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ABSTRACT
Objective  To test the hypothesis that the association 
of smoking with long-term colorectal cancer incidence 
may be stronger for tumours with higher mutational and 
neoantigen loads.
Methods and analysis  In the Nurses’ Health Study 
(1980–2012) and the Health Professionals Follow-
up Study (1986–2012), our novel prospective cohort 
incident-tumour biobank method (PCIBM) used 3053 
incident colorectal carcinoma cases including 752 
cases with whole-exome sequencing data. Using the 
multivariable duplication-method Cox regression model 
with the inverse probability weighting to adjust for the 
selection bias due to tissue availability, we assessed 
a differential association of cigarette smoking with 
colorectal carcinoma incidence by an exome-wide 
tumour mutational burden (e-TMB) or neoantigen load.
Results  The association of pack-years smoked 
with colorectal cancer incidence differed by e-TMB 
(P

heterogeneity<0.001). Multivariable-adjusted HRs for e-
TMB-high (≥10 mutations/megabase) tumours were 
1.28 (95% CI 0.72 to 2.28) and 2.56 (95% CI 1.61 to 
4.07) for 1–19 and ≥20 pack-years (vs 0 pack-years; 
P

trend<0.001), respectively. In contrast, pack-years 
smoked were not associated with e-TMB-low tumour 
incidence (P

trend=0.67). A similar differential association 
was observed for the neoantigen load (Pheterogeneity=0.017). 
The differential association by e-TMB appeared 
consistent in the strata of CpG island methylator 
phenotype status, BRAF mutation or lymphocytic 
infiltrates.
Conclusions  Smoking is more strongly associated 
with the long-term incidence of colorectal carcinoma 
harbouring higher mutational and neoantigen loads. Our 
PCIBM-based evidence supports the immunosuppressive 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Microsatellite instability (MSI)-high status is 
a clinical biomarker for response to immune 
checkpoint inhibitors in solid tumours.

	⇒ The association between cigarette smoking and 
colorectal cancer risk is stronger for MSI-high 
tumours than for non-MSI-high tumours.

	⇒ Whether the association of smoking with col-
orectal cancer incidence is stronger for tumours 
with higher mutational burdens (or neoantigen 
loads) independent of the MSI status remains 
uncertain.

WHAT THIS STUDY ADDS
	⇒ Using the prospective cohort incident-tumour 
biobank method (PCIBM), we found a stronger 
association of smoking with the incidence of 
colorectal cancer harbouring higher exome-
wide mutation and neoantigen loads.

	⇒ Our findings provide unique evidence for the 
interplay of smoking and tumour somatic mu-
tations (likely influencing antitumour immune 
response) during tumour development.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our PCIBM-based study supports the role of 
smoking cessation as an immune-enhancing in-
tervention for cancer-free persons and patients 
with colorectal cancer.

	⇒ Further research is warranted to examine the 
synergistic effect of smoking cessation and the 
immune checkpoint blockade in patients with 
cancer.
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effect of smoking and the potential of smoking cessation in improving 
antitumour immunity for cancer prevention and treatment.

INTRODUCTION
Immunotherapy has become a major therapeutic modality 
in clinical oncology. Microsatellite instability (MSI)-high 
status currently serves as a reliable clinical biomarker for 
response to the immune checkpoint blockade in solid 
tumours.1–5 The therapeutic responsiveness of MSI-high 
tumours may be attributable to an increased abundance 
of immunogenic neopeptides (‘neoantigens’), some 
of which directly stimulate the immune response.6–9 
In addition, tumour mutation burden (TMB, typically 
measured as the number of nonsynonymous mutations 
per megabase sequenced) can be used as another tumour 
biomarker separate from the MSI status.10 11 Identi-
fying nonsynonymous somatic mutations (and resulting 
neoantigens) throughout the exome requires data from 
whole exome, genome or transcriptome sequencing on 
a pair of tumour and normal specimens. As such, omics 
sequencing technologies are increasingly utilised in clin-
ical practice. Exome-wide TMB (referred to as ‘e-TMB’ 
hereafter) and neoantigens (rather than MSI status) will 
be clinical biomarkers for response to immunotherapy. 
For tumour immunogenicity measurements, e-TMB 
is superior to commonly used TMB based on targeted 
sequencing assays of selected cancer-associated genes 
because gain or loss of function driver mutations in those 
cancer-associated genes have high selection pressures 
during tumour evolution.10–12

Cigarette smoking is a modest risk factor for colorectal 
carcinomas.13–16 Although cigarette smoke is a known 
mutagen linked to the ‘smoking mutational signature,’17 18 
this signature has not been observed in colorectal carci-
noma. Epidemiological studies have consistently shown 
a stronger association of smoking with colorectal cancer 
incidence for MSI-high tumours than for non-MSI-high 
tumours.13–16 There appears to be an even stronger asso-
ciation of smoking with MSI-high colorectal carcinoma 
containing fewer T cells, supporting the immunosup-
pressive effects of smoking that likely play a pathogenic 
role in MSI-high colorectal tumours.19 Considering that 
neoantigens (rather than MSI-high status per se) directly 
stimulate antitumour immune response, we hypothesised 
that the association of smoking with long-term colorectal 
cancer incidence might be stronger for tumours with 
higher levels of e-TMB and neoantigen loads.

