKI) [33]. We used data related to
the administrative division units of Germany at the second level of detail (Landkreise
and Kreisfreien Städte). In the case of Berlin, the data were aggregated to the NUTS 1
level (The Nomenclature of Territorial Units for Statistics classification is a hierarchical
system for dividing up the economic territory of the European Union; NUTS 1 means major
socio-economic regions). Based on the analysis of the obtained data, weekly periods were
distinguished for the first stage of the spring and autumn waves of infections, when an
increasing trend of new infections was noted. Finally, the period 1 March 2020–4 April
2020 (marked as “spring”) and 4 October 2020–7 November 2020 (marked as “autumn”)
were analyzed.

Additionally, the research used data on the population in individual units of the
country’s administrative division, obtained from the Eurostat database [34].

2.2. Analysis of the Spatial Distribution Using the Potential Model

In this study, we used the concept of potential, similar to that used in physics, resulting
from the law of gravity to analyze the distribution of virus infections [29]. The potential
model makes it possible to quantify the location of the place of the phenomenon under
study as a set of relations to the system of all other places where this phenomenon occurs.
The study of relations is transferred here to the spatial structure of the system, considered
as a functional whole [35,36]. This model makes it possible to assess the intensity of
interactions between the examined administrative units (represented by their centroids)
regarding a selected variable, considering the location of the units and their mutual distance.
A spatial unit has a specific own potential, but thanks to its location in the region and
the system of interactions, its potential may be reduced or increased depending on the
potential of neighboring units [37].

We used the quotient of potentials as a measure of spatial differentiation of the oc-
currence of infections in a given area: infections (CPi) and population (PPi) for a given
administrative unit. These two potentials were used to underline that pandemic develop-
ment opportunities depend on the population. The quotient of potentials was determined
from Formulae (1)–(3) [38,39]:

Pi =
CPi
PPi

(1)

where Pi—quotient of potentials in the i-th administrative unit, CPi—the potential of
the SARS-CoV-2 infections in the i-th administrative unit, and PPi—the potential of the
population of the i-th administrative unit.

The starting point for the application of the potential model was the measurement of
the spatial distribution of the population in the form of the population potential of each
administrative unit. The potential of the population of the i-th administrative unit (PPi)
was determined on the basis of Formula (2):

PPi = pi +
n−1

∑
j=1

pj

dij
(2)
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where pi—population in the i-th administrative unit, pj—population in j-th administrative
unit, dij—distance between the centroids of administrative units i and j, and n—number of
administrative units in the examined system.

The potential of SARS-CoV-2 infections for the i-th administrative unit of CPi was
determined on the basis of Formula (3):

CPi = ci +
n−1

∑
j=1

cj

dij
(3)

where ci—number of infections in the i-th administrative unit, cj—number of infections in
the j-th administrative unit, dij—distance between the centroids of administrative units i
and j, and n—number of administrative units in the examined system.

In order to show changes in the quotient of potentials over time, they were determined
for two time periods: spring and autumn.

The quotient of potentials is presented using a choropleth map, classifying the ob-
tained results into quintile groups, each of which covers 20% of the analyzed areas. It was
assumed that the first quintile group with the highest values of the quotient of potentials
would cover the so-called core areas, i.e., areas with a high level of the development of new
SARS-CoV-2 infections. Core regions are units that have such a high level of infections that
they generate new infections themselves, regardless of external influence. The second and
third quintile groups are the areas of influence of the core areas, while the fourth and fifth
quintile groups are peripheral regions, with a low level of generation of new infections.

2.3. Analysis of Spatial Differentiation with the Use of Entropy

To analyze the homogeneity or differentiation of a spatial phenomenon, we used
entropy, which is the basic function of mathematical information theory [30]. Entropy is
used in cartography in relation to phenomena distributed in geographical space [40,41] to
assess its spatial diversity. In this study, we used entropy to determine the differentiation
of SARS-CoV-2 infections per 10,000 people indicators at district level.

In order to determine entropy, we adopted a certain simplification in the analyzed
system. The infections indicator was divided into 9 sections (pmax = 9) of equal spread,
including similar values of the phenomenon, which is equal to the maximum number of
neighboring administrative units in the examined system.

