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Abstract

Spread of HIV typically involves uneven transmission patterns where some individuals

spread to a large number of individuals while others to only a few or none. Such transmis-

sion heterogeneity can impact how fast and how much an epidemic spreads. Further, more

efficient interventions may be achieved by taking such transmission heterogeneity into

account. To address these issues, we developed two phylogenetic methods based on virus

sequence data: 1) to generally detect if significant transmission heterogeneity is present,

and 2) to pinpoint where in a phylogeny high-level spread is occurring. We derive inference

procedures to estimate model parameters, including the amount of transmission heteroge-

neity, in a sampled epidemic. We show that it is possible to detect transmission heterogene-

ity under a wide range of simulated situations, including incomplete sampling, varying levels

of heterogeneity, and including within-host genetic diversity. When evaluating real HIV-1

data from different epidemic scenarios, we found a lower level of transmission heterogeneity

in slowly spreading situations and a higher level of heterogeneity in data that included a

rapid outbreak, while R0 and Sackin’s index (overall tree shape statistic) were similar in the

two scenarios, suggesting that our new method is able to detect transmission heterogeneity

in real data. We then show by simulations that targeted prevention, where we pinpoint high-

level spread using a coalescence measurement, is efficient when sequence data are col-

lected in an ongoing surveillance system. Such phylogeny-guided prevention is efficient

under both single-step contact tracing as well as iterative contact tracing as compared to

random intervention.

Author summary

Detecting and preventing pathogen outbreaks in the background of steady and slow

spread is difficult, yet highly desirable, because such transmission heterogeneity can be a

main driver of an epidemic. Hence, detection of transmission heterogeneity may direct
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prevention efforts and reduce future infections. While incidence and prevalence estimates

may give overall indications of an epidemic’s progression, they typically cannot indicate

episodic outbreaks or rapid spreads in subpopulations. Likewise, detailed and reliable

information about dynamic social networks is rare and not generalizable to detect local

outbreaks. HIV sequence data can be used to reconstruct HIV phylogenies, which due

to HIV’s high evolutionary rate contain information about both transmission networks

and rates of spread. Here, we use HIV phylogenies to first design a general heterogeneity

detection method that can signal that there is high-level spreading present. Secondly, we

develop a phylogenetic method to pinpoint which individuals that may have been infected

by a super-spreader or have been involved in an outbreak. We show that using such phy-

logeny-guided information to prevent future HIV spread is highly efficient under many

epidemiological situations, especially in typical public health situations where samples are

collected through time.

Introduction

Allocation of prevention resources to where they are needed most is important for effective

disease control. Thus, identifying where disease spread has its highest intensity would allow

for efficient resource allocation. The intensity of the spread is typically uneven in time and

space, causing episodic and local outbreaks. One type of spread-heterogeneity comes from

the situation when some individuals spread at a much higher rate than others, causing super-

spreading [1], and invoking the 20-80 rule, where 20% of infected persons transmit to 80% of

new infecteds [2, 3]. Such transmission heterogeneity can have impact on how fast epidemics

spread, and may affect the outcome of control efforts [4].

While epidemiological methods using incidence data can pick up the signal of increased

number of cases, which may indicate an outbreak or be the result of increased surveillance,

they can not identify individual-level transmission heterogeneity. To assess transmission het-

erogeneity on the individual-level transmissibility, contact tracing based on interviews, reviews

of clinical records, and partner follow-up have traditionally been used. Such follow-up may be

slow, expensive and inaccurate, however. Several studies have reported that interview-based

information about sexual contacts where HIV-1 transmission might have taken place often

was not in agreement with the phylogenetic history of the transmitted virus [5, 6]. Early studies

showed that virus phylogenies reflect their underlying transmission histories [7], and more

recent work has shown that phylogenies carry information about the underlying population

structure [8–10] and the degree distributions of the sexual contact network [11–13] both of

which contribute to the transmission heterogeneity.

The Multi-state birth-death (MSBD) models have been used to model population structure

and infer the related transmission heterogeneity [8, 14]. The rationale of these models is to

associate each cluster (or subpopulation) to a state in the MSBD model, with clusters differing

in their transmission dynamics through time. An important limitation of the MSBD models is

either requiring the correspondence between the tips and the states is known in advance [15]

or using fixed positions of state changes [10]. An efficient method of model-based genetic clus-

tering has recently been proposed in [9], which is based on fitting a Markov-modulated Pois-

son process representing the evolution of transmission rates along the tree relating different

infections. Though it performs well in clustering lineages of different risky groups, the method

is not designed to infer basic reproduction number which is also of certain interest in epidemi-

loigcal practice.
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In addition, because both incidence and pathogen phylogenies carry information about the

epidemic, several efforts have been made to combine these data into comprehensive heteroge-

neity inference [16–18]. Interestingly, Li et al [19] recently showed that quantification of trans-

mission heterogeneity was more accurately estimated using the pathogen phylogeny alone

rather than in combination with incidence data. They describe the transmission heterogeneity

as the variation among the offspring distributions, i.e., the number of secondary cases caused

by each infected individual. The offspring distribution, however, is not only affected by the

individual-level transmissibility but also by the length of the infectious period of each infected

individual.

In this study, we propose a heterogeneous birth-death model to describe the variation of

the individual-level transmissibility, with birth rates corresponding to transmissibility (or

transmission rates) and death rates to diagnosis rates (or removal rates). We model the trans-

mission heterogeneity by letting each individual draw an independent random transmission

rate from a continuous distribution, so the transmission heterogeneity is captured in a param-

eter quantifying the amount of variation in this distribution. Transmission heterogeneity may

exist due to varying degrees of social activity as wells varying transmission risk upon contact,

e.g., due to varying viral load in different disease stages. We then develop a general inference

procedure to estimate model parameters and to test whether or not there is significant trans-

mission heterogeneity, and thereafter we develop a method that identifies evolutionary line-

ages that likely have been involved in many transmission events of the epidemic. We use the

second method to direct targeted prevention efforts, by means of (additional) contact tracing,

towards individuals that have been involved in elevated spread as compared to random inter-

vention. To address the realistic situation where not all persons have been sampled in an epi-

demic, we investigate the effects of sampling fractions, situations where samples are taken

cross-sectionally and when samples are gathered in an ongoing surveillance system. We inves-

tigate the effects of within-host diversity in simulations on both the general heterogeneity test

as well as the targeted prevention. We also test our estimate of transmission heterogeneity in

facing of realistic complexities such as autocorrelation in transmission rates and varying trans-

mission rate through time. We apply the heterogeneity model and estimate parameters on 3

real datasets sampled from different HIV-1 epidemics.

Materials and methods

A transmission model with heterogenous transmissibility

In order to estimate transmission heterogeneity in a population and, further, the effect of

targeted prevention on individuals associated with high transmissibility, we develop a new

transmission model, referred to as the heterogeneous birth-death (HBD) model, in which indi-

viduals in a community may have different rates of infecting new individuals. The difference

in transmissibility could be caused by variable virus load leading to variable infection probabil-

ity upon contact, and/or variable social contact rate. Here, we refer to any combination of

these concepts as transmissibility.

Specifically, in our model each infected individual i gets assigned a transmissibility rate λi
by randomly drawing the rate from a Gamma distribution with mean μλ and standard devia-

tion σλ. The gamma distribution is a common choice when modeling individual heterogeneity

for a parameter. While infectious, this individual infects new individuals randomly in time,

with rate λi per unit of time. Also we assume that the transmission rates of the infector and the

infectee in a transmission event are independent. Later we will evaluate our model under the

condition with autocorrelation of transmission rates.
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Infected individuals remain infectious until they are diagnosed—it is then assumed that

individuals are immediately treated such that they no longer are infectious and instead

immune [20]. The time to diagnosis, or more precisely to successful treatment, is assumed to

be exponentially distributed with rate γ common for all individuals (hence random and with

no systematic heterogeneity). The diagnosed individuals are sampled for virus sequencing

with probability ρSD (referred to as the sequencing ratio). Consequently, there are three catego-

ries of infected people: a) the undiagnosed (who continue to spread the disease), b) the diag-

nosed/treated who have not been sampled for sequencing, and c) the sequenced diagnosed/

treated individuals. The ratio of the sequenced diagnosed over all the infected (i.e. c/(a + b

+ c)) is referred to as the sampling ratio in this study. In contrast with the sequencing ratio (i.e.

c/(b + c)) which is usually assumed to be known in advance, the sampling ratio is unknown in

the analysis of virus sequence data.

