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Abstract

death may contribute to the observed non-linear effects.

Background: Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence
of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes.
The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting
in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1)
showed that disulphonated aluminum phthalocyanine (AIPcS,) photodynamically induced loss of cell survival in a
concentration dependent manner up to 1 uM, further increases in AlPcS,concentration (>1 uM) were, however,
observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic
dose-response (survival) relationships have been reported, this result was unexpected. The present studies were,
therefore, undertaken to further investigate the concentration dependent photodynamic effects of AIPcS,,.

Methods: Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects
of AIPcS, were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell

counting and colony forming assays, flow cytometry and micronuclei formation respectively.

Results: The cellular uptake as a function of extra-cellular AIPcS, concentrations was observed to be biphasic. AIPcS,
was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1
UM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in
cell proliferation with accumulation of cells in G,+M phase was observed after PDT. The response of clonogenic
survival after AIPcS,-PDT was non-monotonic with respect to AIPcS, concentration.

Conclusions: Based on the results we conclude that concentration-dependent changes in physico-chemical

properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer.
Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell

J

1. Background

Photodynamic therapy (PDT) involves excitation of sen-
sitizer molecules by visible light in the presence of molec-
ular oxygen, thereby generating reactive oxygen species
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(ROS) through electron/energy transfer processes. The
reactive oxygen species, such as singlet oxygen and
hydroxyl radicals thus produced can cause damage to
both the structure and the function of the cellular constit-
uents resulting in cell death. Photodynamic effects result-
ing either in apoptotic, mitotic and/or necrotic cell death
depend on the nature of the photosensitizer, cell type and
the cellular targets for photosensitization, concentration
and intracellular localization of the sensitizer [1,2], the

- © 2010 Gupta et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
( BloMed Centra| Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20433757
http://www.biomedcentral.com/

Gupta et al. Journal of Translational Medicine 2010, 8:43
http://www.translational-medicine.com/content/8/1/43

incubation conditions and the light dose [2-4]. Clinical
formulation of hematoporphyrin derivative (HpD), com-
mercially known as photofrin II (PF-II) is being used
presently for the treatment of esophagus, bladder and
lung cancers in several countries [5]. However, a complex
chemical composition, lower molar absorption coeffi-
cient in the red region, unfavorable intracellular localiza-
tion and skin photo-toxicity limit the therapeutic
applications of HpD [6]. Therefore, attempts have been
made to overcome the limitations by the use of a) better
sensitizers and b) strategies that target the sensitizer pref-
erentially to the tumor and also to the more sensitive
intracellular sites. Towards this end, second generation
water soluble sensitizers such as phthalocyanine (Pc)
derivatives are being widely investigated for their photo-
dynamic effects [7,8]since these sensitizers are character-
ized by a more efficient absorption of therapeutically
useful light wavelengths, especially in the 650-800 nm
spectral range [9], permitting light penetration into tis-
sues to almost twice the depth of that achieved using por-
phyrin PDT enabling photodynamic treatment of remote
tissues [8,10,11]. Also, Pcs have low absorption of light at
other wavelengths, thus lowering the risk of skin photo-
sensitivity. The sulphonated derivatives of phthalocya-
nine have undergone extensive investigations in vitro and
in vivo showing significant phototoxicity [7,9,10,12].
Results from the present investigations of dose -response
relationships in a human glioma cell line (BMG-1) show
that disulphonated aluminum phthalocyanine (AlPcS,)
photodynamically induces loss of cell survival (assayed by
clonogenicity) in a concentration dependent manner up
to 1 puM, while further increases in AlPcS, concentration
(>1 pM), decreases the photodynamic efficiency. Consid-
ering the fact that for most photosensitizers only mono-
tonic dose-response (survival) relationships have been
reported [13], this result was unexpected. The non-
monotonic dose-response characteristics of a photosensi-
tizer could have interesting implications for PDT. The
present studies were, therefore, undertaken to further
investigate the concentration dependent photodynamic
effects of AlPcS, and to gain insight into the mechanisms

underlying these effects.

2. Materials and methods

2.1 Tumor cell lines

Human cerebral glioma cell line (BMG-1; DNA index =
0.95; wild-type p53), established from a mixed glioma
[14] was used in the present studies.

Monolayer BMG-1 cells were grown in DMEM with 5%
fetal calf serum (FCS), penicillin (100 units/mL), strepto-
mycin (50 pg/mL) and nystatin (2 pg/mL). Stock cultures
were passaged every third day after harvesting the cells
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with 0.05% trypsin and seeding 8 x 103 cells/cm? in tissue
culture flasks to maintain the cells in the exponential
phase. All experiments were carried out with exponen-
tially growing cells.

