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Leach-proof magnetic thrombolytic 
nanoparticles and coatings of 
enhanced activity
Andrey S. Drozdov1, Vasiliy V. Vinogradov1, Ivan P. Dudanov1,2 & Vladimir V. Vinogradov1

Despite the fact that magnetic thrombolytic composites is an emerging area, all known so far systems 
are based on the similar mechanism of action: thrombolytic enzyme releases from the magnetic 
carrier leaving non-active matrix, thus making the whole system active only for a limited period of 
time. Such systems often have very complex structure organization and composition, consisting of 
materials not approved for parenteral injection, making them poor candidates for real clinical trials 
and implementation. Here we report, for the first time, the production of thrombolytic magnetic 
composite material with non-releasing behavior and prolonged action. Obtained composite shows good 
thrombolytic activity, consists of fully biocompatible materials and could be applied as infinitely active 
thrombolytic coatings or magnetically-targetable thrombolytic agents.

Atherothrombosis is the principal cause of death worldwide. Heart attacks and strokes are usually acute diseases 
(i.e., the most severe complications of atherosclerosis) and occur mainly as a result of a blockage that prevents 
blood flow to the heart or brain1. One of the least traumatic and relatively efficient methods to combat thrombosis 
is a thrombolytic therapy based on enzymatic formulations2. However, rapid degradation in the body (usually 
5–15 minutes) and drawback effects, such as blood pressure reduction (in about 40% of cases) and development of 
hemorrhagic complications (in about 10% of cases), including lethal outcome3, limits their application. All of these 
aspects formed the basis for the development of new thrombolytic systems with targeted and prolonged effect.

The greatest popularity among such transport systems was gained by magnetic nanoparticles based on bio-
compatible magnetite and maghemite4–6. Such compositions can be localized at a given point by means of a 
strong external magnetic field. However, all of these approaches stem from the fact that thrombolytic enzyme is 
released over time, eliminating the possibility of further magnetic manipulation. In particular, the approaches 
of co-entrapping magnetic nanoparticles and thrombolytic enzymes in biodegradable matrices of polyethylene 
glycol7, polyacrylic acid8 or albumin9 were previously studied. Alternatively, core-shell type thrombolytic nanos-
tructures implying prolonged release of an enzyme providing therapeutic effect10–13 were developed as well. Other 
methods consider covalently cross-linking enzymes with a magnetic carrier surface14–16, but in this case a throm-
bolytic enzyme is rapidly inactivated, since it remains vulnerable to the body’s immune system. Additionally, 
such cross-linking leads to a change in the structure of the native enzyme and results in a decrease in its activity.

In our previous studies, we started to develop a new concept for the production of thrombolytic sol-gel mate-
rials17, by the direct entrapment of thrombolytic enzyme into boehmite sol-gel matrix. By using this approach 
it is possible to obtain nanocomposites capable of functioning for a long time without loss of activity, since a 
therapeutic enzyme is unable to release from a matrix, being protected from adverse external factors, but it is able 
to perform its catalytic functions by successfully interacting with the molecules of plasminogen, converting it 
into plasmin which is relatively active with respect to fibrin clots. Such nanocomposite organisation proved to be 
very promising for creation of stationary thrombolytic cover, such as thrombolytic coatings for vascular graft18. 
For further development of this concept, we put a simple question: Is it possible to create magnetically controlled 
thrombolytic nanoparticles with prolonged effect organized by the same principle? 

In this article, we present a procedure for the preparation of the thrombolytic magnetic nanoparti-
cles produced by entrapment methodology and provide information on their properties for the first time. 
Nanocomposites were obtained (for details, see experimental part) via co-condensation of urokinase-type plas-
minogen activator (uPA), which is commonly used in clinical practice, and magnetite sol prepared by the recently 
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published method implying the production of high purity magnetite sol without using stabilizers and additives19. 
As a result of irreversible sol-gel transition, a xerogel nanoporous matrix forms, whose nanopores entrap an 
enzyme, and such a matrix can either be used as an enzymatically active coating or crushed to yield bioactive 
nanocomposite particles20. The matrix itself is made up of regular-shaped truncated octahedra with an average 
diameter of 10 nm (Fig. 1a), possessing well-developed porous nanoarchitecture and a specific surface area of 
120 m2/g (see ESI Fig. 1S for details of N2 physisorption data). Due to controlled co-condensation of uPA and a 
magnetite matrix, organized nanostructure forms, in which the enzyme molecules may be located in the depth of 
the matrix or in the surface and subsurface layer. According to our previous observations18, subsurface location 
allows the enzyme to interact with the macromolecular substrate, in our case plasminogen, preventing its release 
from the matrix at the same time.