In our model, a transmission history is generated with our heterogeneous birth-death trans-

mission model under a given set of parameters (Θ = (μλ, σλ, γ)). The transmission history

(denoted as H) contains all information about who-infected-whom in calendar time (Fig 1).

The corresponding tree without information about who-infected-whom is called the transmis-

sion tree and denoted as T . In general, the transmission tree cannot be observed from virus

sequence data. However, what we can infer is the tree that describes how the virus sequences

from all the infected individuals are related, i.e. the virus genealogy G. If there is no within-

host virus diversity, then the virus genealogy and transmission trees are identical: G ¼ T . If

within-host diversity is taken into account (while still assuming only one strain is transferred

at transmission), then the coalescence times of the sampled virus sequences may coalesce fur-

ther back in time than the time of infection, with the effect that branch lengths and even tree

topologies may differ from the underlying transmission tree [21]. The estimation method in

this study was first developed under the former situation (i.e. without within-host diversity),

and was extended to the latter case in the simulation.

The input to our analysis is the pathogen (virus) genealogy (denoted as GðSÞ), i.e. the time-

scaled phylogeny that can be inferred from the viral DNA sequences from sampled patients

(i.e. the diagnosed and sequenced individuals) in an epidemic spanning from time 0 to t. The

sampled virus genealogy GðSÞ is obtained by removing the unobserved (undiagnosed and diag-

nosed but not sampled) individuals and the corresponding coalescent events from G (Fig 1).

Fig 1. The connection between transmission history H (a), complete genealogy G (b), and sampled genealogy GðSÞ (c). In the model, a transmission

history (a) is simulated with the heterogeneous birth-death transmission model under a given set of parameters (Θ). The i-th (i = I, � � �, V in Roman

numeral notation) individual was infected and stopped infection at ti and si (i = 1, � � �, 5 in Arabic numerals) respectively. There are three categories of

individuals at the end of the simulation: sampled individuals, i.e. diagnosed and sequenced (tips labeled with −�), diagnosed but unsampled individuals (tips

labeled with − �), and undiagnosed individual (unlabeled tips). A complete virus genealogy G (b) contains the genealogical lineages from all the infected

individuals. In the case of no within host diversity it coincides with the transmission tree T being the transmission history H but without the direction of

transmission. The sampled genealogy GðSÞ (c) is derived from the complete genealogy by removing edges from unsampled individuals.

https://doi.org/10.1371/journal.pcbi.1008122.g001
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The parameters to be estimated in analysis are the mean μλ and standard deviation σλ of the

transmissibility and the mean time to diagnosis/treatment γ−1, with the main focus on the

degree of heterogeneity of transmissibility, either measured in absolute terms as σλ or in rela-

tive terms as the coefficient of variation CVλ = σλ/μλ. The CV is a dimensionless quantity

where standard deviation, as a measure of dispersion, is normalized by the mean that facilitates

comparisons across data sets. When either σλ or CVλ are large, then that implies that a few

individuals will tend to infect at a much higher rate than others. We also infer the basic repro-

duction number R0, which is the ratio of the mean transmissibility rate and the diagnosis rate,

i.e. R0 = μλ/γ, being the average number of infections caused by an infected before diagnosis

and treatment.

Our transmission model is an extension of the homogeneous birth-death model in [22],

which does not include transmission heterogeneity. Moreover, Leventhal et al [23] explicitly

take the finite population into account by considering depletion of susceptible. Here, we

neglect this depletion but investigate this simplification in the sensitivity analysis. Recently,

Li et al [19] studied a related model where heterogeneity in the number of infections was

described in a generation sense; while they assumed that all infections happen at the end of the

infectious period, in our model infectious individuals infect new individuals at rate λi during
the infectious period. On the other hand, their model also allow for the possibility to have a

highly concentrated distribution of number of infections, for example caused by a social net-

work with most individuals having very similar number of contacts.

Inferring transmission heterogeneity from sampled viral genealogy

There are two difficulties of using the sampled genealogy GðSÞ to infer transmission heterogene-

ity: one is the lack of transmission direction (who-infected-whom) in GðSÞ, and the other that

GðSÞ has incomplete transmission chains [19]. We deal with these two difficulties by using a

coordinate-ascent algorithm to estimate both the parameters and the direction of transmission

in a genealogy, and, additionally, a data imputation correction to handle the incomplete trans-

mission history. We will first introduce the coordinate-ascent algorithm and consequently

give a description about the analysis of the sampled genealogy GðSÞ.
Inference with coordinate-ascent algorithm. The coordinate-ascent (CA) algorithm

works with a complete genealogy as input, that is, the algorithm assumes there is no within-

host diversity and that we observe and sequence all infected individuals up to a certain time t.
Later, these assumptions have been relaxed to analyze the sampled genealogy.

The CA algorithm has been developed on the basis of the likelihood function for a transmis-

sion history H. Under the assumptions of our HBD model, not only the transmission events

caused by different individuals occur independently, but also the multiple transmission events

caused by one individual are independent. So the likelihood for the whole transmission history

can be evaluated in terms of individuals. Let xi and di (i = 1, � � �, n) denote the number of infec-

tions and the duration of the infectious period for individual i, information which is contained

in the transmission history H ¼ fðdi; xiÞg
n
i¼1

. The likelihood function is then given by

Lðk; y; gjHÞ

/
Qn

i¼1
Probðdi; xijk; y; gÞ

¼
Qn

i¼1

R
l
xi
i e
� lidi � g1DGðiÞe� gdi � 1

GðkÞyk
l
k� 1

i e�
li
y dli

¼
Qn

i¼1

Gðxi þ kÞ
GðkÞ

y
xi

ð1þ ydiÞ
xiþk
� g1DGðiÞe� gdi

ð1Þ
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where Γ(�) is the gamma function, and the indicator 1DGðiÞ in (1) indicates if the infectious

period di has ended before the end of the observation period. The parameters of (k, θ) are

parameterizations of Gamma distribution under which the mean and standard deviation can

be represented as μλ = kθ and sl ¼
ffiffiffi
k
p
y respectively.

Consequently, the maximum likelihood estimates of the model parameters are obtained by

equating the gradient of the log-likelihood function to zero. Particularly, the estimates of k̂ and

ŷ are obtained by solving the following equations:

k̂ ¼

P
i

xi
1þŷdi

P
i
ŷdi

1þŷdi

; and
X

i

ð
Xxi

j¼1

1

k̂ þ j
� ln ð1þ ŷdiÞÞ ¼ 0: ð2Þ

Moreover, the estimate of ĝ is

ĝ ¼

P
i 1DGðiÞP

i di
; ð3Þ

which is simply the observed number of recoveries divided by the total duration of the infec-

tious periods in the transmission history H.

When we observe the virus genealogy G rather than the transmission history H, we can no

longer estimate the parameters as described above since G does not contain information of

transmission direction, i.e. who infected whom. In other words, we can then not determine

ðdi; xiÞ
n
i¼1

, so the estimates in (2) are not available. However, the estimator ĝ based on (3) is still

available without the information of transmission directions: even if each infectious period

cannot be determined, the sum of infectious periods ∑i di is independent of transmission direc-

tions and equals the sum of branch lengths in G (denoted as jGj). The estimator ĝ can hence be

calculated before the CA algorithm is introduced below, and it is given by:

ĝ ¼
#ðGÞ
jGj

ð4Þ

where #ðGÞ is the number of diagnosis events in G.

In the following, we focus on the estimation of parameter k and θ. We treat the transmission

directions of the branching events in G as latent variables, and propose the CA algorithm

which alternates between estimating the model parameters (Θ = {k, θ}) and reconstructing the

transmission history H. Here the reconstruction is implemented in a form of labeling the

branches of G (as illustrated in Fig 2). The branching events following the labeled branches are

the transmission events caused by the individuals with the corresponding labels. The CA algo-

rithm traverse the genealogy G slice-by-slice from the leaves up to the root (Fig 2). Each slice

(illustrated in Fig 2(a)) consists of branches with the same height, defined as the number of

edges on the longest downward path from this branch to a tip (i.e. similar to the definition of

the height of a node). For example, the external branches have the height of 0, so they consist

of a slice. The branches within a particular slice come from different infected individuals, and

the transmission event following these branches are hence independent. Therefore, labeling

these branches can be performed in parallel.