2.2 Chemicals
Disulphonated aluminum phthalocyanine (AlPcS,) was
prepared and characterized in INMAS, Delhi and con-
sisted of a mixture of isomers with sulphonic groups in
both adjacent and opposite positions [15]. Hank's Bal-
anced Salt Solution (HBSS), Dulbecco's modified Phos-
phate Buffered Saline (PBS), Dulbecco's Modified Eagle's
Medium (DMEM), fetal calf serum (FCS), (N-[2-
Hydroxyethyl] piperazine-N'-(2-ethanesulfonic acid])
(HEPES) buffer, propidium iodide (PI), 4,6 diamidino 2-
phenyl indole (DAPI), Ribonuclease-A (RNase-A) and
trypsin were obtained from Sigma Chemical Co., USA.
All other chemicals used in the present study were of
analytical grade from BDH, Glaxo laboratories (Quali-
gens), SRL, and E-Merck, India.

2.3 Absorption and emission (fluorescence) spectroscopic
measurements in cell suspension

Cells were trypsinized, counted and incubated in dark for
various time intervals (1, 2, 4 h) with various concentra-
tions of AlPcS, (1-10 uM) in HBSS at 37°C. After incuba-
tion of cells in HBSS, both the absorption and
fluorescence spectra (exc. 610 nm; em. 625-800 nm) of
cells and supernatant before and after washing were
obtained independently (Model JY3C, Jobin Yvon,
France). Cellular uptake was calculated using standard
calibration curves of photosensitizer in HBSS.

2.4 Subcellular localization using fluorescence image
analysis system

Intracellular localization of AlPcS, was studied by fluo-
rescence microscopy using image analysis system (Olym-
pus, BX60, Japan) equipped with a monochrome CCD
camera (Griindig, FA87, Germany).

Cells were grown on cover-slips for these studies. After
incubation with AlPcS,, cover-slips were washed in PBS,
mounted on slides and examined under the fluorescence
microscope using UV excitation filter (300-400 nm) and
emission recorded in 400-800 nm region of the spectrum.
Images were acquired and stored in digital computer (166
MHz) and analyzed using the software provided by Opti-
mas Corporation, USA.

Cytoplasmic and nuclear localization of the sensitizer
was estimated by analyzing the images using area mor-
phometry by marking the appropriate regions of interest
(ROI). For uptake measurements also, area morphometry
that provides the average amount of the photosensitizer
in the whole selected area, was used [16].
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2.5 Photodynamic treatment

Cells growing as adherent monolayer cultures were incu-
bated in HBSS at 37°C for 2 h with varying concentrations
of AIPcS, (0.25-10 pM). Post-incubation, cells were
washed with HBSS and exposed to red light (Power = 3
W/cm?2) from a high power (1000 W) Xenon arc lamp
(Oriel, USA), using an optical filter (cut off at 610 nm)
with the petridishes placed on ice. Optical power at the
cell surface was measured using radiometer (Model 1400
A, International Radiometer, USA) having a detector
head (SLO21/FQ) with a flat response between spectral
range 400-1000 nm. The cells were euoxic with oxygen
levels provided by dissolved oxygen in the media. Cells
were incubated for further 2 h at 37°C in HBSS before
assay of cell response to treatment.

2.6 Cellular response to photodynamic treatment

2.6.1 Clonogenic survival assay

Nearly 150 cells were plated in growth medium (DMEM
+ 10% FCS) after the treatment (as described above) and
incubated in dark under humidified CO, (5%) atmo-
sphere at 37°C for 8-10 days to allow colony formation.
Colonies were fixed with methanol and stained with 1%
crystal violet. Colonies having more than 50 cells were
counted and plating efficiency (PE) and surviving fraction
(S.F.) were calculated.

2.6.2 Cell proliferation kinetics

After photodynamic treatment, attached monolayer cells
were incubated in growth medium, harvested and
counted (using hemocytometer) after varying intervals of
time. Floating cells were collected separately before har-
vesting attached cells by trypsinization. Flow-cytometric
measurements of cellular DNA contents were performed
with the ethanol (70%) fixed cells using the intercalating
DNA fluorochrome, propidium iodide (PI) as described
earlier [17]. Measurements were made with a laser based
(488 nm) flow-cytometer (Facs Calibur; Beckton and
Dickenson, USA) and data acquired using the Cell Quest
software (Beckton and Dickenson, USA). Cell cycle analy-
sis was performed using the Modfit program.