In this study, the entropy was determined for individual administrative units, rep-
resented by their centroids, using Formulae (4)–(7) [42–44]. The entropy (Hi) for the i-th
administrative unit was determined from Formula (4):

Hi = −
pi

∑
s=2

ωis lg2ωis (4)

where wis—density of section s in the i-th administrative unit and pi—number of sections
for the i-th administrative unit.

The density wis was determined for each section (s) and expressed as (5):

ωis =
mis
ki

(5)

where mis—number of neighbors in section (s) of the i-th administrative unit and ki—number
of all neighbors of the i-th administrative unit.

The value of H index falls in the range from 0 to lg2k and may vary for different
administrative units that have a different number of neighbors. Therefore, at the beginning,
administrative units adjacent to only one unit, such as enclaves, were excluded from the
analysis so as not to distort the image of entropy with the assumptions made.
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For the given number of sections (pmax = 9 in our case), maximum entropy (Hmax) can
be determined. It occurs when the maximum number of sections is equal to the maximum
number of neighbors (p = k = 9) and can be expressed as follows (6):

Hmax = lg2k (6)

On the basis of Hi and Hmax, we determined the relative entropy [43] (hi) (7):

hi =
Hi

Hmax
=

−∑
pi
s=2 ωis lg2ωis

lg2k
(7)

The value of relative entropy varies in the range from h = 0, denoting the maximum
concentration of the phenomenon in one section, to h = 1, determining the maximum
dispersion of the phenomenon—equal share of contamination of neighboring units in each
of the sections.

We determined the relative entropy for the spring and autumn wave of infections. The
results of the relative entropy analysis are presented on the maps using the isoline method,
which made it possible to present the spatial differentiation of the SARS-CoV-2 infection
independently from the administrative division.

2.4. Determination of the Concentration Zones

We determined the zones of infection concentration with use of the cartographic
concentration method, based on the Lorenz concentration method [32]. Its statistical use
was modified by Uhorczak [45] for the purposes of cartography and called the mosaic
concentration. In this method, the zones of infection concentration were determined using
an ordered series of data on the infection density (Di) in each administrative division unit,
determined as the ratio of the number of infections (ci) and the total population in a given
unit (pi) (8):

Di =
ci
pi

(8)

Having an ordered series of data on the density of infections and the absolute number
of infections corresponding to each unit, the number of infected persons was summed up
until the assumed values of the designated zones were obtained. We decided to group
these values into 10% zones, each zone containing 10% of infected population. The results
are presented in the form of a mosaic concentration choropleth map.

Based on the concentration zones, we calculated the percentage of the country’s total
area that is occupied by each concentration zone of infected population. The results are
presented in the form of a Lorenz curve [46]. It describes the uneven distribution of
infections in the study area.

Using the Lorenz curve, we determined the concentration coefficient—the so-called
Gini coefficient [31]—showing the inequality in the distribution of infections in the study
area in numerical terms. The Gini coefficient (G) was determined from the Formula (9),

G =
a

a + b
(9)

where a—the area between the hypotenuse of the unit triangle under consideration and
the Lorenz concentration curve and b—the area between the legs of the considered unit
triangle and the Lorenz concentration curve.

The Gini coefficient assumes values in the range (0,1). The zero value indicates
full uniformity of distribution—the Lorenz curve then coincides with the hypotenuse
of the triangle. An increase in the coefficient value means an increase in the inequality
of distribution.

Maps of concentration zones, Lorenz curves, and Gini coefficients were determined
separately for spring and autumn.
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2.5. Analysis of the Variability of the Geographic Center

We carried out the analysis of the variability of the geographical location of the
infection center using the so-called centrographic method [43,47]. Using this method,
we determined the center of gravity of SARS-CoV-2 infections, also known as the focal
point. As in the previous analyses, we assumed that the phenomenon is represented
based on the number of infections for each administrative unit, represented by its center of
gravity (centroid). Knowing the location of these points, as well as the values of infections
at these points in different time intervals, the locations of the resultant points in weekly
time intervals were determined, i.e., the geographic centers.

We determined the location of the geographic center in each adopted period of time
using Formula (10) [43,47]:

ln =
∑n

i=1(ciλi)

∑n
i=1 ci

; ϕn =
∑n

i=1(ci ϕi cos λi)

∑n
i=1(ci cos λi)

(10)

where jn—centroid latitude for n administrative units, ln—centroid longitude for n adminis-
trative units, ci—value of the phenomenon (number of infections) of the i-th administrative
unit, ϕi—latitude of the centroid of the i-th administrative unit, λi—longitude of the
centroid of the i-th administrative unit, and n—number of administrative units.