The inference process begins with the external branches which are assigned to different

individuals, yielding the initial estimate of the transmission history Ĥ0. Because of the inde-

pendence assumption in the HBD model, the likelihood function in Eq (1) is also valid for the

partially reconstructed transmission history Ĥ0, and the initial estimate of Ŷ0 is hence

obtained via (2). Further, for all unlabeled branches in a slice, the CA algorithm alternates

between updating transmission history (i.e. labeling the branches based on the present
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estimate of model parameters) and updating the estimation of model parameter based on the

updated transmission history, until convergence.

More precisely, we evaluate the labeling coefficient for an unlabeled branch as the ratio of

the probabilities of labeling the branch to its left and right descendant branches. Suppose that

the unlabeled branch has a length of lu, and that its left and right descendant branches were

already labeled as a and b respectively, that is, with reconstructed transmission history of

(da, ea) and (db, eb), respectively. Labeling the new branch as a or b stands for updating the cor-

responding transmission history by prolonging for another lu time unit and adding one more

transmission event. Here the labeling coefficient βab is calculated as (illustrated in Fig 2(c)):

bab ¼
Probfðda þ lu; ea þ 1Þ; ðdb; ebÞjŷ; k̂; ĝg
Probfðda; eaÞ; ðdb þ lu; eb þ 1Þjŷ; k̂; ĝg

: ð5Þ

where the probabilities such as Probfðda þ lu; ea þ 1Þ; ðdb; ebÞjŷ; k̂; ĝg is evaluated via (1) by

plugging in these present estimates of ŷ, k̂, and ĝ. Consequently, if βab> 1, then the new

Fig 2. Schematic representation of the coordinate-ascent algorithm. (a) The branches in the genealogy G have been divided into 4 slices (labeled as⓪ to

③). (b) The algorithm performs estimation of model parameters (denoted as Θ) and reconstructing the transmission history H (or labeling the branches

(with different letters) of a genealogy) simultaneously under the likelihood framework. The algorithm starts from the external branches (labeled as⓪)

which come from different individuals, and proceeds backwards slice by slice. The internal branches with the same label represent the infectious period of a

particular individual, who is the infector of the transmission events during that period. (c) Given the present estimate of model parameters and

transmission history (Ŷ1,Ĥ1), the transmission histories of individual a and b are (da = l1, ea = 0) and (db = l2 + l3, eb = 1) respectively. For the unlabeled

branch lub, its labeling coefficient is evaluated as bab ¼
Probfðl1þlub ;1Þ;ðl2þl3 ;1ÞjŶ1g

Probfðl1 ;0Þ;ðl2þl3þlub ;2ÞjŶ1g
.

https://doi.org/10.1371/journal.pcbi.1008122.g002
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branch is labeled as its left descendant branch (a in this example); otherwise, as its right

descendant branch (b in this example).

Analysis of sampled virus genealogy. In this part, we describe the analysis of the sampled

genealogy GðSÞ based on the CA algorithm. Since GðSÞ suffers from partial sampling, the CA

algorithm cannot be applied directly. For a given tuning parameter p (0 < p< 1, often slightly

smaller than 1), we focus on the part of GðSÞ up to time t − Lp (denoted as GðSÞt� Lp
), where Lp is

the p × 100 quantile of the lengths of the external branches of GðSÞ. We set p to a high value

(p = 0.9, 0.85, and 0.8) to get a local genealogy GðSÞt� Lp
which contains a relative large part of

information about the epidemic dynamics up to time t − Lp. Specifically, our analysis consists

of three steps: firstly, we estimate the sampling ratio (i.e. the number of the diagnosed and

sequenced divided by all the infected) of the local genealogy GðSÞt� Lp
; secondly, we apply the CA

algorithm to the local genealogy GðSÞt� Lp
by assuming that all individuals infected within [0, t −

Lp] are sampled; thirdly, we correct these parameter estimates by taking advantage of the esti-

mated sampling ratio in the first step. Also, the results under different values of p are averaged

out to generate the final estimation.

Firstly, the sampling ratio of the local genealogy GðSÞt� Lp
, or in other words, the number of the

unsampled individuals up to time t − Lp, has been estimated. As defined above Lp is the p ×
100 percentile of the lengths of the external branches of GðSÞ, so Lp provides a conservative esti-

mate of the p × 100 percentile for the distribution of infectious periods. Hence, we assume that

a fraction p of the individuals infected within [0, t − Lp] will be diagnosed before time t. In

addition, a fraction ρSD of the diagnosed individuals was selected to do sequencing (i.e. the

sequencing ratio is ρSD), so the sampling ratio of GðSÞt� Lp
is ρSD � p. Denoting NðGðSÞt� Lp

Þ as the

number of individuals collected in the local genealogy GðSÞt� Lp
, so there are NðGðSÞt� Lp

Þ 1

rSD�p
� 1

� �

individuals which were infected before time t − Lp but were not sampled.

Next, we apply the CA algorithm to the local genealogy GðSÞt� Lp
and obtain the raw estimates

of the mean (denoted as m̂0
l
) and the standard deviation (denoted as ŝ0

l
) of the transmissibility

rate. Furthermore, the raw estimate of the transmission heterogeneity is ĈV 0 ¼ ŝ0
l
=m̂0

l
.

Last, we study the correction of the raw estimates by considering the unsampled individu-

als. This correction is performed on the basis of data imputation. For the sampled individuals,

their estimated transmissibility rates shall be upscaled based on the sampling ratio by allowing

for partial sampling. For the unsampled individuals, we assume that they have the same infec-

tious period and the same transmissibility rate because of no further information about their

difference. The corrected values for the sampled individuals together with the substituted val-

ues for the unsampled individuals are combined to yield the corrected estimation of model

parameters as follows (Please see S1 Text for details about the derivation of (6)-(8)):

The corrected estimation of the diagnosis rate is

ĝp ¼
#ðGðSÞt� Lp

Þ=rSD

jGðSÞt� Lp
j þ NðGðSÞt� Lp

Þð
1

rSD � p
� 1Þ ��lLE

; ð6Þ

where�lLE is the mean length of the external branches in GðSÞ, and is used as the infectious

period of the unsampled individuals.
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In addition, the corrected estimates of the mean and standard deviation of transmissibility

rate are

m̂
p
l ¼ m̂

0
l
þ ð1 � rSD � pÞlus; ð7Þ

and

ŝ
p
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðŝ0
l
Þ

2

rSD � p
þ

1 � rSD � p
rSD � p

ðm̂0

l
� rSD � p � lusÞ

2

s

; ð8Þ

where λus is the substituted transmissibility rate for the unsampled individuals. Furthermore,

the corrected estimation of transmission heterogeneity is ĈVp ¼ ŝ
p
l=m̂

p
l.

The value of λus shall vary with the level of heterogeneity. Under the homogeneous situation

(i.e. CVλ = 0), all the infected individuals have the same transmissibility rates, so we set the

transmissibility rates of the unsampled individuals to be the same as the average rate of the

sampled individuals, that is, lus ¼ m̂
0
l
. On the other hand, under the situation with extremely

high level of heterogeneity, a small proportion of individuals have very high level of transmissi-

bility rates, while a large proportion of individuals have small level of transmissibility rates.

The former will cause most of the infections, while the latter will cause few or no infections.

Note that the transmission events caused by an individual could be reconstructed by the infor-

mation from its descendants. The sampled individuals in the genealogy GðSÞ are more likely

to be the descendants of the highly infectious individuals. Hence the coalescent events in the

genealogy GðSÞ are more likely corresponding to the transmission events caused by these highly

infectious individuals, even if some of them are not sampled while their descendants are sam-

pled instead. Hence the transmissibility rates estimated from the sampled genealogy reflect the

rates with which highly infectious individuals spread the disease. Based on this consideration,

under the situation with high level of heterogeneity, we assume that unsampled individuals

have low transmissibility rates and that they cause few or no infections before being diagnosed.

In other words, we set the constant transmissibility rate λus for the unsampled individuals to

lus ¼ ĝ, where ĝ is the estimated recovery rate. For the general case we compromise between

the two extreme situations on the basis of the level of heterogeneity as follows:

lus ¼ m̂
0
l
þ

1 � exp ðCV0Þ

1þ exp ðCV0Þ
ðĝ � m̂0

l
Þ; ð9Þ

where ĈV 0 is a raw estimation about the level of heterogeneity as defined above.