Using two large prospective cohort studies in the USA 
with data on long-term smoking habit and whole-exome 
sequencing (WES) of colorectal cancer and matched 
normal tissue, we examined longitudinally updated pack-
years smoked and the long-term incidence of colorectal 
carcinomas subclassified by e-TMB or neoantigen loads. 
We applied the prospective cohort incident-tumour 
biobank method (PCIBM)20 21 to decades-long prospec-
tive collection of comprehensive lifestyle data and tumour 
genomic profiling. The current study represents the 

first prospective investigation of longitudinally updated 
smoking habit in relation to the long-term incidence 
of colorectal carcinomas classified by somatic genomic 
profiles based on WES.

MATERIALS AND METHODS
Study population
We used the PCIBM20 21 on data from two ongoing 
prospective cohort studies in the USA, the Nurses’ Health 
Study (NHS, 121 700 women aged 30–55 years followed 
since 1976) and the Health Professionals Follow-up Study 
(HPFS, 51 529 men aged 40–75 years followed since 1986) 
(table  1 and figure  1).22 23 Using mailed biennial ques-
tionnaires, participants have reported lifestyle factors 
including smoking behaviour and newly diagnosed 
diseases. The response rate has exceeded 90% for each 
follow-up questionnaire cycle in both cohorts. At the 
baseline (1980 for the NHS and 1986 for the HPFS), we 
excluded participants who did not return the initial food 
frequency questionnaire, left a large number of items 
blank (>10 of 61 items for the NHS and >70 of 131 items 
for the HPFS), reported unreasonable total calorie intake 
(<600 or >3500 calories/day for women, and <800 or >4200 
calories/day for men), or reported a history of inflamma-
tory bowel disease. We additionally excluded participants 
with a history of cancer except for non-melanoma skin 
cancer to rule out the possibility of metastatic tumours to 
the colorectum and that of biases derived from lifestyle 
alterations due to cancer diagnosis. Participants were 
followed until death or the end of follow-up (1 June 2012 
for the NHS; and 31 January 2012 for the HPFS), which-
ever came first.

Assessment of smoking behaviour
The details of smoking behaviour were assessed as 
reported previously.19 24 In 1976 (the NHS) and 1986 (the 
HPFS), participants reported the age when they began 
smoking (and ceased smoking, if applicable), as well as 
the average daily consumption of cigarettes. Participants 
have updated current smoking status and daily cigarette 
consumption every 2 years. We calculated cumulative 
pack-years smoked (average daily consumption of ciga-
rette packs multiplied by the number of years smoked) at 
the baseline and every 2 years thereafter.

Acquisition of colorectal cancer cases
In both cohorts, colorectal carcinoma cases were 
identified based on biennial questionnaires. For 
non-respondents, colorectal cancer cases and deaths 
were ascertained through family members, US post 
office authorities and/or the National Death Index. 
Study physicians, blinded to exposure data, reviewed 
medical records of identified colorectal cancer cases 
to confirm the diagnosis and record tumour charac-
teristics (eg, anatomical location and disease stage). 
We included both colon and rectal carcinomas based 
on the colorectal continuum model.25 We collected 
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formalin-fixed paraffin-embedded (FFPE) tissue 
blocks of surgically resected colorectal tumours from 
hospitals throughout the USA, and the study pathol-
ogist (SO) confirmed a pathological diagnosis of 
colorectal carcinoma. During the follow-up of the 

participants, we documented 3053 incident colorectal 
cancer cases, including 752 cases with available WES 
data. There were no substantial differences in clin-
ical data between cases with and without WES data 
(online supplemental table S1).

Table 1  Age-standardised characteristics of participants according to cumulative pack-years smoked in the Nurses’ Health 
Study (NHS, 1980–2012) and the Health Professionals Follow-up Study (HPFS, 1986–2012)

Women (NHS) Men (HPFS)

Cumulative pack-years smoked Cumulative pack-years smoked

Characteristic* 0 1–19 ≥20 0 1–19 ≥20

Person-years 1 125 146 705 774 661 296 483 866 231 160 266 200

Age, years 60.9 (11.5) 59.4 (11.5) 61.6 (10.7) 63.2 (11.3) 63.3 (11.1) 66.6 (10.6)

Family history of colorectal cancer 13% 14% 13% 13% 12% 12%

History of diabetes 7.4% 6.8% 7.8% 6.8% 7.3% 9.3%

Body mass index, kg/m² 25.5 (4.7) 25.2 (4.6) 25.1 (4.5) 25.6 (3.4) 25.7 (3.2) 26.3 (3.6)

Postmenopause 76% 76% 82% – – –

Menopausal hormone therapy 28% 29% 24% – – –

History of colonoscopy/sigmoidoscopy 40% 43% 36% 54% 56% 50%

Regular use of multivitamins 53% 54% 48% 44% 45% 43%

Regular use of aspirin 39% 40% 41% 46% 49% 49%

Regular use of other NSAIDs 17% 19% 18% 15% 17% 16%

Physical activity, METS-hours/week 16.5 (16.8) 18.0 (18.8) 15.1 (16.3) 26.9 (23.6) 27.0 (22.6) 22.3 (21.1)