The variability of the location of the center in time is presented on the maps using the
signature method.

3. Results

The most common way of presenting data of SARS-CoV-2 infections is the choropleth
map. In our case we calculated the infections per 10,000 people in each reference unit. For
the studied area of Germany, choropleth maps are presented in Figure 1. The districts which
were characterized by the highest percentage of infections were marked: Tirchenreuth for
spring and Cloppenburg for autumn.
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3.1. Spatial Distribution of the Quotient of Potentials

The quotient of potentials (Pi), determined on the basis of Formulae (1)–(3) was
presented using choropleth maps (Figure 2). In the analyzed period, Pi ranged from 0.00016
to 0.01034 for spring 2020 and from 0.00063 to 0.01164 for autumn 2020.
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The choropleth maps show that during the spring, the quotients of potentials were
relatively small for most of the country, which means that the potential for infections
was much lower than the potential of the population. In spring, the highest quotient
of potentials (0.00164–0.01034) occurred mainly in the south of the country. The lowest
quotient of potentials (below 0.00051) covers most of the eastern part of Germany—areas
with lower population density.

On the maps, we see units which are core regions with a high level of the growth of
new infections, along with areas of their impact, as well as peripheral regions with a low
level of generation of new infections. Although the area occupied by individual quintile
groups in spring and autumn is very similar, their spatial distribution is different.

The core regions in spring covered 17.35% of the country’s territory—mainly in the
south of Germany. In spring, most of Bavaria and Baden Württemberg were in the 1st
quintile group. The same group also included Hamburg, Wolfsburg, and Osnabrück (Lower
Saxony), Borken, Coesfeld, Münster, Heinsberg, and Aachen (North Rhine-Westphalia),
Cochem-Zell (Rhineland-Palatinate), Saarbrücken (Saarland), and Greiz (Thuringia). There
are both rural and urban districts. One can also see the areas of influence of the core
regions on the map. This included almost the entire remaining parts of Bavaria and
Baden Württemberg, as well as the western part of the country located in the 2nd and
3rd quintile groups, concentrated on the outskirts or in the vicinity of core units. In total,
they cover 35.42% of the country’s territory (2nd quintile—17.01%, 3rd quintile—18.41%).
Administrative units with the lowest quotient of potentials were peripheral units with a
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low level of generation of new infections. These were mainly districts located in central-
eastern Germany, qualified to the 4th and 5th quintiles. Together, they cover 47.23% of the
country’s territory (4th quintile—18.55%, 5th quintile—28.68%).

The autumn wave of the pandemic showed a different spatial distribution of the
quotient of potentials. Areas with a high quotient (0.00524–0.01164) were more scattered
across the country in autumn. Such concentration did not exist in the southern federal
states (Bavaria and Baden-Württemberg). The lowest values of the potential ratio were still
present in eastern Germany, but here they assumed values up to 0.00226.

In autumn, new core regions were identified in the east: Berlin and four districts in Sax-
ony: Görlitz, Bautzen, Sächsische Schweiz-Osterzgebirge, and Erzgebirgskreis. The number
of core regions in the west of the country also expanded, including Cloppenburg, Vechta
and Verden (Lower Saxony), and Bremen, as well as some of the Nordrhein-Westfalen.
Despite the increase in the number of core regions, their total area decreased to only 13.05%
of the total country’s area. This is mainly due to the concentration of infections in regions
with a smaller surface area but a higher population density. In autumn, the situation in
the southern part of Germany changed. A significant number of the spring core regions
were qualified in autumn into the 2nd and 3rd quintile groups. The remaining areas of
influence were concentrated in western Germany and in the east of the country, especially
in Saxony. The areas of influence in autumn covered an area that equals 37.59% of the
country’s total area (2nd quintile—17.58%, 3rd quintile—20.01%), which was slightly bigger
than in spring. The peripheral areas were located in the same part of the country as in
spring—in its central-eastern part, covering 49.36% of the country’s area (4th fifth—20.05%,
5th quintile—29.31%).

