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Complete Genome Sequences of Mycobacteriophages OKaNui

and DroogsArmy
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ABSTRACT Mycobacteriophages OKaNui and DroogsArmy were isolated from soil
using the bacterial host Mycobacterium smegmatis mc2155, which belongs to the
phylum Actinobacteria. OKaNui was discovered in east Mississippi and DroogsArmy
in west Alabama in the United States. The genomes of OKaNui and DroogsArmy
were 51,424 bp and 53,254 bp long, respectively.

mong biological agents, bacteriophages (phages) are the most populous and

ubiquitous in the environment (1). The phages named OKaNui and DroogsArmy
were isolated from the bacterial host Mycobacterium smegmatis mc2155. Most Myco-
bacteria species are saprophytic and reside in the soil or water or on plants (2).
Although M. smegmatis is a nonpathogenic bacterium, an understanding of phage
infection in this strain may contribute to advances in phage therapy for other Myco-
bacteria species. M. smegmatis may be used as a delivery system for phages intended
for infection of M. avium and M. tuberculosis (3). Phages isolated from M. smegmatis
have be used in the experimental treatment of closely related hosts, including M.
ulcerans (4). OKaNui was discovered in Meridian, Mississippi, in moist soil in a shaded
area, and DroogsArmy was found in Lisman, Alabama, in a dark-colored, moist soil
(Table 1).

The soil samples were inoculated with the host bacterium and incubated at 37°C
with shaking in 7H9 liquid medium (5). A filtrate was then plated on a lawn of M.
smegmatis mc2155 along with a negative control (5). The formation of plaques follow-
ing incubation at 37°C were indicative of phage presence. Isolates were purified using
serial dilutions and a filtered high-titer lysate (HTL) collected from webbed plates (5).
Phage genomic DNA was extracted using the Wizard DNA cleanup system with
modified protocols (Promega, Madison, WI) (5). DNA libraries were built and pooled for
sequencing using the NEBNext Ultra Il FS kit with dual-indexed barcoding (New
England BioLabs, Ipswich, MA). Sequencing was performed using the Illumina MiSeq
platform at the Pittsburgh Bacteriophage Institute. The genome lengths, G+C content,
and coverage depths are listed in Table 1. OKaNui yielded ~316,000 single-end
150-base reads, and DroogsArmy yielded ~410,000 reads. Both genomes displayed
defined ends with 10-bp overhangs (CGGCCGGTAA). Assembly was performed using
Newbler 2.9 with default settings (6). A single contig for each genome was produced
and used to determine the genome ends; the beginning of each genome was chosen
based on similar genomes. These were then checked for completeness and accuracy
using Consed 2.0 (7).

Genome annotation was performed using the Phage Evidence Collection and Annota-
tion Network (PECAAN; https://discover.kbrinsgd.org/) and DNA Master 5.23.3
(cobamide2.bio.pitt.edu/computer.htm). We used the following programs to determine
gene presence, functions, and start sites: NCBI BLAST, Phamerator (https://phamerator
.org/), PhagesDB BLAST, HHPred 3.0, Starterator (https://github.com/SEA-PHAGES/
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TABLE 1 Characteristics and accession numbers of genomes

Location Closest relative
No. of G+C Read Nucleotide

Bacteriophage Accession Genome protein No. of content coverage Phage life Isolate (GenBank identity
isolate no. size (bp) CDSs® tRNAs (%) County, state Coordinates (X) cycle accession no.) (coverages [%])
OKaNui MT490373.1 51,424 87 0 63.9 Lauderdale 32.59, -88.19 874 Lysogenic  Kingmustik0402  99.2, 99.0

County, MS (MK359301.1)
DroogsArmy  MT553337.1 53,254 83 1 63.0 Choctaw 32.28,-88.28 1,097 Lysogenic  Timshel 98.9, 95.0

County, AL (NC_041983.1)

aCDSs, coding DNA sequences.

starterator), and GeneMark 3.25 (8-11). Detection and trimming of tRNAs were per-
formed in ARAGORN 1.2.38 and tRNAscan-SE 2.0 (12, 13). The complete numbers of
protein coding genes and tRNAs are reported in Table 1.

When plated with the host, OKaNui produced relatively large plaques with a halo,
and DroogsArmy produced small plaques. Both OKaNui and DroogsArmy were identi-
fied as lysogenic phages because they produced turbid plaques, and the genomes
contained genes for lysogeny (14). Transmission electron microscopy and genome
analysis indicated that the phages share the Siphoviridae morphotype (5). Based on
nucleotide similarity and synteny across the genome, OKaNui has been placed in the A4
subcluster of mycobacteriophages and DroogsArmy in A7 (15).

Data availability. The complete genome sequences of OKaNui and DroogsArmy are
available from GenBank under the accession numbers MT490373.1 and MT553337.1,
respectively. The raw lllumina reads for OKaNui and DroogsArmy are available on NCBI's
Sequence Read Archive under accession numbers SRX8622883 and SRX8622882, re-
spectively.
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