2.6.3 Micronuclei formation

Air-dried slides containing acetic acid-methanol (1:3 V/
V) fixed cells were stained with 2-aminophenylindoledi-
hydrochloride (DAPI) (10 pug/mL in citric acid (0.01 M),
disodium phosphate (0.45 M) buffer containing 0.05%
Tween-20 detergent) as described earlier [18]. Slides were
examined under fluorescence microscope. Cells contain-
ing micronuclei were counted from >1,000 cells by
employing the criteria of Countrymen and Heddle [19].
The fraction of cells containing micronuclei, called the
M-fraction (%) was calculated as follows:

M-fraction (%) = (N,,/N ) x100,
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where N, is the number of cells with micronuclei and
N, is the total number of cells analyzed. Since, micronu-
clei formation is linked to cell proliferation, the micronu-
clei frequencies were normalized with respect to the cell
numbers [14].
2.6.4 Apoptosis
Detection and analysis of photodynamically induced
apoptosis was performed by studying the morphological
features, DNA content and changes in cell size, cytoskele-
ton structure associated with cells undergoing apoptosis.
Morphological studies Morphologically, marked con-
densation and margination of chromatin, fragmentation
of nuclei and cell shrinkage characterize apoptotic cells
and a good correlation between these morphological
changes and DNA ladder (one of the hallmarks of cells
undergoing apoptosis) has been demonstrated [20]. Slides
containing acetic acid-methanol (1:3 V/V) fixed and 2-
aminophenylindoledihydrochloride (DAPI) stained cells
were examined under fluorescence microscope using UV
excitation filter and fluorescing nuclei were observed
using a blue emission filter [18].
DNA analysis by flow-cytometry Flow-cytometric
measurements of cellular DNA content were performed
with ethanol fixed cells. The presence of hypodiploid (sub
G,/G;) population was taken to be indicative of the apop-
totic cell population.
Measurements of light- scatter Cells undergoing apop-
tosis generally shrink and are associated with changes in
cytoskeletal structure, which is reflected in the alterations
of light scatter. Therefore, treatment induced changes in
forward and side scatter of incident light were investi-
gated by collecting these signals in the list mode using
cell-quest software (Beckton and Dickenson, USA). Anal-
ysis of light scatter was performed by off-line gating using
appropriate windows created with untreated cells.

2.7 Statistical methods

Relationship between surviving fraction and energy (KJ)
was quantified by modeling the data with a univariate lin-
ear regression analysis with energy being an independent
variable and surviving fraction as dependent variable.
Overall differences of mean relative proliferation among
different treatment groups (1 uM, 5 uM, and control) as
well as at each pre-specified hours (19, 30, 42 hours) were
tested by using one-way analysis of variance (one-way
ANOVA) with Bonferroni correction for pairwise group
comparisons. For all the analysis, type-I error rate was set
to 5% but multiple comparison was handled by using
Bonferroni correction in which type-I error rate for pair-
wise group comparisons was set to 1.66%. A p-value of <
0.05 was considered statistically significant, if not stated
otherwise due to Bonferroni correction for multiple com-
parisons. SAS v9.2 for windows (SAS Institute Inc., Cary,
NC, USA) was used for statistical analysis of the data.
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Figure 1 (a). Cellular uptake of phthalocyanine as a function of time and concentration. Uptake of AIPcS, in exponentially growing glioma
(BMG-1) cells as a function of incubation time at 37°C in HBSS containing the photosensitizer (1 uM) as determined by fluorescence image analysis
(40-50 cells were examined from 2 experiments). The intensity of the background was subtracted from the values obtained for each cell from the same
image. (b) Cellular uptake of AIPcS, after incubation (2 h) of BMG-1 cells at different concentrations of AIPcS, in HBSS. Measurements of absorbance
and fluorescence were made in cell suspensions (n = 2).

3. Results

3.1 Cellular uptake and sub-cellular localization of AlPcS,
Uptake kinetics of AlPcS, following incubation of cells
with AIPcS, in HBSS for different time intervals showed
rapid and linear increase in the accumulation of AlPcS,in
the first 2 h, prolonged incubation (up to 24 h), however,
did not result in any further increase in the uptake (Figure
la). HBSS was used to incubate the cells with AIPcS, to
reduce serum binding of AIPcS ,. AlPcS, is known to par-
tition rapidly into the lipid bilayers and is transported
inside the cells by the processes of diffusion and metabol-
ically by endocytosis through binding with membrane
proteins [21].

Estimation of cellular content of AlPcS, after incuba-
tion for 2 h in different concentrations of AlPcS, showed
substantial uptake at 1 uM resulting in an average value of
1.9 £ 0.05 pg/cell, followed by a slower uptake up to 5 uM
(Figure 1b). This pattern of uptake could result from
aggregation of AIlPcS, and altered transport mecha-
nism(s) at higher concentrations as reported earlier in
studies of cellular uptake in a human nasopharyngeal
cancer cell line [22].