Targeted prevention based on phylogenetic information

An important application for heterogeneity detection is to optimize the epidemic control pol-

icy when transmission heterogeneity exists. As pointed out in [1], focusing on the highly infec-

tious individuals will greatly increase the efficiency of disease control policy. To facilitate such

an application, we propose a phylogenetic index—the Number of Coalescent Events (NCE)

which helps to identify potentially highly infectious individuals. We investigate the effective-

ness of using this index with the intention of controlling the spread of disease in our heteroge-

neous birth-death model.

Specifically, for each tip in the sampled genealogy GðSÞ, we calculate the NCE within a fixed

time-period tc prior to the time of sampling of the individual. The taxa (diagnosed individuals)

with higher NCE-values are more likely to be phylogenetically linked with unsampled highly

infectious individuals. Thus, performing contact tracing on the individuals with high NCE-val-

ues should identify undiagnosed and highly infectious individuals and/or their undiagnosed
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descendants, and therefore efficiently reduce further disease spread. We refer to contact trac-

ing based on NCE-value as phylogeny-guided contact tracing. We evaluate different threshold

values m, i.e. where individuals who have NCE⩾m within tc prior to being sampled are

selected for contact tracing. We also evaluate both single-step and iterative contact tracing

schemes [24] to show the full beneficial effects of phylogeny-guided contact tracing policies.

Overview of simulation study

To validate our general transmission heterogeneity detection method, we tested the perfor-

mance of the inference algorithm on simulated data. As reported the average time between

infection and diagnosis/treatment for HIV-1 in Sweden is around 2.5 years [11, 25, 26], so we

set the rate of diagnosis at γ = 1/2.5 with year being our unit of time. We set R0 = 2.5 (implying

that μλ = 1) which is in agreement with the previous study on the transmission of HIV in Swit-

zerland [22]. We varied the level of transmission heterogeneity (i.e. CV = σλ/μλ) from 0 (no

heterogeneity) to 5 (extremely high heterogeneity).

Unless otherwise stated, each simulation began with one infection and was stopped when

there were 100 diagnosed individuals (the average number of infected but not yet diagnosed

were 130). Among these 100 diagnosed individuals, 90 diagnosed individuals were sampled for

sequencing to reconstruct the viral genealogy, that is, the sequencing ratio was set to ρSD = 0.9.

In all, the average sampling ratio in our simulations was 90/230� 0.39. We assume that there

was no delay between the time of diagnosis and sampling. Please see S1 Text for details of

simulation.

All the codes for simulation and inference are available at github.com/yunPKU/

HeteroInfer.

Results

Estimation of heterogeneity and other model parameters on simulated

datasets

The epidemic parameters describing the recovery rate (γ), average infectivity rate (μλ), and

the transmission heterogeneity (σλ and CVλ = σλ/μλ) were estimated from our heterogeneous

birth-death model and the described inference methodology (Fig 3A, 3B, 3D and 3E). While

there was a slight bias trend over CVλ = σλ/μλ, the bias was well within the corresponding 95%

confidence interval in each case. Hence, under a wide range of epidemic situations with differ-

ent levels of heterogeneity (CVλ) the means of the epidemic parameter estimates were close to

the corresponding true values. The inference of the basic reproduction number (R0), showed

slight upward biases under low level of heterogeneity and slight downward biases under high

level of heterogeneity (Fig 3B). However, these biases were also covered by the 95% confidence

intervals.

The estimated CVλ showed non-negligible downward bias. Since the coefficient of variation

CVλ is the inverse square-root of the shape parameter in the Gamma distribution, this observa-

tion agrees with earlier findings showing that the maximum likelihood estimate of the shape

parameter tend to upward biased [27], leading to CVλ being underestimated.

The upward bias trend of ĝ over heterogeneity level was potentially due to our simulation

process conditioning on reaching 100 tips. Given this condition, the average branch length

of the simulated tree decreased with the heterogeneity level CVλ (as shown in S1 Fig), indicating

the simulation datasets were biased in favor of ‘shorter’ trees under higher level of heterogeneity.

Therefore, the estimate of ĝ was upward biased under high CVλ. On the other hand, the estimate

of m̂l remained relatively stable. This is due to the fact that we used λus as the substituted
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transmissibility rate for the unsampled individuals. We explained in section of Analysis of sam-
pled virus genealogy that, under the high level of heterogeneity, λus was close to the estimated

recovery rate ĝ which is considerably smaller than the true value of μλ. So this correction

method reduced the upward bias of m̂l under high heterogeneity situation, and hence resulted

in a stable estimate. In all, the upward bias trend of ĝ together with the stable estimate of μλ over

CVλ resulted in the downward bias trend of the estimated R̂0 over heterogeneity levels.

In the simulation study we also vary time scales by fixing the average infectivity rate μλ = 1

and gradually increasing the average length of infectious period γ−1 from 1.5 to 3, correspond-

ing to the basic reproduction number R0 increased from 1.5 to 3. As before the simulation

began with one infection and was stopped when there were 100 diagnosed individuals. The

results are summarized in S2 and S3 Figs.

The estimates of transmission heterogeneity (σλ and CVλ) were robust to differences in the

average length of infectious period γ−1 (S2 Fig). The effect on the estimated CVλ was small

unless the true heterogeneity level was higher than 3 (S2A Fig). We also found that the estimated

R̂0 remained upward biased under the scenarios with shorter infectious period (γ−1 = 1.5 and

2). As our simulation process being conditioning on reaching 100 tips, the simulated datasets

were likely to be biased in favor of “faster” trees which resulted in the overestimated R0 [28].

Inference of heterogeneity when transmission rates are autocorrelated. Our new

method was developed under the assumption that each infected individual has an independent

transmission rate. In reality, however, risk factors of transmissibility such as behavior often

exhibit a high degree of homophily, such that the transmission rate of a newly infected individ-

ual may be similar to that of the donor. We therefore evaluated our method when transmission

rates are autocorrelated and made a comparison with the previously developed Markov-

Fig 3. Estimates of the heterogeneity and other epidemiological parameters from simulated virus genealogy. The simulations were performed under

various true levels of heterogeneity (CVl ¼ sl=ml). In each panel, the black line denotes the true value that was used to generate the simulated data, and the

colored curve and the shaded area denote the mean and 95% confidence interval from 200 simulations, respectively. A estimate of recovery rate (γ), B

estimate of average infectivity rate (μλ), C estimate of the basic reproduction number (R0), D estimate of the standard deviation of infectivity rate (σλ), and E

estimate of the coefficient of variation (CVλ).

https://doi.org/10.1371/journal.pcbi.1008122.g003
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Modulated Poisson Process (MMPP) method [9] which was developed by exploiting the auto-

correlation of transmission rates to genetic clustering as well as to estimate different transmis-

sion rates of different subpopulations.

We adopted the simulation scenario in [9] to divide the whole susceptible population into

two subpopulations with different transmission rates (λ1 and λ2 respectively) and simulated

the outbreak in two ways, that is, with and without autocorrelation of transmission rates. In

the former case, each newly infected individual has the same transmission rate as its infectee

with the probability 1 − πs and switch to another transmission rate with the probability πs.
Here we set the transmission rates as λ1 = 0.9 and λ2 = 8.1 (9-fold faster than the other as in

[9]). The switching probability is πs = 0.2 or πs = 0.8, corresponding to high level of autocorre-

lation with low heterogeneity (CVλ = 0.46) and low level of autocorrelation with high heteroge-

neity (CVλ = 1.05) respectively. The evaluation under each condition is performed based on

100 simulated replicates.

In the case without autocorrelation, each newly infected individual draws its transmission

rate independently from a binary probabilistic distribution, that is, choosing λ1 with probabil-

ity 1 − πc, and choosing a larger transmission rate λ2 with probability πc. We set πc = 0.1, corre-

sponding to the proportion of risky subpopulation in [9]. We made the comparison for two

settings, one with lower level of heterogeneity: λ1 = 2 and λ2 = 6 (corresponding to the mean

transmission rate μλ = 2.4 and the heterogeneity CVλ = 0.5); and the other with higher level of

heterogeneity: λ1 = 1 and λ2 = 15, corresponding to the same μλ = 2.4 but now CVλ = 1.75.