3.2. Spatial Differentiation of Entropy

The entropy of the number of infections per 10,000 people (Figure 3) showed the
spatial distribution of differentiation of the studied system of administrative units, as well
as the change in these characteristics between spring and autumn.
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The spatial distribution of the relative entropy in spring (Figure 3, left map) shows
the differentiation of the studied system only in the south of the country. Relative entropy
was highest in south and west part of Germany but it exceeded 0.6 only in Schwandorf
and Kelheim (both in Bavaria) and in Tuttlingen (Baden-Württemberg). It was also high,
reaching 0.5, in the west of the North Rhine-Westphalia. The rest of the country could
be described as homogeneous, with the relative entropy not exceeding 0.3, i.e., 72.5% of
districts. Of the districts, 37.6%, the less populated areas of north-west Germany, showed
zero entropy. This means that many administrative units had a very similar epidemic
situation: there were no major differences in the infections between neighboring districts,
which was probably due to the small number of infections occurring in most of the country
in spring. Only the south of the country, the area of Bavaria and Baden-Württemberg,
and states along the border with France were characterized by some variation between
administrative units. The infections first appeared mainly in large Bavarian cities, later also
affecting rural districts, hence the characteristic increase in the diversity of the system in
the south of the country.

In autumn (Figure 3, right map), there was a significant change in the homogeneity
of the system. The differentiation of the studied system spread practically over the entire
country, showing the chaotic evolution of the epidemic. Almost 70% of administrative
units have a relative entropy greater than 0.3 and in over 12% of them it was greater than
0.6 The system of isolines points to a zone from the east part of Lower Saxony to Hesse
as region with greatest entropy. Such high values of entropy in practically all of Germany
prove the great diversity of the studied system in autumn. Over 50% of districts were
represented by relative entropy higher than 0.4. Merely 6% of districts showed zero entropy.
Only the border of Brandenburg and Mecklenburg-West Pomerania and the western part
of Baden-Württemberg showed a low level of entropy. The rest of the country was already
highly diversified.

In autumn the distribution of isolines centered around larger urban centers is common
(Figure 3, right map). Densely populated cities like Berlin, Hamburg, and Munich showed
less entropy than their neighbors. This means that there were significant differences in
the SARS-CoV-2 infections between them and more homogeneous neighboring admin-
istrative units. This is mainly due to the existence of many large outbreaks of infections
occurring in both larger and smaller cities, and a much lower number of COVID-19 cases
in neighboring districts.

3.3. Mosaic Concentration Zones

The cartographic method of concentration made it possible to determine the con-
centration zones of the population infected with SARS-Cov-2. Each zone (where 1 is the
highest concentration zone—darkest color in Figure 4), consists of 10% of the total infected
population. Choropleth maps of mosaic concentration for spring and autumn are presented
in Figure 4.

Concentration zones with the highest infection concentration in spring are located
in the south of the country, mainly including Bavaria and Baden Württemberg, as well as
in the western areas of Nordrhein-Westfalen and Rheinland-Pfalz. In spring, 10% of the
infected population corresponded to approximately 9700 people. At that time, the first
concentration group, including the areas with the highest density of infections, included
18 districts with a total area of about 13,500 km2, which accounts for 3.78% of the entire
country. The average infection density for the first concentration zone was 0.42% at that
time. A total of 40.22% of the country area was covered by units with the lowest infection
density (concentration group 10: 123 districts).



J. Clin. Med. 2021, 10, 1409 10 of 15J. Clin. Med. 2021, 10, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 4. Choropleth map of mosaic concentration zones (source: own work). 

Concentration zones with the highest infection concentration in spring are located in 
the south of the country, mainly including Bavaria and Baden Württemberg, as well as in 
the western areas of Nordrhein-Westfalen and Rheinland-Pfalz. In spring, 10% of the in-
fected population corresponded to approximately 9700 people. At that time, the first con-
centration group, including the areas with the highest density of infections, included 18 
districts with a total area of about 13,500 km2, which accounts for 3.78% of the entire coun-
try. The average infection density for the first concentration zone was 0.42% at that time. 
A total of 40.22% of the country area was covered by units with the lowest infection den-
sity (concentration group 10: 123 districts). 