3.2 Subcellular localization

3.2.1 Effects of incubation time and concentration
Immediately following incubation, AIPcS, localized in the
perinuclear region and no significant changes in the

1puMm

5umM

10 uMm

(a)

Figure 2 [a-c]. Subcellular localization of phthalocyanine. Concentration dependent localization of AIPcS, (1-10 uM) in exponentially growing
BMG-1 cells. Cells were incubated with the sensitizer for 2 h in HBSS and observed under fluorescence microscope. 40-50 cells for each treatment
group were analyzed from 2-3 different experiments. Representative images at each concentration of AIPcS, are shown after false coloring.
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localization patterns were observed up to 4 h of incuba-
tion time (data not shown). Changes in localization as a
function of concentration (1-10 uM) showed that AlPcS,
was distributed throughout the cytoplasm with intense
fluorescence in the perinuclear regions up to a concentra-
tion of 2 uM, while a weak diffuse fluorescence was
observed at higher concentrations (Figures 2a-c). Earlier
studies with laser line-scanning confocal fluorescence
microscopy have also shown that the intracellular fluo-
rescence intensity of different phthalocyanine derivatives
is dependent on the degree of aggregation as only mono-
mer species exhibit fluorescence [21].

3.3 Photodynamic effects
Responses to different doses of AIPcS,-PDT were studied
by investigating cell proliferation kinetics, cell-cycle per-
turbations, cytogenetic damage, apoptosis and clono-
genic cell survival. The photodynamic dose was varied by
changing light exposure and AlPcS, concentrations dur-
ing pre-incubation in HBSS. This incubation in HBSS for
short intervals of time (2 h) did not compromise the sur-
vival.
3.3.1 Clonogenic cell survival
Survival of glioma cells after damage induced by photo-
irradiation in the presence of phthalocyanine was studied
by the macrocolony assay, both as a function of light dose
and concentration of AlPcS, during pre-incubation.
Relationship between surviving fraction and energy
was quantified by modeling the data with a univariate lin-
ear regression analysis with energy being an independent
variable and surviving fraction as dependent variable. As
a result of fitting a univariate linear regression model,
increasing energy significantly decreases the mean sur-
viving fraction by 0.0538 (n = 12, MSE = 0.0090; Adjusted
R-Square = 0.9692; p-value = 0.0001). The relationship
between surviving fraction and energy can be quantified
by the following regression equation "Surviving Fraction
= 1-0.0538*Energy". Based on the analysis, a linear
decrease was observed in the clonogenic cell survival of
cells pre-incubated at 1 uM AlPcS, for 2 h in HBSS after

PDT with increasing light doses up to 1800 J/cm? (Figure
3a).

Experiments to study AlPcS, concentration dependent
dose-response (performed at the light dose of 450 J/cm?2)
showed a linear decrease in survival up to a concentration
of 1 uM (Figure 3b). Interestingly, however, with further
increase in AlPcS, concentrations (2.5-10 uM), the sur-
viving fraction did not decrease; instead a gradual
increase was observed. At 10 uM, the survival was almost
equal to the untreated cells (Figure 3b).

PDT induced cytotoxicity has been often correlated
with the cellular uptake of the photosensitizer [23], the
survival data plotted as a function of the cellular AlPcS,
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content (Figure 3c) however, also showed a non-mono-
tonic U-type dose-response.

To gain further insight, post-treatment proliferation
kinetics of BMG-1 cells was studied.

3.3.2 Growth Dynamics of Cell Populations

Following photo-irradiation, significant retardations in
the rates of cell proliferation were observed with increas-
ing concentrations of AlPcS, (Figure 4). At 1 pM AlPcS,,
the population doubling time increased by nearly 4 h
(from 19 to 23 h), while at 5 uM even one population
doubling could not be observed after 42 h post treatment
(Figure 4). Overall, regardless of the time, there were sig-
nificant differences among treatment groups. Post-hoc
pairwise comparisons indicated that mean relative prolif-
eration was not significantly different between 1 pM vs.
control but significant between 5 uM vs. control as well as
5 uM vs. 1 uM. The same analytical approach was carried
out to test the differences in mean relative proliferation
among different treatment groups (1 uM, 5 pM, and con-
trol) at each pre-specified times i.e. 19, 30, 42 hours. By
taking into account the Bonferroni correction for multi-
ple comparison with pairwise type-I error rate as 1.66%,
there were no differences between 1 pM vs. control as
well as between 5 upM vs. 1 uM at 19 hours and between 1
UM vs. control at 42 hours (p-values >1.66%). All other
pairwise treatment differences were significant at 1.66%
(Table 1). Table 1 provides the estimates of mean differ-
ences for each of the pairwise comparisons. Since all the
mean difference estimates are negative, this also indicates
that the first group listed in the pairwise comparison (1 or
5 pM) had lower estimated mean relative proliferation
than the second treatment group (control or 1 pM).