Under the situation of no autocorrelation of transmission rates, it is clear that the new

method generates more accurate estimates of the mean (μλ) and the heterogeneity (CVλ) of

two transmission rates (S9A and S9B Fig). For the low heterogeneity condition with true values

of μλ = 2.4 and CVλ = 0.5 (S9A Fig), the medians of the estimates for μλ and CVλ are 2.32 and

0.7 from our new method and are 4.65 and 0.74 from the MMPP respectively. For the high het-

erogeneity condition with true values of μλ = 2.4 and CVλ = 1.75 (S9B Fig), the medians are

2.19 and 1.56 from our new method and are 6.35 and 1.04 from the MMPP respectively.

Under the situation with autocorrelation of transmission rates, the new method is compara-

ble with the MMPP in terms of estimation accuracy (S9C and S9D Fig). For the low switching

probability (πs = 0.2) condition with true values of μλ = 6.49 and CVλ = 0.46 (S9C Fig), the

medians of the estimates for μλ and CVλ are 5.22 and 0.79 from the new method and are 8.73

and 0.99 from the MMPP respectively. For the high switching probability πs = 0.8 condition

with true values of μλ = 3.18 and CVλ = 1.05 (S9D Fig), the medians of the estimates are 2.64

and 1.27 from our new method and are 5.75 and 1.00 from the MMPP respectively.

Parameter estimates remain accurate under finite population sizes and biased sequenc-

ing ratio ρSD. The above results show good performance of the proposed inference method

under the heterogeneous birth-death model assuming that there is no depletion of susceptibles

(corresponding to an infinite population) and that the sequencing ratio ρSD was known (but the

sampling ratio is unknown). In real applications, however, these two assumptions do not hold.

While the size of the susceptible population at risk is very difficult to know in real epidemics, it

is never infinite. The sequencing ratio ρSD is often known to some extent, but there can be

uncertainty in the number of diagnosed but not sequenced, leading to uncertainty in ρSD.

To investigate if the susceptible population size and biased ρSD affect the estimation of

the model parameters, we tested the inference method under a relative realistic scenario, i.e.

setting the population sizes N = 1000 and introducing 10 percent bias in ρSD both upwards

and downwards. As before we began with one infection and stopped when there were 100

diagnosed individuals. When the simulations were stopped, the average number of infected

but not yet diagnosed was 120, that is, the average prevalence was 220/1000 = 22% which is a

relatively higher level in reality [29].
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The estimation of transmission heterogeneity was robust to finite populations at risk (Fig 4)

and bias in ρSD, with only small effects unless the true level of heterogeneity was very high

(CVλ> 3). The effects were not significant as they was covered by the variability of the estimate

under infinite population size. The same conclusion applied also to estimation of the basic

reproduction number R0. This is encouraging, as the susceptible population size is typically

unknown, and may vary over time in real epidemics.

Inference of heterogeneity is robust to transmission heterogeneity through time. In

the above simulations, a constant transmissibility rate for each infected individual was

assumed. However, it is well known that for HIV, infected individuals initially have a short

high-transmission-risk phase (the acute infection phase when viral load is very high), followed

by a much longer low-transmission-risk phase (the chronic phase during which viral load is

relatively low), which, in the absence of treatment, is followed by another high-transmission-

risk phase (progression to AIDS) [30–32]

To investigate if this transmission-risk heterogeneity through time affect the inference of

heterogeneity among individuals and other model parameters, we tested the proposed infer-

ence methodology under a more realistic simulation scenario by allowing for a time-varying

transmissibility rate for each infected individual. As before, each individual i drew a random

transmission rate l
0

i from the Gamma distribution with mean μλ and standard deviation σλ,
and a duration of the infectious period being Exp(γ) distributed. The time-varying transmis-

sion rate was modeled by starting with transmission rate l
0

i during acute phase and then drop-

ping and rising again if not yet diagnosed. More specifically, we followed the four-phase model

in [31] to model the change of transmission rate over time since infection that is,

liðtÞ ¼

l
0

i 0 � 6 months

l
0

i � 1:5=8 6 � 15 months

l
0

i � 1=8 16 � 36 months

l
0

i � 3:6=8 after 37 months

8
>>>>>>><

>>>>>>>:

ð10Þ

where t was the time since infection for the i-th individual. As before each simulation was

Fig 4. Performance of parameter estimation under finite population size and biased ρSD. The estimates equipped with “hat” (e.g.,ĝ) are based on the

infinite population size and the exact value of ρSD. The estimates equipped with “tilde” (e.g.,~gþ and ~g � ) are based on finite population size and 10% bias in

ρSD (~gþ is on upwards bias and ~g � is with downwards bias in ρSD). The colored curves in (A) and (B) are the mean of 200 simulations, while the shaded

areas denote the 95% confidence intervals based on these simulation replicates.

https://doi.org/10.1371/journal.pcbi.1008122.g004
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started with one infected individual and stopped when there were 100 diagnosed individuals.

The results are summarized in S4 Fig.

Relevant to the estimate of CVλ (i.e. heterogeneity of individual-level transmissibility)

which was shown in S4B Fig, we found that adding transmission-risk heterogeneity due to dis-

ease progression leads to a small overestimation when the true level of CVλ was low (CVλ<

1.5) and a slight underestimation when CVλ> 1.5. These effects, however, were not significant

as they were covered by the 95% confidence interval. In addition, as shown in S4A Fig, adding

heterogeneity through time tended to underestimate R0, and the bias became significant under

lower level of heterogeneity (CVλ< 1.0). This makes sense because adding heterogeneity

through time reduced the average transmission rate over the whole infectious period for each

individual, and hence resulted in a drop of the estimate of basic reproduction number.

Within-host diversity causes underestimation of transmission heterogeneity. Because

HIV, and many other rapidly evolving pathogens, accumulate significant levels of within-host

diversity, pathogen phylogenies may differ from the transmission history [21]. Using a coales-

cent-based framework that allows for within-host pathogen diversification over time [11, 21,

33], we investigated the effect of different diversification rates on the ability to detect transmis-

sion heterogeneity (please see S1 Text for details of simulation). We found that within-host

diversity leads to underestimation of the level of transmission heterogeneity (Fig 5A), which

becomes significant at very high heterogeneity levels (CVλ> 3). Within-host diversity adds an

additional source of phylogenetic variation, and this variation partially overshadows the het-

erogeneity resulting from differences in transmission contacts. Nevertheless, even with within-

host diversity, the trend of the inferred heterogeneity is monotonically increasing as the true

level of heterogeneity increases, leading to a positive response of the inferred level of heteroge-

neity. Hence, when a pathogen generates significant levels of within-host diversity, we still

detect increased levels of transmission heterogeneity if it occurs, but the true level of transmis-

sion heterogeneity may become underestimated.

Increasing levels of within-host diversity also had an effect on the estimated R0 (Fig 5B).

While increasing levels of within-host diversification tended to increase the estimated R0, only

at the highest level of within-host diversity (r = 1) did the overestimation become significantly

higher than under no diversification. As within-host diversity pushes the phylogenetic node

Fig 5. Performance of parameter estimation in the presence of within-host diversity. Here r denotes the rate of within-host population size increases

(per day). Four levels of within-host diversity have been calculated: r = 1(blue), 0.5(orange), 0.3(green), 0.15(red), and r = 0 (purple) corresponding to no

heterogeneity. Results are the mean of 100 simulations. Also the estimates (purple) and the corresponding 95% confidence intervals (shaded area) under the

condition without within-host diversity are also calculate for comparison.

https://doi.org/10.1371/journal.pcbi.1008122.g005
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heights backwards in time, known as the pre-transmission interval [34], the mean infectious

period (γ−1) appears prolonged. However, the average time interval between neighboring

transmission events, which corresponds to the mean transmissibility rate μλ, is less affected by

the within-host diversity. Therefore, the estimated R0 = μλ/γ in the presence of within-host

diversity will increase with the level of diversification.

The power of detecting transmission heterogeneity increases with heterogeneity level

and sample size. For μλ = 1 and γ = 1/2.5, we estimated the expected power to detect hetero-

geneity for various sample sizes and heterogeneity levels. We reject homogeneity if the esti-

mated heterogeneity ĈV l exceeds the upper-bound of the 95% confidence interval which was

estimated under the homogenous situation by setting CVλ = 0. This upper-bound was calcu-

lated from 500 simulations.