Total calorie intake, kcal/day 1702 (443) 1677 (432) 1645 (439) 1983 (554) 1965 (550) 1980 (560)

Alcohol intake, g/day 3.8 (6.9) 6.9 (8.9) 8.7 (11.8) 8.0 (11.1) 12.5 (13.8) 15.1 (16.9)

Red and processed meat intake, servings/week 6.6 (3.7) 6.3 (3.5) 6.8 (3.7) 6.1 (4.3) 6.1 (4.2) 7.2 (4.8)

Total calcium intake, mg/day 939 (357) 953 (352) 887 (350) 957 (375) 932 (367) 897 (374)

Total folate intake, μg/day 429 (212) 439 (212) 398 (204) 552 (253) 560 (257) 511 (250)

Alternate Healthy Eating Index 2010† 46.1 (9.6) 47.5 (9.6) 45.3 (9.6) 48.6 (10.1) 49.0 (9.9) 46.6 (10.1)

*All variables other than age were standardised to age distribution of each cohort. Mean (SD) was presented for continuous variables.
†Without alcohol intake.
METS, Metabolic Equivalent Task Score; NSAID, non-steroidal anti-inflammatory drug.

Figure 1  Flow diagram of the study population in the Nurses’ Health Study (NHS) and the Health Professionals Follow-up 
Study (HPFS). In the current study based on the PCIBM, we included 86 354 women and 44 786 men who were followed for 
decades and examined the incidence of colorectal carcinomas subclassified by exome-wide tumour mutational burden or 
neoantigen loads. To reduce selection bias due to tissue availability, we applied the inverse probability weighting for 752 cases 
with available WES data using the data from 3053 cases. IBD, inflammatory bowel disease.

https://dx.doi.org/10.1136/bmjonc-2025-000787
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Analyses of colorectal cancer tissue
The study pathologist (SO), blinded to other data, 
reviewed H&E-stained tissue sections and recorded patho-
logical features including four patterns of lymphocytic 
reaction (tumour-infiltrating lymphocytes, intratumoural 
periglandular reaction, peritumoural lymphocytic reac-
tion and Crohn’s-like lymphoid reaction).26 27 Tumour 
status of MSI, CIMP and BRAF mutation was assessed as 
previously described.25 28 29 Tumour MSI status was assessed 
using PCR of 10 microsatellite markers (D2S123, D5S346, 
D17S250, BAT25, BAT26, BAT40, D18S55, D18S56, 
D18S67 and D18S487), and MSI-high was defined as the 
presence of instability in ≥30% of the markers.25

WES and downstream analyses
The study pathologist (SO) marked tumour areas in 
guide H&E-stained slides. Using the guide H&E slides 
to ensure high tumour cellularity, DNA was extracted 
from tumour areas in sections of archival FFPE blocks.30 
Matched normal DNA was obtained from normal colon 
tissue that was grossly away from the tumour. As previ-
ously described,31 we performed WES on DNA from 
tumour and matched normal tissue pairs with the mean 
target coverage of 85× and the mean of 49 million 
paired-end reads across all samples. To remove artefacts 
resulting from hydrolytic deamination of cytosine to 
uracil in FFPE samples, we filtered out C to T transition 
mutations as possible FFPE-specific artefacts using the 
tool described elsewhere.32 To further filter out spurious 
single-nucleotide variant calls, we used BWA (Burrows-
Wheeler Aligner)-MEM (http://bio-bwa.sourceforge.​
net/) to realign sequenced reads associated with the 
mutations to a set of sequences derived from the human 
reference assembly. e-TMB was defined as the number of 
non-synonymous mutations per megabase covered in the 
whole exome. We also calculated TMB based on the panel 
of selected cancer-associated genes (called ‘targeted 
TMB’), that is, 447 genes used in clinical practice at the 
Brigham and Women’s Hospital (listed in online supple-
mental table S2). The neoantigen load (ie, the number 
of mutated proteins that likely give rise to immunogenic 
peptides) was calculated by counting peptides that were 
predicted to bind to HLA molecules with high affinity 
(the rank <0.5%), as previously described.33 Using NetM-
HCpan (V.4.1),33 we predicted the binding affinities of 
9-mer and 10-mer mutant peptides found in tumours to 
the corresponding HLA alleles inferred by the POLYS-
OLVER algorithm.34 e-TMB was categorised as high and 
low at the cut-off point of 10 mutations per megabase that 
was adopted for the US Food and Drug Administration 
approval of pembrolizumab for TMB-high tumours and 
has been commonly used.35 36 Given that TMB-high cases 
represented 13% of all cases with available WES data, 
the neoantigen load was categorised as high (≥326 per 
exome, the top quartile) and low (<326 per exome, the 
other quartiles). We examined the single-base substitu-
tion (SBS) signatures,17 including SBS11 (alkylating signa-
ture) associated with red meat consumption in individuals 

developing colorectal cancer.31 SBS4 (smoking signature) 
characterised by C–A nucleotide transversions was specif-
ically examined.