In autumn, the zones with the highest infection density were scattered across the 
country. Only some of them still existed in Bavaria. The structure of the first concentration 
group changed and included some new districts, mainly in southern Saxony and Nieder-
sachsen-Lower Saxony. In autumn, 10% of the infected population corresponded to ap-
proximately 36,900 cases. At that time, the average density of infections for the first zone 
was 0.91% and it occupied the area of 16 districts, i.e., about 10,300 km2, which corre-
sponds to 2.88% of the entire country area. In autumn, the districts with the lowest infec-
tion density (128) covered 42.36% of the country′s area. 

The differences in the concentration of infected people between spring and autumn 
are also visible on the Lorenz concentration curve (Figure 5). The green curve representing 
spring shows a lower concentration of infected population in this period. This is con-
firmed by the value of the Gini coefficient at the level of 0.422 (42.2%). In autumn, the 
infections spread throughout the country, but the places of the greatest concentration in-
cluded mainly major cities and large outbreaks of infections. The Gini coefficient for au-
tumn is 0.525 (52.5%). 

Figure 4. Choropleth map of mosaic concentration zones (source: own work).

In autumn, the zones with the highest infection density were scattered across the
country. Only some of them still existed in Bavaria. The structure of the first concentra-
tion group changed and included some new districts, mainly in southern Saxony and
Niedersachsen-Lower Saxony. In autumn, 10% of the infected population corresponded to
approximately 36,900 cases. At that time, the average density of infections for the first zone
was 0.91% and it occupied the area of 16 districts, i.e., about 10,300 km2, which corresponds
to 2.88% of the entire country area. In autumn, the districts with the lowest infection
density (128) covered 42.36% of the country’s area.

The differences in the concentration of infected people between spring and autumn are
also visible on the Lorenz concentration curve (Figure 5). The green curve representing spring
shows a lower concentration of infected population in this period. This is confirmed by the
value of the Gini coefficient at the level of 0.422 (42.2%). In autumn, the infections spread
throughout the country, but the places of the greatest concentration included mainly major
cities and large outbreaks of infections. The Gini coefficient for autumn is 0.525 (52.5%).

The analysis of maps (Figure 4) may at first suggest that the concentration was higher
in spring, as the infections were concentrated only in the southern part of the country,
while the remaining, a much greater part of the country, was almost unaffected by the
virus. However, this is very misleading, as confirmed by a Gini coefficient values. The fact
is that spring infections were mainly concentrated in the south of the country, but they
covered a large area, almost all of Bavaria and Baden Württemberg. The first three zones,
with the highest density of infections, cover 11.50% of the country’s area, while the last
two zones, with the lowest density of infections, cover more than half of the country’s
area—52.10%. Looking at the autumn map (Figure 4, right map), one can see that there are
definitely fewer districts covered with dark colors. This means that a much smaller area
was inhabited by a large percentage of infected people. They were concentrated in almost
half the area smaller than in spring—the first three zones in autumn occupied only 7.16%
of the country’s area. At the same time the area covered by the last two zones (the lowest
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density of infections) increased to 59.52%. This means that the concentration in autumn
increased, which confirms that the pandemic was developing faster in large urban centers,
with higher population density, where the virus is transmitted more easily.
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3.4. Variability of the Location of the Geographical Center

Figure 6 shows the change in the location of geographic center of infections during
spring and autumn. During spring, this center moved from the western part of the country
(first confirmed cases of COVID-19), it moved west and then south. During autumn,
the geographic center of infections moved only slightly, close to the population and the
geographic center of the country. The stabilization of the infection center of gravity proves
that the pandemic has spread practically all over the country.
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4. Discussion

The main findings of the study are that the system created by the area with SARS-
CoV-2 infections is not uniform, and different kind of relations between administrative
units play a significant role in an infection spread.

Results of our research show that infections in one area are influenced not only by
internal conditions, but also by infections in neighboring areas. Proposed methods can
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be used to determine areas where relations between adjacent units have a strong impact
on SARS-CoV-2 spread. Our research allowed to designate areas with high infection rate
and areas of their influence, because of their economic, social, education, and transport
connections. Core regions cannot be developed by chance because core regions depend
not only on the pandemic situation in the selected unit, but also its vicinity. A random
bad pandemic situation in one unit (i.e., one large center of infections) is not enough to
calculate a high potential of infections. Only a group of a few related centers of infections
can form a core region.