The power to detect transmission heterogeneity depends on the sample size and true level

of transmission heterogeneity (Fig 6). We investigated two different sampling size effects; 1)

the sequencing ratio at the time of stopping simulation (when 100 persons have been diag-

nosed), and 2) with a fixed sequencing ratio ρSD at a time when a certain number of persons

have been diagnosed (from 20 to 100 persons). The effects on detection power of these two

sampling scenarios were similar. For a given sample size (i.e. a particular colored line in Fig 6),

the power naturally increased with the level of heterogeneity. From a public health action

point of view, this is again encouraging as higher heterogeneity levels suggest that intervention

may be more beneficial, which we address further below. Naturally, the power also increased

with larger sample size (#(D) in panel A, and ρSD in panel B).

Computing time. There is a growing demand of analyzing large sequence databases

where transmission heterogeneity may exists and be desirable to detect [35]. Hence, we evalu-

ated the computing time required to process trees with the number of tips (individuals) varied

from 100 to 4,000. These results are summarized in supplementary S8 Fig. Our result indicated

that the average computing time (over heterogeneity level CVλ varying from 1 to 5) scales line-

arly with the size of the tree. For instance, it required about 54.8 minutes (averaging over het-

erogeneity levels from 1 to 5) to process a tree with 4,000 tips. We also observed that the

computing time for a tree with low level of heterogeneity (i.e. CVλ = 1) is much longer than

that of analyzing a tree with high level of heterogeneity (i.e. CVλ� 3). And the difference

Fig 6. Comparison of power of detecting heterogeneity under different sample sizes. Here #(D) denotes the number of diagnosed individuals. A. The

sequencing ratio is fixed as 1, while the simulation stopped when there were different number of diagnosed individuals. B. The simulation was stopped

when there were 100 diagnosed individuals (#(D) = 100), while the sequencing ratio increases from ρSD = 0.2 to 1, corresponding to a sample size going

from 20 to 100 (colored curves). The power is estimated based on 200 simulations.

https://doi.org/10.1371/journal.pcbi.1008122.g006
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between these two computing times increases with the size of the tree. This is due to the fact

that the proposed algorithm needs to reconstruct the transmission history while estimating the

model parameters. This reconstruction is easier to proceed under the situation with high level

of heterogeneity where few super-spreaders contribute to most of the transmission events.

Hence, we expect that more computing time is needed to process a tree with heterogeneity

smaller than 1 (CVλ< 1).

Analysis of real HIV outbreak data

We investigate HIV-1 DNA sequences from three local epidemics in Sweden ranging from

fast explosive outbreak to more slow spread over longer time periods (Fig 7). The three corre-

sponding genealogies were selected from a recent publication on HIV-1 spread in Sweden and

neighboring Scandinavian countries [36], but the datasets used here contain only Swedish

sequences. The first genealogy, denoted IDU_AE, represents a rapid outbreak of CRF01_AE

(circulating recombinant form number 1 of subtype A and E viruses) infections among intra-

venous drug users (IDUs) in Stockholm in 2006 and 2007 [37]. The genealogy contains 83 taxa

which were sampled from 2003 to 2010. The second genealogy, denoted IDU_B, represents

slower local spread of subtype B infections among IDUs in Stockholm with sampling dates

ranging from 2003 to 2010 [38]. This genealogy contains 51 taxa which were sampled from

2002 to 2009. The last genealogy, denoted MSM_B, represents longstanding local spread of

subtype B virus among men who have sex with men (MSM) with sampling dates ranging from

1994 to 2010. This genealogy contains 18 taxa which were sampled from 1994 to 2010. All

genealogies were monophyletic relative to other sequences in the Swedish-Scandinavian study

and BLAST’ed international sequences [36].

For each data set, we analyzed a random sample of 10000 genealogies from the posterior

distribution (generated using BEAST [39]). Fig 7 summarizes the results of the parameter esti-

mates. Overall, the IDU_B data showed the lowest diagnosis rate (ĝ), meaning the individuals

infected in this outbreak had a longer transmission period before being diagnosed (and pre-

vented to spread further). Interestingly, the IDU_B outbreak also showed the highest R0, sug-

gesting that the low value of ĝ may have driven up R0 = μλ/γ. R0 did not seem directly linked to

transmission heterogeneity, however. Similarly, Sackin’s index, which measures tree balance

(high values indicate unbalanced trees where one side of a split carries more taxa than the

other side), did not find any significant differences between the data that contained an out-

break (IDU_AE) and the data from more even spread (IDU_B). Instead, as one might have

expected, ĈV l correlates with the speed of the different outbreaks, i.e. the highest heterogene-

ity was inferred in the data that contained the fast outbreak, which occurred in the IDU_AE

epidemic, and the lowest heterogeneity was inferred in the slowest spreading epidemic

(MSM_B). These observations agree with previous analyses of these local epidemics, where

it was reported that there was a rapid outbreak, during a limited time period, among IDU

infected with CRF01_AE in Sweden following a similar outbreak in Finland [38]. This suggests

that it took some time for HIV-1 CRF01_AE to reach one or several individuals with high con-

tact numbers after it had entered the Swedish IDU community. Once the individuals with high

contact rates were reached, a rapid outbreak followed, infecting many susceptibles. Finally, as

shown in [38], the outbreak subsequently slowed down to pre-outbreak levels, presumably

because the recipients of the high-contact persons had been exhausted. Lower levels of trans-

mission heterogeneity was observed in the slower spread that took place in the IDU_B com-

munity [37], suggesting that the contact patterns in this community were more even among

members.
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Fig 7. Estimation of heterogeneity and other epidemiological parameters for three HIV outbreaks in Sweden: IDU_AE (red), IDU_B(blue) and

MSM_B (grey). On the top four panels, the distributions of the estimated parameters from a sample of 10000 posterior genealogies of each dataset are

presented: the rate of diagnosis (A), the basic reproduction number (B), the Coefficient of Variation (C) and the Sackin Index normalized with the ‘PDA’

method (D). On the bottom, the time-scaled genealogies with the highest posterior probability are presented.

https://doi.org/10.1371/journal.pcbi.1008122.g007
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Simulation of targeted contact tracing: Continuous monitoring and cross-

sectional sampling

Next, we evaluated phylogeny-guided contact tracing policies based on simulation. We again

set the mean transmissibility rate at μλ = 1 and the rate of diagnosis at γ = 1/2.5, which resulted

in the basic reproduction number as R0 = μλ/γ = 2.5. Here, one unit of time corresponded to

one year as before, and we set the time period tc in which we calculate the NCE-value to tc =

1.25 (corresponding to half of the average infectious period). In addition, the heterogeneity

varied from CVλ = 0 to 5.

We define ‘continuous monitoring’ as the typical public health situation where samples

(sequences of diagnosed cases) are continuously collected throughout an epidemic and where

for each collected sample it is decided to perform (additional) contact tracing or not. The sec-

ond situation is denoted ‘cross-sectional sampling’ which is the situation where all samples are

collected (or re-analyzed) at some common time t, for instance when the epidemiological sta-

tus is investigated in an otherwise unmonitored population or when additional preventive

measures are decided upon or in retrospective contact tracing.

Using a pathogen phylogeny improves disease prevention under continuous monitor-

ing. When no transmission heterogeneity is present (CVλ = 0), targeting individuals with

higher than average NCE for contact tracing has no effect on the resulting epidemic size (Fig

8A), i.e. randomly selecting the same number of persons for contact tracing has the same effect

as a phylogenetically informed strategy (the dashed and solid lines are on top of each other in

this case). The reason why preventing (i.e. contact tracing) persons with NCE⩾ 1 has higher

effect than NCE⩾ 2 is simply because NCE⩾ 1 involves a larger number of persons that are

contact traced, shown in the sidebar ‘Fraction of contact traced’. The ‘no prevention’ line

shows the epidemic growth when no prevention (i.e. no additional contact tracing) was

administered and is thus the maximum size of the simulated epidemic at any time point.

Reduction from this level indicates the prevention effect.