Statistical analysis
All statistical analyses were performed using SAS software 
(V.9.4, SAS Institute), and all p values were two-sided. 
We used the two-sided α level of 0.005, as recommended 
by expert statisticians.37 Our primary hypothesis testing 
was an assessment of the heterogeneity between associa-
tions of cumulative pack-years smoked (continuous with 
a ceiling at 50 pack-years) with the incidence of colorectal 
cancer subclassified by e-TMB or neoantigen loads (high 
vs low).

We used the Cox proportional hazards regression model 
to estimate the HR for colorectal cancer incidence. To 
assess differential associations of smoking variables with 
the incidence of colorectal cancer subclassified by e-TMB 
or neoantigen loads, we used the duplication-method 
Cox regression model for competing risks.38 Using the 
likelihood ratio test (1 df), we examined a heterogeneity 
trend across tumour subtypes in a statistical trend of the 
association across smoking exposure levels.39 The multi-
variable Cox regression model included the covariates 
described in table  2. We treated all exposure variables 
as time-dependent to account for changes over time. To 
reduce intraindividual variation and consider long-term 
influences, we used the cumulative average for rele-
vant variables, which was the mean of all available data 
prior to each questionnaire cycle. The Cox regression 
models were stratified by sex (for pooled analyses), age 
and calendar year of the questionnaire cycle. Colorectal 
cancer cases without WES data were treated as censored 
at the time of cancer diagnosis.

To adjust for selection bias caused by the availability 
of WES data, we used the inverse probability weighting 
(IPW) method (figure 1).40 Using covariate data on the 
3053 incident colorectal cancer cases, we constructed 
the multivariable logistic regression model to calculate 
the cohort-specific probability of WES data availability 
in each patient. In the IPW-adjusted Cox regression 
model, each colorectal cancer patient with available 
WES data was weighted by the inverse of the probability. 
For example, when a patient with colorectal cancer with 
available WES data was estimated (based on the patient’s 
statuses of covariates) to have the data with a probability 
of 0.8, this patient was weighted by the inverse probability 
(ie, 1/0.8=1.25). Through this statistical approach, a bias 
due to the differential availability of WES data according 
to the covariate statuses was mitigated, increasing the 
representativeness of our sample of colorectal cancer 
cases and enhancing the generalisability of our results. 
Weights greater than the 95th percentile were truncated 
and set to the 95th percentile to reduce outlier effects. 
We confirmed that results with and without weight trun-
cation did not differ substantially (data not shown).

We conducted tests of heterogeneity between the two 
cohorts using the Q statistic and observed no statistically 
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significant heterogeneity (Pheterogeneity>0.009) in the asso-
ciations between cumulative pack-years smoked and the 
incidence of colorectal cancer subclassified by e-TMB or 
neoantigen loads. We, therefore, combined the cohorts 
with the adjustment for cohort (ie, sex) for further anal-
yses to increase statistical power.

Patient and public involvement
Patients and/or the public were not involved in the 
design, conduct, reporting or dissemination plans of this 
research.

RESULTS
Table  1 summarises age-standardised characteristics of 
the cohort participants (the histograms of cumulative 
pack-years smoked are presented in online supplemental 
figure S1). During 3 473 441 person-years follow-up of 
131 140 participants, we documented 3053 colorectal 
cancer cases including 752 cases with available WES 
data (online supplemental figure S2), which yielded 
e-TMB (non-synonymous mutation count per megabase; 
median, 1.6; IQR, 1.0–3.5 and total range, 0–152.0) and 

Table 2  Cumulative pack-years smoked and colorectal cancer incidence, overall and by exome-wide tumour mutational 
burden or neoantigen loads

Cumulative pack-years smoked

0 1–19 ≥20 Ptrend* Pheterogeneity†

Person-years 1 609 012 936 934 927 496

All colorectal cancer (n=752)

 � n 316 189 247

 � Age-adjusted HR (95% CI)‡ 1 (referent) 1.12 (0.94 to 1.35) 1.20 (1.02 to 1.43) 0.012 –

 � Multivariable HR (95% CI)‡§ 1 (referent) 1.15 (0.95 to 1.38) 1.16 (0.97 to 1.37) 0.080 –

Exome-wide tumour mutational burden¶ <0.001

 � Low (n=654)

 � n 286 169 199

 � Age-adjusted HR (95% CI)‡ 1 (referent) 1.11 (0.92 to 1.34) 1.08 (0.90 to 1.29) 0.36

 � Multivariable HR (95% CI)‡§ 1 (referent) 1.14 (0.94 to 1.38) 1.05 (0.87 to 1.27) 0.67

 � High (n=98)

 � n 30 20 48

 � Age-adjusted HR (95% CI)‡ 1 (referent) 1.24 (0.69 to 2.22) 2.61 (1.64 to 4.15) <0.001

 � Multivariable HR (95% CI)‡§ 1 (referent) 1.28 (0.72 to 2.28) 2.56 (1.61 to 4.07) <0.001

Neoantigen loads¶ 0.017

 � Low (n=564)

 � n 242 154 168

 � Age-adjusted HR (95% CI)‡ 1 (referent) 1.19 (0.97 to 1.45) 1.06 (0.87 to 1.30) 0.34