Cell-cycle analysis carried out from the flow-cytomet-
ric measurements of DNA content revealed that cells
accumulated in G,+M phase indicating that the cell pro-
gression through the G, phase was blocked after AlPcS,-
PDT, particularly at the higher AIPcS, concentration (Fig-
ure 5). Similar G, block has also been reported in human
chronic myelogenous leukemia cells after AIPcS photo-
sensitization under a wide range of light dose and pre-
incubation times [24].

Frequency of non adherent and floating cells in the cul-
ture increased after AIPcS,-PDT only in cells incubated at
the higher AIPcS, concentration (5 uM), while no signifi-
cant change was observed at 1 uM AlPcS, (Table 2).
These observations are in line with PDT induced altera-
tions in the cell adhesion characteristics, linked to mem-
brane damage [25,26] and cytoskeleton [27,28].

It is pertinent to note that since almost equal amounts
of cellular AlPcS, accumulated at both the concentrations
(1 and 5 uM), the PDT-induced differences in the prolif-
eration kinetics observed here, must arise from the con-
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Figure 3 [a-c]. Cell survival studied by colony forming assay after AIPcS2-PDT in BMG-1 cells. Survival was investigated as a function of (a) light
dose (AIPcS, =1 uM, 2 h), (b) AIPcS, concentrations in the incubating medium and (c) different intracellular contents of AIPcS,. The intracellular con-
tent of AIPcS, at 0.25 and 0.5 uM was calculated from Figure 1b. Irradiation was performed with red light at a total dose of 450 J/cm?after 2 h of post-
irradiation incubation in HBSS (n = 3).

centration dependent differences in the patterns of sub-
cellular distribution of the photosensitizer.

3.3.3 Apoptotic Cell Death

An analysis of DNA flow-cytograms (Figure 5) showed
significant increases in the sub Gy fraction of cells indi-
cating considerable DNA fragmentation (apoptotic and
necrotic death) after PDT at higher concentration of
AlPcS,, while at 1 pM AlPcS,, little differences as com-
pared to untreated controls were observed. In contrast, a
reduction in forward angle light scatter implying a reduc-
tion in the cell size (measured from 20-42 h after PDT)
could be observed to a significant extent even at 1 uM
AlPcS, (data at 42 h shown in Table 2). Rounded cells with
nuclei showing an apoptosis like morphology were also
observed microscopically at both the concentrations of
AlPcS,, similar to the observations reported in HeLa cells

with ZnPC [29].

Since DNA fragmentation is a late stage event in the
apoptotic process, the observed differences may indicate
concentration dependent variations in the apoptotic
pathways.

3.3.4 Cytogenetic damage

In vitro studies on DNA solutions have indicated that
metallo-phthalocyanines can induce significant numbers
of DNA strand-breaks [30]. Single strand DNA breaks
and mutagenicity induced by photodynamic action of
aluminum phthalocyanine have been detected in yeast
[31]. In mammalian cells frequency of mutations induced
by AlPc-PDT has been shown to be dependent on the p53
status and cellular repair capacities[32]. Present studies,
however, demonstrate lack of significant AlPcS,-PDT
induced cytogenetic damage as studied by monitoring the
induction of micronuclei which arise mainly from DNA
double strand breaks and chromosomal aberrations in
the post-mitotic cells (Table 2). These observations are in
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agreement with earlier studies on the inability of phthalo-
cyanine photosensitization to induce mutagenesis and
micronuclei formation[33,34].

4. Discussion

Present studies demonstrated important differences
between the AIPcS,-PDT induced changes in the prolifer-
ation kinetics and clonogenic survival of glioma cells pre-
incubated under different concentrations of AlPcS, (sum-
marized in Table 2). The cellular uptake as a function of
extracellular AlPcS, concentrations was observed to be
biphasic; an initial rapid rate at lower concentrations was
followed by a slower uptake with increasing concentra-
tion of the sensitizer. The subcellular distribution of
AlPcS, also varied with its extracellular concentration.
While cell proliferation kinetics showed a monotonic
increase in the photodynamic effects with increasing