When transmission heterogeneity was present (i.e. CVλ> 0), the relative epidemic

size under a phylogeny-guided prevention (based on NCE) was always smaller than that of

random prevention at the same proportion of persons (Fig 8B–8D). At very high level of

heterogeneity CVλ = 3, phylogeny-guided prevention typically reduced the epidemic by an

additional 10% over random prevention at 2.5 years out, and approximately an additional

10% for each NCE step. Moreover, the advantage of a NCE⩾m strategy over the corre-

sponding random prevention strategy increased with the level of heterogeneity. For

instance, if extremely high heterogeneity occurred (CVλ = 5), by preventing spread at

NCE⩾ 4 one would only need to contact trace 20% of the population to get about 75%

reduction in total number of infections 2.5 years later. This means that a phylogenetically

informed prevention strategy (using the NCE concept) becomes more valuable the more

heterogeneous transmission rates are.

From a public health point of view, where resources always are limited, using the pathogen

phylogeny to allocate resources becomes more efficient the more heterogeneity that exists in

the epidemic, and the NCE guided prevention can pinpoint where contact tracing and preven-

tion would make the largest impact in reducing future infections. This becomes clear when

comparing the fraction of contact traced and the relative effect of NCE-guided prevention in

the different CVλ and NCE cases, i.e. the fraction of contact traced in the NCE⩾m strategies

decreased as the threshold value m increased while the relative effect over random prevention

in the NCE⩾m strategies increased as the threshold value m increased (see the supplementary

S5 Fig). Therefore, under low levels of heterogeneity (estimated using our general heterogene-

ity detection method), one may choose a small threshold m to gain more effect on reducing
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the epidemic size, while under high levels of heterogeneity, one may instead choose a high

threshold m, involving less resources, to invoke efficient control.

For pathogens that accumulate within-host diversity, such as HIV-1, we also evaluated the

phylogeny-guided prevention strategy when significant within-host diversity accumulates. The

effect of a NCE-strategy was, in fact, higher in the presence of within-host diversity (r = 1) than

when no within-host diversity accumulated (r = 0) (Fig 9). This happens because large NCE
values are associated with short branches, and the effect of within host diversity is to make

short branches only slightly longer whereas longer branches are increased more due to within

host diversity. As a consequence, within-host diversity has the effect of accentuating the differ-

ence between short and long branches thus leading to a better distinction between subtrees

with a relatively large number of coalescent events (large NCE) compared to subtrees with

lower number of coalescent events.

Within-host diversity also has the effect of reducing the fraction of contact traced for given

threshold m in NCE (S6 Fig). Because within-host diversity pushes the phylogenetic node

heights backwards in time, known as the pre-transmission interval [34], there will be fewer

nodes at any given time-distance into the tree from the tips. Within-host diversity therefore

Fig 8. Comparison of NCE-based contact tracing and random contact tracing under the situation of continuous monitoring. The relative infection

sizes (defined in S1 Text) of the NCE⩾m contact tracing (solid lines) and the corresponding random contact tracing (dashed lines) are compared for four

threshold values: m = 1 (lines with●), m = 2 (lines with triangledown), m = 3 (lines with +), and m = 4 (lines with �). The subplots on the right side of all

panels show the fraction of contact traced for all these prevention policies. Four panels show the comparison under four levels of heterogeneity respectively,

i.e. CVλ = 0 (A), CVλ = 1 (B), CVλ = 3 (C), and CVλ = 5 (D). These results are the mean of 300 simulations.

https://doi.org/10.1371/journal.pcbi.1008122.g008

PLOS COMPUTATIONAL BIOLOGY Inferring transmission heterogeneity using virus genealogies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008122 September 3, 2020 19 / 27

https://doi.org/10.1371/journal.pcbi.1008122.g008
https://doi.org/10.1371/journal.pcbi.1008122


reduces the NCE-count on all lineages, leading to a reduction in the fraction of contact traced.

Hence, one may adjust the depth tc at which NCE is calculated depending on how much diver-

sity the pathogen under study typically accumulates.

Finally, we evaluated the phylogeny-guided prevention under two different models of con-

tact tracing: single-step tracing (where only direct recent contacts of the diagnosed are tested

and prevented from further spread) or iterative tracing (where new cases from the single-step

tracing are also contact traced, and so on) [24, 40]. The relative effect of phylogeny-guided iter-

ative contact tracing was more effective than single-step contact tracing at higher levels of the

NCE-threshold (m = 2 and 3) in Fig 10. Contrary, at NCE⩾ 1, single-step contact tracing did

better at lower levels of transmission heterogeneity. Hence, iterative contact tracing is more

advantageous when medium to high levels of transmission heterogeneity exist, where higher

NCE-thresholds can pick up transmission chains where a super-spreader exists. At very high

heterogeneity levels (CVλ⩾ 3), the iterative contact tracing advantage gradually diminishes

because the probability to find the super-spreaders increases after just a single-step contact

tracing.

As somewhat surprizing observation was that the fraction of contact traced under iterative

contact tracing was actually found to besmaller than under the single-step contact tracing (S7

Fig). For each selected individual to contact trace there will of course be more (or at least not

fewer) to contact trace under iterative contact tracing. However, iterative contact tracing has

an even bigger negative effect on the spreading, such that the overall fraction (or number)

being contact traced in the iterative setting is smaller than when applying single-step contact

tracing.

Fig 9. Comparison of the performance of NCE-based policies under the situations of with/without within-host

evolutionary dynamics. Here r is the diversification rate of within-host virus population. The solid lines (r = 0 lineage/

day) and the dashed lines (r = 1 lineage/day) are the results with/without within-host diversity respectively. The

performance of the NCE⩾m policy is measured by the relative effect over random prevention (please see text for

definition). Three levels of threshold m are calculated: m = 1 (blue), m = 2 (orange), and m = 2 (green).

https://doi.org/10.1371/journal.pcbi.1008122.g009
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Time-to-diagnosis is informative for contact tracing under cross-sectional sampling.

When cross-sectional samples have been collected, phylogeny-guided prevention has no

advantage over a random prevention strategy (Fig 11). Thus, to take advantage of the epidemic

information captured by the pathogen phylogeny, continuous monitoring provides better pub-

lic health prevention capacity. If only a cross-sectional sample is available, however, we find

that targeting the most recently diagnosed individuals (MRD) for additional contact tracing

performs better in preventing future spread than a random selection of the same number of

individuals (Fig 11) or by selecting individuals to contact trace based on the NCE-value. At

prevention fractions p = 0.2 and p = 0.5 (20% and 50% being contact traced, respectively), the

relative effect of the MRD-strategy was constantly larger than random selection (of which the

relative effect was set to 1) as well as that of the NCE-based strategy.

Discussion

In this study we have shown that when transmission heterogeneity exists, a phylogeny-guided

prevention strategy is more efficient than randomly selecting cases for contact tracing in order

to reduce the number of future infections. We first developed a general method to identify the

level of transmission heterogeneity in a population, i.e. how much variation in the rate of

transmission contacts that exist in a human population where a pathogen spreads. We then

developed a phylogenetic measure, the NCE—the Number of Coalescent Events over a fixed

time-interval ending at time of diagnosis—to identify which infected individuals to target for

(additional) contact tracing. It was shown that, under the typical situation where pathogen

samples are continuously collected (continuous monitoring), a phylogeny-guided prevention

Fig 10. Comparison of the performance of NCE-based policies under different modes of prevention. The solid

lines/dashed lines are the results under the mode of single-step contact tracing/iterative contact tracing respectively.

The performance of the NCE⩾m policy is measured by the relative effect over random prevention (please see text for

definition). Three levels of threshold m are calculated: m = 1 (blue), m = 2 (orange), and m = 2 (green).

https://doi.org/10.1371/journal.pcbi.1008122.g010
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approach was clearly superior in effectively allocating public health resources to reduce future

disease spread.

We show that our heterogeneity detection method and phylogeny-guided approach work

under a variety of realistic conditions. The estimates of heterogeneity and basic reproduction

number are robust to assumptions about the susceptible population size and exact sampling

fraction (the fraction of diagnosed individuals that are sequenced), both of which may be diffi-

cult to know exactly in a real epidemic. Also when changing the recovery rate of the infected

individual, allowing autocorrelation in transmission rates, or adding heterogeneity through

time to individual-level transmissibility, the estimate of heterogeneity is still less affected. Of

particular importance is that our method also works when a pathogen accumulates genetic

variation within each host. Such within-host diversity is significant in e.g. HIV infections. If

not taken into account, tree measurements may significantly mislead epidemiological esti-

mates by implicitly assuming identity between transmission history and pathogen phylogeny.