 � Multivariable HR (95% CI)‡§ 1 (referent) 1.22 (0.99 to 1.49) 1.03 (0.84 to 1.27) 0.62

 � High (n=188)

 � n 74 35 79

 � Age-adjusted HR (95% CI)‡ 1 (referent) 0.91 (0.60 to 1.36) 1.76 (1.27 to 2.42) <0.001

 � Multivariable HR (95% CI)‡§ 1 (referent) 0.95 (0.63 to 1.42) 1.73 (1.25 to 2.39) 0.002

*Ptrend was calculated using a linear trend test and cumulative pack-years smoked (continuous with a ceiling at 50 pack-years).
†Pheterogeneity was calculated using the likelihood ratio test (1 df) for the heterogeneity of binary subtype-specific associations of cumulative 
pack-years smoked (continuous with a ceiling at 50 pack-years) in multivariable models.
‡Inverse probability weighting was applied to reduce a potential selection bias due to the differential availability of whole-exome sequencing 
data (see ‘Statistical analysis’ subsection for details).
§The multivariable Cox regression model included family history of colorectal cancer (present vs absent), body mass index (continuous with 
a ceiling at 35 kg/m2), history of colonoscopy/sigmoidoscopy (present vs absent), use of aspirin or other non-steroidal anti-inflammatory 
drugs (regular use vs non-use), physical activity (continuous with a ceiling at 50 metabolic equivalent task score-hours/week), alcohol 
intake (continuous with a ceiling at 30 g/day), red and processed meat intake (continuous with a ceiling at 14 servings/week) and total folate 
intake (continuous with a ceiling at 1000 µg/day). For women, we additionally included menopause status/menopausal hormone therapy 
(premenopause vs postmenopause with never, past or current use of menopausal hormone therapy).
¶e-TMB was categorised into high (≥10 per megabase) and low (<10 per megabase). Based on all colorectal cancer cases with available 
whole-exome sequencing data, neoantigen loads were categorised into high (≥326 per exome, the top quartile) and low (<326 per exome, the 
other quartiles).
e-TMB, exome-wide tumour mutational burden.

https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
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neoantigen loads (median, 202; IQR, 137–326 and total 
range, 0–11,110). Tumour MSI status, e-TMB and neoan-
tigen loads correlated with each other (online supple-
mental figure S3). Cumulative pack-years smoked were 
not associated with the smoking signature (online supple-
mental figure S4). The levels of e-TMB and neoantigen 
loads were not correlated with the smoking signature 
(online supplemental figure S5). Cumulative pack-years 
smoked were associated with the incidence of colorectal 
cancer using all of the incident cases, and this association 
appeared persistent regardless of WES data availability 
(online supplemental table S3). For further incidence 
analyses (except for a sensitivity analysis), we used the 
IPW method and the 3053 cases to adjust for selection 
bias due to tissue data availability.

In our primary hypothesis testing, the association of 
cumulative pack-years smoked with colorectal cancer inci-
dence differed by e-TMB (Pheterogeneity<0.001, table  2 and 
figure 2). Compared with never smokers, multivariable-
adjusted HRs for TMB-high colorectal cancer in indi-
viduals who smoked 1–19 and ≥20 pack-years were 1.28 
(95% CI 0.72 to 2.28) and 2.56 (95% CI, 1.61 to 4.07), 
respectively (Ptrend<0.001). In contrast, cumulative pack-
years smoked were not significantly associated with the 
incidence of colorectal cancer containing lower levels 
of e-TMB (Ptrend=0.67). A similar differential association 
was observed for neoantigen loads (Pheterogeneity=0.017, 
table  2). Our findings in each cohort are presented in 
online supplemental table S4. Our sensitivity analyses 
without IPW adjustment yielded similar results to those 
with IPW adjustment (online supplemental table S5). As 
targeted sequencing of selected cancer-associated genes 
has become common in clinical practice, TMB measures 
calculated from such targeted sequencing analyses are 
increasingly used. Thus, we calculated ‘targeted TMB’ 
based on a clinical panel of cancer-associated genes 
used in the Brigham and Women’s Hospital, which was 
only moderately correlated with e-TMB (correlation 
coefficient, 0.62; online supplemental figure S6). We 
conducted analyses using ‘targeted TMB’ and found 
similar but attenuated results compared with those using 
e-TMB (online supplemental table S6).

In secondary analyses, we examined smoking status 
(current vs past vs never) and duration of smoking cessa-
tion in relation to the incidence of colorectal carcinomas 
subclassified by e-TMB or neoantigen loads. Compared 
with never smoking, former and current smoking was 
associated with a higher incidence of colorectal cancer 
harbouring high levels of e-TMB but not with colorectal 
cancer harbouring lower levels of e-TMB (Pheteroge-

neity=0.003, online supplemental table S7). Similarly, an 
association of the duration of smoking cessation with the 
incidence of colorectal carcinomas was stronger for carci-
nomas harbouring high levels of e-TMB (Pheterogeneity=0.001, 
online supplemental table S8).