AlPcS, concentrations (Figures 4 &5), colony -forming
assay showed a U-type dose-response with an initial
increase in cell death followed by enhanced survival at
higher levels of AlPcS, (Figure 3). This appears to be
exceptional since, at constant oxygen environment, the
photodynamic effects are generally observed to increase
monotonously on increasing either the light dose or/and
cellular content of the sensitizer [13,23]. However, several
examples of non-monotonic dose-response relationships
for a variety of end-points have been demonstrated in the
field of toxicology and explained on the basis of complex
interactions of biological processes involved [35,36].
Physico-chemical and biological processes that may
underlie the concentration dependent photodynamic
effects observed in the present studies with AIPcS as the
photosensitizer have implications for designing therapeu-
tic protocols.
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Table 1: Testing of overall differences of mean relative proliferation among different treatment groups as well as at each
pre-specified time by using one-way Analysis of Variance (one-way ANOVA) with Bonferroni correction for pairwise group

comparisons.

Pairwise Comparison Mean Difference (Estimate P-value**
[Standard Error])
Overall 0.0001*
1 UM vs. control -0.8192 (0.4673) 0.0923
5 UM vs. control -2.6097 (0.4673) 0.0001
5uMvs. 1T uM -1.7904 (0.4673) 0.0008
19h 0.0001*
1 UM vs. control -0.3503 (0.3322) 0.3323
5 UM vs. control -1.1040 (0.3322) 0.0159
5uMyvs. 1 uM -0.7537 (0.3322) 0.0638
30h 0.0001*
1 UM vs. control -1.183(0.1116) 0.0001
5 pM vs. control -2.8440 (0.1116) 0.0001
5uMvs. 1T uM -1.6610 (0.1116) 0.0001
42h 0.0001*
1 UM vs. control -0.9243 (0.3034) 0.0226
5 UM vs. control -3.8810 (0.3034) 0.0001
5uMvs. 1T uM -2.9567 (0.3034) 0.0001

* overall group differences calculated by F-test from one-way ANOVA

** all the p-values noted as "*" should be compared with 5% and all others with 1.66% due to pairwise comparisons with Bonferroni

correction.

4.1 Physico-chemical interactions of the photosensitizer, its
cellular uptake and sub-cellular localization

AlPcS behaves like a typical amphiphile with charged
substituents located at the membrane/buffer interface
and the non-polar portion of the molecule in contact
with the hydrophobic lipid chains [37]. Such a dye-mem-
brane interaction would allow the charged sulphonated
phthalocyanine to bind to membrane transport proteins
and to enter the cell cytoplasm preferably by the pro-
cesses of endocytosis, while the diffusion processes pro-

vide only a small contribution [21]. At higher
concentrations, all the sites on the surface receptor pro-
teins could be occupied resulting in a saturation of cellu-
lar uptake of AlPcS. Indeed, pre-incubation of the cells at
AlPcS, concentrations between 1-5 uM resulted in the
same cellular content of the photosensitizer (Figure 1b).
Many of the water soluble PcS compounds are also sus-
ceptible to formation of dimers or aggregates [38,39]. At
high concentrations of AlPcS,, higher aggregates may be
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Figure 5 Effects of photodynamic treatment on cell cycle distribution, induction of apoptosis and death. Representative DNA histograms of
Pl stained BMG-1 cells measured by flow cytometry are shown. Cells were incubated for 2 h with AIPcS, in HBSS, irradiated with red light at a light dose
of 450 J/cm?and incubated for different time periods in growth medium before staining.

formed and additional transport mechanisms could be
induced. The relative fluorescence intensity, monitored
by whole cell spectroscopy, in BMG- 1 cells incubated at
10 puM AlPcS, was about 50 times and 100 times less than
the RFI in HBSS and methanol respectively (data not
shown) indicating the aggregation of AlPcS, at higher
concentrations. Present observations are in agreement
with studies in V-79 cells where it has been shown that
intracellular fluorescence intensity of various phthalocya-
nine derivatives vary with their aggregation capacity [21].

The sub-cellular localization is one of the key factors
that determine the type of photodynamic effects [40].
Interestingly, in the present studies, the intracellular
localization of AIPcS, was observed to be dependent on
its extracellular concentrations. It was localized in a gran-
ular fashion throughout the cytoplasm with intense fluo-
rescence in the perinuclear region at lower
concentrations while at higher concentrations AIPcS, flu-
orescence was weak and diffused (Figure 2). Possibly, at
lower concentrations, AlPcS, was localized to more sensi-
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Table 2: Comparison of photodynamic effects in BMG-1 cells pre-incubated with different concentrations of AIPcS,.