In the design of the thrombolytic nanocomposite urokinase-type plasminogen activator was selected because of 
its structure and mechanism of action. This class of plasminogen activators consists of three distinct domains and 
can convert plasminogen to plasmin directly by cleaving the Arg561-Val562 bond21. It does not require the forma-
tion of the enzyme-plasminogen activator complex, as is the case for streptokinase21. The structure of the enzyme 
is such that upon entrapment it is likely to be oriented with more hydrophobic growth-factor like domain and krin-
gle domains22 towards the matrix, which ensures more energetically favorable state, whereas the hydrophilic and 
positively charged catalytic domain (matrix is also positively charged, see Fig. 1b) faces the pores and, accordingly, 
solvent molecules, providing the possibility of interaction with the substrate22. The size of the enzyme is comple-
mentary to the matrix pore size (urokinase size is 5 × 5 × 8 nm, average matrix pore size is 8 nm, see ESI, Fig. 1S 
for N2 physisorbtion data). The plasminogen activation process by the resulting composite could be described as 
follows: At neutral pH values, negatively charged plasminogen (isoelectric point (IP) = 6.2)23 interacts with the 
catalytic domain of urokinase, located within the positively charged matrix (IP = 8, Fig. 1b), and yields positively 
charged plasmin (IP = 7.4)23, which is repulsed from the matrix, making way for a new substrate molecule. So the 
composite matrix acting as a conveyor for plasminogen activation and maintain the clot lysis process without any 
changes in its structure and composition. This mechanism of thrombolytic nanocomposite action is typical for 
urokinase contents of no more than 12.5 wt%, which corresponds to an enzyme content of 0.5 kU/mg. Below this 
concentration limit the enzyme is completely entrapped and does not release from the sol-gel matrix, as confirmed 
by spectral analysis (Fig. 1c) and a lack of enzymatic activity in wash solutions (see experimental details).

The ability of the composite to activate plasminogen can be readily tested by reaction with a chromogenic sub-
strate: activated plasmin can cleave For-Ala-Phe-Lys-pNA yielding colored p-nitrophenol (for details see exper-
imental part, experimental data presented at ESI, Fig. 2S)24. According to the analysis, the formation of plasmin 
on a thrombolytic composite (12.5% uPA@ferria) is approximately twice as slow as that for a similar amount of 
free enzyme, however, this is quite a high index for a heterogeneous system apparently promoted by the correct 
orientation of urokinase molecule in a thrombolytic composite. 

To determine thrombolytic properties of the composite materials, experiments were carried out with an arti-
ficial clot derived from human plasma (see experimental details). Using a Mayer rod, a layer of a thrombolytic 
composite material was coated on a glass slide, resulting in a nanolayer with a thickness of ~200 nm upon drying 
(Fig. 2a). A clot formed from human plasma was placed on top of the produced thrombolytic coating (basic 
structure is shown in Fig. 2b) to investigate thrombolysis process (Fig. 2c). While on the surface of a thrombolytic 
coating, the clot begins to decompose, which can be clearly seen using an optical microscope (Fig. 2d–f). The 
process of destruction clearly indicates that the thrombolytic coating generates plasmin over its entire surface, 
which promotes destruction of the clot not only on the perimeter, but also from its center. According to the 
images, destruction of the clot is characterized by its fragmentation, with an increase in the contact area between 
the surface of plasmin and fibrin network, which results in faster thrombolysis over time.

Experiments have revealed that the dissolution rate directly depends on the amount of entrapped enzyme 
(Table 1). Increasing the mass fraction of urokinase in the composite results in an increase in clot destruction 
rate up to a concentration of 12.5 wt%, which corresponds to an enzyme content of 0.5 kU/mg, while at higher 
quantities partial release of the thrombolytic enzyme occurred which accelerated the lysis process, but contra-
dicted to the suggested concept. In full accordance with the proposed concept, after washing out residues of the 
destroyed clot from the thrombolytic coating and placing a new one on top, one also observes destruction of the 
latter with comparable rate, since thrombolytic activity of the composite material is not associated with the release 
of plasminogen activator from the matrix, and the resulting material can be used repeatedly or continuously as a 
thrombolytic coating for cardiovascular implants, e.g., similarly to that used in ref. 18.