We conducted secondary subgroup analyses. In an 
analysis stratified by tumour MSI status, we observed a 
stronger association of cumulative pack-years smoked 

with the incidence of tumours containing higher levels 
of e-TMB or neoantigen loads in the stratum of MSI-high 
tumours (table  3), though the differential associations 
did not reach statistical significance. Our previous anal-
yses suggest that smoking status may be differentially asso-
ciated with the incidence of colorectal cancer by tumour 
status of CIMP, BRAF mutation and T lymphocyte infil-
trates.14 19 Therefore, we conducted additional analyses 
stratified by tumour status of CIMP, BRAF mutation or 
lymphocytic reaction, which yielded similar differential 
associations, though statistical power was limited in the 
respective strata (online supplemental table S9).

DISCUSSION
Because colorectal carcinoma is a group of neoplasms 
that evolve through heterogeneous sets of genetic and 
epigenetic alterations influenced by lifestyle and envi-
ronmental factors,41 the molecular pathological epide-
miology (MPE) approach is useful to gain insights into 
the interplay of lifestyle exposures and tumour molecular 
alterations during the tumourigenic process.42–44 Using 
the PCIBM on data on long-term smoking habit and 
tumour WES,20 21 our study has shown that longitudinally 
updated pack-years smoked are associated with higher 
long-term incidence of colorectal cancer harbouring high 
levels of e-TMB or neoantigen loads, but not colorectal 
cancer containing low levels of these parameters. Such 
a differential association appeared to persist in MSI-high 
colorectal cancer. The MSI-high status has been shown 
to influence immune response through non-synonymous 
mutations and neoantigen production.6 45 46 Our find-
ings suggest that tobacco compounds may make an 
immunosuppressive microenvironment that can favour 
the growth of colorectal tumours with a high burden of 
nonsynonymous mutations and neoantigens, providing 
further evidence for the suppressive effect of smoking on 
antitumour immunity.

The immune checkpoint inhibitors that target the 
CD274 (PDCD1 ligand 1, PD-L1)-PDCD1 (programmed 
cell death 1, PD-1) coinhibitory pathway have shown great 
promise in treating tumours, but their effectiveness has 
been confined to a limited subset of tumours including 
MSI-high tumours.1–5 Certain neoantigens (ie, cancer-
specific antigens resulting from somatic mutations) are 
considered to be presented by major histocompatibility 
complex molecules and recognised as non-self-epitopes 
by T lymphocytes.7 8 Hence, compared with the MSI-
high status, TMB and neoantigen loads are considered 
to be better predictors for tumour immunogenicity and 
responsiveness to the immune checkpoint blockade. 
Emerging evidence supports the predictive ability of TMB 
for clinical benefits from the immune checkpoint inhib-
itors in non-MSI-high tumours.47–49 Given the increasing 
availability of tumour omics profiling in clinical practice, 
e-TMB and neoantigen loads will likely replace tumour 
MSI status as a biomarker for the effectiveness of the 
immune checkpoint blockade.

https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787
https://dx.doi.org/10.1136/bmjonc-2025-000787


7Hamada T, et al. BMJ Oncology 2025;4:e000787. doi:10.1136/bmjonc-2025-000787

Original researchOpen access

Cigarette smoke contains thousands of DNA muta-
gens, which are considered to cause a distinct muta-
tional pattern (referred to as the ‘smoking signature’) 

characterised by a high frequency of C–A nucleotide trans-
versions.17 18 However, the smoking mutational signature 
commonly observed in lung carcinoma has not been well 

Figure 2  Forest plot of multivariable HRs for the incidence of colorectal cancer classified by exome-wide tumour mutational 
burden (A) or neoantigen loads (B) according to cumulative pack-years smoked. The dot indicates a stratum-specific 
multivariable HR, and the horizontal bar indicates 95% CI. The HRs were adjusted for the same set of covariates as table 2, and 
inverse probability weighting was applied to reduce a potential selection bias due to the differential availability of whole-exome 
sequencing data (see ‘Statistical analysis’ subsection for details). Ptrend was calculated using a linear trend test and cumulative 
pack-years smoked (continuous with a ceiling at 50 pack-years). Pheterogeneity was calculated using the likelihood ratio test (1 df) 
for the ordinal trend heterogeneity of quartile subtype-specific associations of cumulative pack-years smoked (continuous with 
a ceiling at 50 pack-years). e-TMB, exome-wide tumour mutational burden.
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Table 3  Cumulative pack-years smoked and colorectal cancer incidence by exome-wide tumour mutational burden or 
neoantigen loads in the strata of tumour microsatellite instability (MSI) status

Cumulative pack-years smoked

0 1–19 ≥20 Ptrend* Pheterogeneity†

MSI-high

Exome-wide tumour mutational burden‡ 0.14

 � Low (n=61)

 � n 20 15 26

 � Age-adjusted HR (95% CI)§ 1 (referent) 1.35 (0.69 to 2.65) 2.00 (1.11 to 3.62) 0.053

 � Multivariable HR (95% CI)§¶ 1 (referent) 1.35 (0.68 to 2.65) 2.01 (1.11 to 3.66) 0.045

 � High (n=60)

 � n 18 10 32

 � Age-adjusted HR (95% CI)§ 1 (referent) 1.10 (0.50 to 2.44) 2.94 (1.63 to 5.29) < 0.001