Endpoint? Time after 0.0 pM 1.0 uM 5.0 pM 10.0 pM
Photo-
irradiation
Intracellular 2h 0.0 1.9+0.05 1.9+0.06 2.9+0.05
content of AIPcS,
(pg/cell)
(absorbance)
Relative 2h 0.0 92 +13.0 105+ 10.0 165 +9.0
fluorescence
intensity
Fluorescence 2h - Perinuclear and Diffuse in Diffuse in
Distribution Granularin cytoplasm cytoplasm but
cytoplasm membrane
damage in some
cells
Clonogenic 240 h 1.0+0.0 0.53+£0.07 0.65+0.1 0.98 +0.22
Survival
Proliferation 42 h 56+04 3.5+0.5 1.0+£04 ND¢
Indexp
G,+M (%) 42 h 7.0+£2.0 12.0+£2.0 23.0+0.8 ND
Detached Cells 42 h 19.0+2.8 15.0+0.3 30.0+8.0 ND
(%)
Small cells (%) 42 h 40+0.1 24.0+0.2 57.0+0.1 ND
Sub Gy/G, (%) 42 h 0.0 3.0+£0.2 23.0+10.0 ND
M. F. (%) 42 h 1.6+0.2 1.5+£0.1 1.7+£0.5 ND

aEndpoints are summarized as mean + standard deviation by groups.

bN/N, Where Nt is the cell number at 42 h and NO is the cell numbers at the time of irradiation.

°ND- not determined.

tive targets leading to greater photodynamic cell killing
than at higher concentrations.

4.2 Photophysical and photochemical reactions underlying
production of ROS

A number of competing photophysical and photochemi-
cal reactions depending on the intracellular microenvi-
ronment of AlPcS and its molecular density may
influence its photodynamic efficacy and therefore the
outcome of therapy.

The decrease in photodynamic cytotoxicity induced by
AlPcS, at higher concentrations (>1 pM) could also be
due to the intracellular presence of photodynamically
inactive species like aggregates [41]. Although, significant

changes in the fluorescence spectra (peak asymmetry or
broadening) indicative of aggregation were not observed
at different concentrations of AlPcS,, the RFI monitored
by whole cell spectroscopy at 10 pM AlPcS, was many
folds less than the RFI in HBSS and methanol indicating
the aggregation of AlPcS, at higher concentrations. These
observations suggest that AlPcS, was not aggregated in
HBSS before uptake but was aggregated once it was taken
up by the cells. The present results are similar to the
observations made earlier in V79 cells, where cells incu-
bated with 1 uM and 3 uM of AlPcS; were more sensitive
per quantum of fluorescence than the cells incubated
with 10 pM indicating that all the sulphonated AlPc
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derivatives inside the cells are partly aggregated, the
degree of aggregation being dependent on lipophilicity
[42]. The phototoxicity of CIAIPcS,* (commercially avail-
able) and pAlPcS,* (isolated by HPLC fractionation) has
also been reported to reduce with increasing concentra-
tions of the sensitizer due to aggregation at the higher
concentrations in a human nasopharyngeal cancer cell
line (KB) [22]. It has been hypothesized that only the
monomeric forms of AlPcS, fluoresce and have a detect-
able triplet state and also involved in the production of
singlet oxygen [43].

High intracellular concentrations of the sensitizer may
also result in an inner filtering of light contributing to the
reduced photodynamic efficiency. Phthalocyanines have
been shown to be highly efficient quenchers of singlet
oxygen [44]. It is probable that a high density of the AIPcS
molecules enhances photo-bleaching and singlet oxygen
quenching. Further, the dependency of fluorescence
bleaching on the environment of dye has also been
reported [45,46]. Therefore, different localizations of
AlPcS, at different concentrations could result in varying
amounts of photobleaching leading to reduced produc-
tion of ROS at high concentrations.