It is well established that the between-host pathogen phylogeny will display nodes correspond-

ing to the transmitted lineages biased backwards in time, as described by the pre-transmission

interval [34], as well as potential lineage disordering relative to the transmission history [21].

While previously often ignored, the within-host diversity has recently been shown to have

significant impact on inferences about pathogen epidemics, sometimes rendering results

completely as compared to when within-host diversity was ignored [11, 21, 41, 42]. Here, we

show that taking within-host diversity into account may, in fact, improve the prevention effect

(Fig 9).

When applying our method for detecting possible spread heterogeneity to three separate

sub-epidemics from the larger Swedish HIV-1 epidemic it was found that the highest heteroge-

neity was inferred from the data that included the episodic IDU_AE outbreak. Interestingly,

Fig 11. Relative effect of NCE-based strategy (blue lines) and MRD strategy (red lines) over random prevention

under the situation of Cross-sectional prevention. The fraction of contact traced is fixed as p = 0.2 (lines with5) and

p = 0.5 (lines with ?).

https://doi.org/10.1371/journal.pcbi.1008122.g011
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this outbreak did not show significant differences from the other sub-epidemics when analyz-

ing Sackin’s index or R0 (which is also affected by the estimated diagnosis rate ĝ). This suggests

that our methodology is useful for identifying heterogeneous spread when typical tree balance

or well-known epidemiological parameters fail.

In some countries and settings where HIV transmission is criminalized there may be ethical

limitations to the use of phylogenetics and other ways to identify clusters with active HIV

transmission. We acknowledge this complication, but show that our approach could limit HIV

transmissions in settings where such limitations do not exist.

Our model treats heterogeneity as a single feature, while in real life there are several factors

that may contribute to heterogeneous spread rates. It is possible that modeling one or several

of these factors separately may be valuable. One such factor relates to social network structure,

modeling heterogeneities in terms of contacts. Secondly, the current model assumes that the

transmissibility of different individuals are independent. A (more complicated) alternative

could be to assume that transmissibility of infectors and their cases are positively correlated,

which would imply assortativity in sexual activity between sex-partners. Finally, individuals

may also differ in terms of testing (i.e. diagnosis) rates; in our model all individuals were

assumed to have equal rates of testing. For example, among MSM, individuals with risky

behavior (high contact rates) may also test themselves more often. This simplifying assump-

tion may lead to a systematic loss of sensitivity as sampling may not be complete and be biased

towards some group of infected persons. Again, the heterogeneity in our model may be inter-

preted as a combination of all these and other aspects.

In conclusion, with the increase of pathogen genetic data in public health databases, phylog-

eny-guided prevention will benefit public health efforts. As relevant epidemic information

about differences in number of contacts is effectively “recorded” in a phylogeny by the evolu-

tionary process of the pathogen, it only makes sense to use this information to the public

health benefit. Hence, phylogeny-guided prevention results in more efficient epidemic control,

which should reduce disease burden and costs to society.

Supporting information

S1 Fig. Average branch length of the simulated tree under different conditions. Average

branch length of the simulated tree under varied basic reproduction number (x-axis) and var-

ied levels of heterogeneity (y-axis). Under each condition, the simulation started from one

infection and stopped when there were 100 recovered individuals. The average branch length

was calculated as the total branch length of the reconstructed tree over the number of tips. The

results were the average over 1000 simulations.

(PDF)

S2 Fig. Inference of heterogeneity under various lengths of mean infectious period γ−1. In

each panel, the black line denotes the true value that was used to generate the simulated data.

The colored curves are the means of the estimates under different levels of γ−1. The shaded

area denotes 95% confidence interval estimated when γ−1 = 2.5. These results are obtained

from 100 simulation replicates where the average transmissibility rate μλ was fixed as 1, the

sequencing ratio ρ = 0.9, and the simulation stopped when there were 100 diagnosed individu-

als. The panel A is coefficient of variation (CVλ) and the panel B is standard deviation of infec-

tivity rate (σλ).
(PDF)

S3 Fig. Performance of parameter estimation under various lengths of mean infectious

period γ−1. In each panel, the colored curves are the means of relative biases (the bias over the
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true value) under different levels of γ−1. The shaded area denotes the relative bias of the 95%

confidence interval estimated when γ−1 = 2.5. These results are obtained from 100 simulation

replicates where the average transmissibility rate μλ was fixed as 1, the sequencing ratio ρ = 0.9,

and the simulation stopped when there were 100 diagnosed individuals. A. basic reproduction

number (R0), B. average infectivity rate (μλ), and C. recovery rate (γ).

(PDF)

S4 Fig. Comparison of parameter estimation under constant/time-varying transmissibil-

ity. The lines with circles “�” are the estimate under the situation of constant transmissibility,

and the shaded area denote the 95% confidence interval from 100 simulations. The lines with

triangles “5” are the estimates under the situation with time-varying transmissibility (TVT).

The comparison is performed under the situation of R0 = 2.5 and the heterogeneity (CVλ) var-

ies from 0 to 5. Sample size n = 100 and simulation runs = 100.

(PDF)

S5 Fig. Relative effect over random prevention of NCEm strategy under the continuous

monitoring scenario. Four levels of threshold c have been calculated: m = 1 (blue), m = 2

(orange), m = 3 (green), and m = 4 (red). Results in (a) and (b) are the mean of 300 simula-

tions.

(PDF)

S6 Fig. Comparison of fraction of contact traced of NCEm strategy under the situation of

with/without within-host diversity (solid/dash lines respectively). Three levels of threshold

m have been calculated: m = 1 (blue), m = 2 (orange), and m = 3 (green). Results are the mean

of 300 simulations.

(PDF)

S7 Fig. Comparison of fraction of contact traced of NCEm strategy under the situation of

single-step/iterative contact tracing (solid/dash lines respectively). Three levels of threshold

m have been calculated: m = 1 (blue), m = 2 (orange), and m = 3 (green). Results are the mean

of 300 simulations.

(PDF)

S8 Fig. Computing times required for inferring heterogeneity from trees with varying

numbers of tips. Computing times (y-axis) required for processing trees with varying num-

bers of tips (each tip represents a diagnosed individual). For each number of tips (x-axis), we

simulated trees with different levels of heterogeneity (i.e., CVλ = 1, 2, � � �, 5). Each point repre-

sents the average computing time based on 10 simulations with given heterogeneity level and

the size of tree. The number of tips was varied along the following sequence: 100, 200, 400,

1000, 2000, 4000. The dashed line represents the average computing time over all levels of het-

erogeneity. All runs were executed on an Intel Core i7 processor (Mac mini 2018).

(PDF)

S9 Fig. Performance of new method and the Markov-modulated Poisson process (MMPP)

based genetic clustering method on simulated data. Virus genealogies were simulated under

two scenarios: without autocorrelation in transmission rates (A and B) and with autocorrela-

tion (C and D). In the former cases, each infected individual independently draws its transmis-

sion rate from a binomial distribution, i.e., choosing the slow rate λ1 with probability 1 − πc =

0.9 and choosing the fast rate λ2 with probability πc = 0.1. In (A), λ1 = 2 and λ2 = 6, corre-

sponding to mean rate of μλ = 2.4 and a low level of heterogeneity (CVλ = 0.5). In (B)λ1 = 1

and λ2 = 15, corresponding to mean rate of μλ = 2.4 and a high level of heterogeneity (CVλ =

1.75). In the cases with autocorrelation in transmission rates, each newly infected individual
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switch its transmission rate with probability πs and remains its infectee’s rate with probability

1 − πs. In both (C) and (D), λ1 = 0.9 and λ2 = 8.1 with different switching probability, i.e., πs =

0.2 in (C), corresponding to μλ = 5.22 and low level heterogeneity CVλ = 0.79, and πs = 0.8 in

(D) corresponding to μλ = 2.64 and low level heterogeneity CVλ = 1.27. And the diagnosis rate

is fixed as γ = 1. The x- and y-axes correspond to the estimated μλ and the estimated CVλ

respectively. Each point represents the outcome when analyzing one of 100 replicates.

(PDF)

S1 Text. Supporting information on models, simulation methods and the phylogenetic

analysis of HIV data in Sweden. Includes details on simulating the virus genealogy, how the

correction for incomplete transmission chain were derived, the preprocess of the real epidemi-

ological data from Sweden, how the evaluation of control measures was performed based on

simulation, and the pseudo-code of the proposed algorithm.

(PDF)
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