 � Multivariable HR (95% CI)§¶ 1 (referent) 1.11 (0.50 to 2.44) 2.99 (1.63 to 5.49) < 0.001

Neoantigen loads‡ 0.22

 � Low (n=60)

 � n 22 10 28

 � Age-adjusted HR (95% CI)§ 1 (referent) 0.83 (0.39 to 1.78) 1.96 (1.11 to 3.45) 0.036

 � Multivariable HR (95% CI)§¶ 1 (referent) 0.83 (0.39 to 1.77) 1.97 (1.10 to 3.51) 0.034

 � High (n=61)

 � n 16 15 30

 � Age-adjusted HR (95% CI)§ 1 (referent) 1.76 (0.86 to 3.61) 3.08 (1.67 to 5.71) < 0.001

 � Multivariable HR (95% CI)§¶ 1 (referent) 1.77 (0.87 to 3.61) 3.15 (1.68 to 5.90) < 0.001

Non-MSI-high

Exome-wide tumour mutational burden‡ 0.73

 � Low (n=292)

 � n 118 96 78

 � Age-adjusted HR (95% CI)§ 1 (referent) 1.51 (1.15 to 1.97) 1.04 (0.78 to 1.39) 0.47

 � Multivariable HR (95% CI)§¶ 1 (referent) 1.56 (1.19 to 2.04) 1.00 (0.74 to 1.34) 0.83

 � High (n=292)

 � n 137 60 95

 � Age-adjusted HR (95% CI)§ 1 (referent) 0.83 (0.61 to 1.13) 1.05 (0.81 to 1.37) 0.85

 � Multivariable HR (95% CI)§¶ 1 (referent) 0.86 (0.63 to 1.16) 1.01 (0.77 to 1.32) 0.80

Neoantigen loads‡ 0.18

 � Low (n=292)

 � n 117 88 87

 � Age-adjusted HR (95% CI)§ 1 (referent) 1.43 (1.08 to 1.88) 1.15 (0.87 to 1.52) 0.15

 � Multivariable HR (95% CI)§¶ 1 (referent) 1.46 (1.11 to 1.93) 1.10 (0.82 to 1.46) 0.36

 � High (n=292)

 � n 138 68 86

 � Age-adjusted HR (95% CI)§ 1 (referent) 0.93 (0.69 to 1.24) 0.97 (0.74 to 1.27) 0.62

 � Multivariable HR (95% CI)§¶ 1 (referent) 0.96 (0.72 to 1.29) 0.93 (0.71 to 1.23) 0.35

*Ptrend was calculated using a linear trend test and cumulative pack-years smoked (continuous with a ceiling at 50 pack-years).
†Pheterogeneity was calculated using the likelihood ratio test (1 df) for the heterogeneity of binary subtype-specific associations of cumulative pack-years 
smoked (continuous with a ceiling at 50 pack-years) in multivariable models.
‡The number of MSI-high tumours containing low levels of e-TMB (or neoantigen loads) was quite small. Therefore, e-TMB was categorised into high 
and low based on stratum-specific median cut-off points (13 and 1.3 per megabase for MSI-high and non-MSI-high tumours, respectively). Similarly, 
neoantigen loads were categorised into high and low based on stratum-specific median cut-off points (2956 and 177 per exome for MSI-high and 
non-MSI-high tumours, respectively).
§Inverse probability weighting was applied to reduce a potential selection bias due to the differential availability of whole-exome sequencing data 
(see ‘Statistical analysis’ subsection for details).
¶The multivariable Cox regression model was adjusted for the same set of covariates as table 2.
e-TMB, exome-wide tumour mutational burden.;
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described in colorectal carcinoma. Tobacco compounds 
may promote carcinogenesis in various organ systems, 
and their mutagenic and immunosuppressive effects 
have been proposed as mechanisms of smoking-induced 
carcinogenesis.50–53 Nicotine, a major component of 
cigarette smoke, has been shown to impair the functions 
of dendritic cells and NK cells, which may promote the 
immune evasion of tumour cells.51 A previous study has 
shown a stronger association of smoking with colorectal 
cancer incidence for tumours with lower-level T cell infil-
trates.19 Our study suggests that the immunosuppressive 
effect of smoking may contribute to the proliferation 
and survival of highly immunogenic tumour cells with 
abundant somatic mutations. Our analyses suggest that 
cumulative pack-years smoked or tumour mutational and 
neoantigen loads were not strongly correlated with the 
smoking signature in colorectal cancer. These findings 
further suggest that the carcinogenic effect of cigarette 
smoke is independent of its role in inducing mutations 
in the colorectal epithelium, which contrasts with the 
lung epithelium where smoking exerts its mutagenic 
effects more directly.17 18 Future research should examine 
whether prediagnosis smoking status is associated with the 
effectiveness of immunotherapy for colorectal cancer and 
whether the cessation of smoking may improve the ther-
apeutic efficacy. Given the stronger association between 
cumulative pack-years smoked (or smoking cessation 
(inverse association)) and the incidence of colorectal 
cancer having higher immunogenicity, immune check-
point inhibitors with preceding or in place of cytotoxic 
chemotherapy may be tested for efficacy in smokers 
diagnosed with TMB-high colorectal cancer. In addition, 
smoking cessation may be tested to determine whether it 
can augment the effect of immune checkpoint inhibitors 
for TMB-high colorectal cancer.