4.3 Cellular responses to PDT induced damage
It is intriguing that the effects of AIPcS,-PDT on the mac-
rocolony assay (Figures 3b and 3c) appear different from
the proliferation kinetics. While, the proliferation kinet-
ics parameters investigated were measured in monolayer
cell cultures at high cell densities, colony-forming assays
were performed after plating at low cell density. Cell den-
sity dependent cell to cell interaction mediated death and
recovery processes (bystander effects) are, however,
unlikely to contribute significantly since the cell density
was nearly identical for all the groups in colony -forming
assay. Post-treatment time at which observations are
made could be important. In contrast to the proliferation
kinetics which were studied during the first 42 hours
post-treatment (about 2 cell cycles), cell survival using
colony-forming assay was measured after 10-12 days
(time required for formation of visible macro-colonies
containing at least 50 cells viz. after completion of 8-10
cell-cycles depending on the division delay), and would,
thus, include modifications induced by the late repair and
death processes. Also stress-induced premature senes-
cence (SIPS), after sub-lethal oxidative damage [47,48],
could reduce the number of observed macro-colonies.
Damage related division delay that purportedly facili-
tates cellular recovery processes on account of check-
points either before the DNA synthesis (G;-S transition)
or mitotic division (G, block) has been shown to enhance
cell survival following damage caused by many physical
and chemical agents [49]. A significant G,+M block,
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observed at 5 uM (Figure 5) supports this proposition. A
decrease in the fraction of small cells (indicative of severe
structural damage) observed at 62 h after treatment
(Table 2 and data not shown) lends further support to the
contribution of cellular recovery processes, that may be
triggered beyond a certain threshold level of damage that
facilitate cells to recover from potentially lethal damage.
The results obtained in the present studies indicate that
at least two pathways may contribute competitively or
additively to phototoxicity. One that manifests early (in
less than one or two cell-cycle after treatment) (Figure 5),
while the other is delayed where cells die with successive
divisions similar to mitotic death induced by ionizing
radiation. Although, the early cell death increased with
increasing concentrations of the sensitizer, it appears that
its contribution to the overall clonogenic survival is not
very significant (Figure 5). The predominant death
appears to be the delayed type, possibly the induced
lesions responsible for this mode of cell death may be
reduced at high concentrations of the sensitizer. The frac-
tions of floaters (cells detached from the dishes repre-
senting degenerating cells) observed under these
conditions also lend support to this possibility (Figure 5
and Table 2). While, the floaters in control and 1 uM
group may be due to increase in cell proliferation (Figure
4 and Table 2), in the absence of significant increase in
population growth at 5 pM, the floaters were clearly due
to the damage rather than due to increased cell density.
Although, AlPcS,-PDT resulted in classical features of
apoptosis viz. induction of sub G,/G; population only at 5
uM AlPcS, (Figure 5), a reduction in forward scatter
indicative of cell shrinkage (one of the features of apop-
totic cells) could be observed even at a concentration of 1
UM (Table 2). Interestingly, rounded cells with nuclei
showing an apoptosis like morphology were observed
with both the AIPcS, concentrations, similar to the obser-
vations reported in HeLa cells with ZnPC [29]. This mor-
phology has been attributed to photodamage to
microtubular (MT) network since it has been shown that
MT disruption is involved in apoptosis [50,51]. Depo-
lymerization of tubulin may be caused by an increase in
PDT induced intracellular calcium (Ca2*) [52]. Role of
calcium in photofrin and phthalocyanine mediated pho-
tohemolysis and apoptosis in rabbit red blood cells,
human squamous carcinoma cell line and rat bladder
RR1022 epithelial cells has been reported [12,53,54].
Since, the photosensitization reactions depend on the
sub-cellular location of the sensitizer and AlPcS, distrib-
uted diffusely in the cytoplasm with intense perinuclear
fluorescence, damage to cytoskeletal elements could be
one of the factors triggering apoptosis. This could also
contribute to reduction in initial rate of proliferation of
cells pre-incubated at higher concentrations of AlIPcS,.
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However, induction of G,-block to a greater extent may
allow the remaining cells to recover from the potentially
lethal lesions under these conditions and contribute to a
higher clonogenic survival.

5. Conclusions

Results of the present investigations imply that the
AlPcS,-PDT efficacy under certain circumstances may
not increase monotonically with the increase in photody-
namic dose varied by changing the concentration of the
photosensitizer. Based on the present results, we hypoth-
esize that the non-monotonic photodynamic effects
could arise due to multiple reasons including (a) concen-
tration dependent changes in physico-chemical proper-
ties of AlPcS, due to varying degrees of aggregation
leading to different patterns of cellular transport and
intracellular localization, (b) complex interactions
between photobleaching and singlet oxygen quenching at
high intracellular densities of AlPcS, and its aggregates
and (c) competitions between cellular proliferation, cellu-
lar repair/misrepair and cell death pathways following
induction of photodynamic lesions. Detailed further
studies are warranted to verify this hypothesis and to elu-
cidate precise mechanisms underlying the phenomena
observed in the present studies. Most importantly, these
results strongly suggest that the therapeutic efficacy of
PDT need not always be higher with higher PDT doses
achieved either by large sensitizer and/or light doses. Fur-
ther the in vivo responses are likely to be confounded by
other factors related to tumor physiology as well as sys-
temic effects. Therefore, predictive assays using appro-
priate in vitro models that better represent environmental
factors prevailing in tumors will be helpful in designing
most effective therapy for a given tumor.
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