Using the proposed methods, the impact areas of the core units can be identified.
These areas are at risk of a significant increase in the number of infections. The introduction
of restrictions is met with considerable social opposition, but intervention in places where
the epidemic has not yet fully developed may allow introducing less severe restrictions.

The proposed method, as it currently stands, has no validated predictive ability. At
the current stage of knowledge about the development of a pandemic, when the bigger
amount of data is already available, it is possible to assess it. The assessment could be based
on the comparison of the data used in the research with the data from the later periods
and checking if the conclusions from the research results are confirmed by the further
development of the pandemic. During the assessment, not only the increase/decrease of
the number of infections, but also the epidemic policy of the state services should be taken
into account. Such assessment will allow to define the usefulness of the method for quickly
predicting the directions of pandemic development and designating areas particularly
at risk or requiring urgent intervention without detailed data on people mobility, which
are not always available and require advanced processing. In future research, we would
like to validate the predictive ability of the methods proposed. If validated, the obtained
results could be used by public health officials as well as local and state authorities. Quick
knowledge about identified risk areas enables efficient response and improves the access
to medical equipment and personnel before the situation in a given area becomes very
difficult. This is important when planning, for example, the location of temporary hospitals,
the number of beds, and the provision of staff for them. In addition, local services, having
foreknowledge, could react locally, without the need to restrict large areas, which is of
great importance for an economy heavily affected by the pandemic. They can designate
the zones of the greatest threats, where the most intense actions should be taken, including,
for example, imposing restrictions on social life, and as a result, reducing the impact on
human health [48,49]. The knowledge about the structure of the system could allow making
decisions appropriate to the situation, i.e., introducing restrictions only in a specific area.
It could also help to introduce the same restrictions or the same medical protocols on
units with the same nature and structure of the pandemic, not only based on the number
of infections. This kind of insight could be used by governments or local authorities to
better foresee pandemic development and thus, impose restrictions, the nature of which
will depend on the local specificity of the virus spread, instead of introducing nationwide
lockdowns. Quick decisions made by authorities are also of high importance for business
owners and entrepreneurs as the prior knowledge of the planned restrictions would allow
them to manage their businesses in a more controlled way. The possible actions described
provide an answer to the fourth research question.

The policy of fighting a pandemic cannot take place only within individual countries.
An example is the situation in border regions, clearly visible on practically every map
presented. Both in spring and autumn, there are significant outbreaks of infections at the
borders. Especially for the German–Czech [50] and German–French border. In spring,
large numbers of infections occurred in Bavaria (DE) bordering the Zapadocesky region
(CZ), where there were also higher infections in spring. In autumn, significant infections
occur in the neighboring regions of Saxonia (DE) and Severocesky (CZ). This clearly shows
that the state border is not a barrier to the development of the pandemic. Border regions
should work closely together at the local level, both in the fight against the spread of
infections and the way in which infected people are controlled. The research methods
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we propose enable the quick identification of such places, the assessment of the situation
and directions of the pandemic development, and consequently, enable efficient decision
making. Proposed methods can be used regardless of the quality of the health system, as
well as in underdeveloped countries, in the absence of other data.

5. Conclusions

This pandemic has been the first such experience in the lives of the present generations,
therefore it is important not only to comprehensively understand the very nature of the
virus, but also the directions and possibilities of its spatial spread. The year 2020 has shown
that the virus epidemic can surprise us a lot and paralyze the lives of most countries in
the world for many months. Due to the emerging opinions that we should anticipate more
than one such pandemic in the near future, it is necessary to work out ways to quickly
investigate and predict the spread of such diseases, in which case the methods proposed in
this paper could be used.

The presented results show the studied phenomenon for selected weeks in spring
and autumn 2020. In the near future, we plan to conduct similar studies for individual
age groups and sexes to check whether the characteristics of the phenomenon are constant
for all infected groups. It will also be interesting to analyze the changes in weekly cycles,
which will enable a detailed analysis of the spread and changes in the structure of the
infected population.

The proposed research methods and the results obtained from them could be in-
teresting when comparing the manner and pace of epidemic development in different
countries. It will also enable the evaluation of the effectiveness of actions taken by different
governments. Last but not least, it will be crucial to analyze the changes following the
introduction of mass vaccination against COVID-19.
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