The current study conducted integrative MPE anal-
yses to assess risk factor exposures and tumour molec-
ular features.42 43 54 55 This MPE approach has been 
used to examine smoking in relation to cancer inci-
dence/risk by tumour subtypes according to molecular 
pathology,13–16 56 faecal microbiome57 and immune cell 
infiltrates,19 24 58 to shed light on the carcinogenic effects 
of tobacco smoke. Furthermore, the current study took 
advantage of the PCIBM,20 21 which has allowed for 
assessment of long-term exposures/cancer incidence by 
tumour subtypes.13–16 19 24 56 58

Obtaining data on exome-scale TMB and neoantigen 
loads requires high-throughput sequencing technologies 
and computational analysis platforms such that no prior 
prospective study has examined the association of epide-
miological factors with the incidence of colorectal cancer 
subclassified by e-TMB or neoantigen loads.10 11 In clinical 
practice, targeted sequencing assays for selected cancer-
associated gene panels are increasingly used, and the 
term ‘TMB’ is commonly used for a mutational frequency 
in the selected genes. However, pathogenic mutations 
in those selected cancer-associated genes are subject to 
substantial selection pressure, which causes imprecision 

when estimating the e-TMB, neoantigen load and tumour 
immunogenicity.10 11 In addition, gene panels in targeted 
sequencing assays documented in the literature differ 
from study to study, which makes cross-comparisons chal-
lenging. To avoid these problems, we used WES to capture 
exome-wide mutational profile and better estimate the 
tumour immunogenicity. Because of the increasing avail-
ability and reducing costs of omics assays, personalised 
treatment of cancer patients based on comprehensive 
exomic mutational profiling will likely be implemented 
in the future. In the I-PREDICT studies, patients with 
treatment-naïve or refractory malignancy were treated 
with agents matched for identified molecular alterations, 
and targeting a larger fraction of the alterations resulted 
in better survival outcomes.59 60 In parallel with the trend 
of precision oncology, our study highlights the potential 
of the exome-wide assessment of tumour immunogenicity 
in epidemiological research.

The current study has limitations. First, there is the 
possibility of unmeasured and/or residual confounding. 
Nonetheless, we adjusted for many established risk factors 
of colorectal cancer in our multivariable models, and this 
adjustment did not alter our findings materially from 
those of the univariable analyses. It is also noted that 
randomising smoking exposure in a trial study to elim-
inate confounding would be unethical and thus impos-
sible. Second, the neoantigen loads were estimated using 
in silico methods that depended on HLA class I predic-
tions. Using the method, a previous study found that 
the neoantigen load from WES data robustly correlated 
with lymphocytic reaction levels in colorectal cancer.6 
Nonetheless, the data on neoantigen load had certain 
measurement errors and should be replicated in inde-
pendent studies. Moreover, we could examine e-TMB 
as another measure of tumour immunogenicity, which 
yielded similar data to those using the neoantigen loads. 
Third, WES data were not available for many colorectal 
cancer cases within the cohorts, which might have caused 
selection bias. However, we used all of the 3053 incident 
colorectal cancers and the IPW method to adjust for the 
selection bias,40 and analyses with and without the IPW 
adjustment yielded similar results. Fourth, most study 
participants were Caucasian health professionals, and 
therefore, our findings need to be validated in indepen-
dent populations.

The current study has notable strengths. First, our 
prospective cohort design enabled us to obtain longi-
tudinally updated data on smoking habits and poten-
tial confounders, while eliminating differential recall 
bias between cancer cases and cancer-free individuals. 
Second, the prospective study design also enabled us to 
use the 3053 incident colorectal cancers to adjust for 
selection bias due to the availability of the WES data. 
Third, in contrast to commonly used targeted sequencing 
assays, WES analyses could yield exome-scale TMB and 
neoantigen loads. Fourth, integrated MPE analyses using 
the PCIBM on the prospective cohort studies with the 
WES data in incident tumours could assess not only the 
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longitudinal effect of smoking on the long-term inci-
dence of WES-based tumour subtypes but also statistical 
heterogeneity between the subtypes. Fifth, our database 
also enabled us to evaluate results after controlling for 
other key tumour characteristics such as MSI status and 
T cell infiltrates. Sixth, our incident colorectal cancer 
cases represented a collection of patients who visited 
hundreds of different hospitals throughout the USA, 
which provided higher generalisability compared with 
studies based on only a limited number of hospitals.

CONCLUSIONS
The current study demonstrated a stronger association 
of smoking with colorectal cancer incidence for tumours 
containing higher numbers of exome-wide somatic muta-
tions. Smoking may contribute to the development of 
colorectal tumours, especially those with high frequen-
cies of somatic mutations, possibly through its effect on 
the tumour immune microenvironment. Future studies 
should examine whether cessation of smoking may stimu-
late antitumour immune response and improve response 
to immune checkpoint inhibitors. As omics analysis plat-
forms are increasingly available and cost-efficient for 
routine tumour pathological testing, the current study 
will inform the effort of implementing tumour exome 
sequencing analyses in epidemiological research and clin-
ical practice.
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