Figure 1.  TEM image of the magnetite matrix (a), zeta potential of the magnetite nanoparticles as a function of 
pH (b), release of the uPA from the uPA@ferria composite at the different mass fractions.
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Proof of the efficacy of a thrombolytic magnetic composite allowed to move on to producing a colloidal solu-
tion of magnetic thrombolytic nanoparticles, which later can be used for parenteral administration. So, the next 
step implied the creation of thrombolytic nanoparticles acting in the same manner. To this end, the resulting 
nanocomposite material was mechanically crushed and filtered, so that it contained particles with a size of less 
than 200 nm, which is the limit permitted for intravenous administration25. In this finely dispersed state, throm-
bolytic enzyme content in nanoparticles can be maintained at a level of up to 10 wt.% (0.4 kU/mg), at larger values 
the release of the enzyme is observed (for details of experimental results see ESI, Fig. 3S). This phenomenon can 
be explained by the fact that upon grinding the xerogel matrix the destruction follows the weakest points, i.e., the 
largest pores, and thus the stripped enzyme is readily released into the aqueous phase. To allow for the parenteral 
use of the resulting system, particles larger than 200 nm should be filtered using filter nozzles (see experimental 
part). Next, we consider thrombolytic properties of the produced nanoparticles.

Figure 3a,b show the appearance of nanocomposites before and after grinding and subsequent colloidation to 
a size of less than 200 nm (Fig. 3c). The resulting hydrosol of thrombolytic nanoparticles with a concentration of 
1 wt.% and 4 kU/mL was tested in a number of experiments and manifested itself as an active magnetically con-
trolled thrombolytic agent. Experiments with clots on a slide showed that the nanocomposite has thrombolytic 
effect only when it is induced by external field of the magnet to an artificial clot, the rate of decomposition being 
commensurate with that for a thrombolytic coating (120 minutes to completely decompose a clot with a compos-
ite with 10 wt% of urokinase, for experimental results see ESI, Fig. 4S), and essentially ineffective if it is located in 
remote areas due to weak diffusion of plasmin in a liquid layer. For a more detailed study on the mechanism of 
thrombolysis, we have investigated SEM images of clots treated by magnetic nanoparticles (Fig. 3b–f, see exper-
imental part for details). It is clearly seen that after 15 minutes of clot treatment magnetic nanoparticles begin to 
form lysed local areas. It is notable how the nanoparticles destroy the clot: the pictures clearly demonstrate how 
under the influence of nanoparticles the clot begins to decompose in some distance from them, which clearly 
indicates the reason for the decomposition and is fully consistent with the proposed mechanism. With increasing 
exposure time the structure becomes more porous, more fibrin strands are destroyed and eventually the clot is 
dissolved (for process visualization see ESI, Fig. 4S). However, it should be noted that not all nanoparticle aggre-
gates lyse clots, since many areas, in which the nanoparticles are present, do not have a typical lysed shell after a 
certain period of time. This can occur due to several factors: partial denaturation of the enzyme, incorrect orien-
tation of the catalytic center with respect to the substrate, absence of enzyme molecules, etc.

Figure 2.  SEM cross-section image of a thrombolytic coating with 12.5 wt% entrapped uPA (a); schematic 
representation of a magnetic thrombolytic composite (MTC) (b); scheme for thrombolytic analysis of uPA@
ferria films carried out using an optical microscope (c); visualization of the plasma clot lysis process provided by 
MTC using an optical microscope at 0, 45, and 90 minutes, respectively (d–f), lens X10.

Material

Full lysis time 
(first clot), min 

(±15)

Full lysis time 
(second clot), min 

(±15)

ferria matrix – –

2.5% uPA@ferria 275 289

5% uPA@ferria 210 224

7.5% uPA@ferria 150 165

10% uPA@ferria 120 110

12.5% uPA@ferria 90 100

Table 1.   Clot lysis rate vs. enzyme concentration in the matrix.
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Thrombolytic nanoparticles also manifested themselves as active for near-real systems. Human blood clots 
were selected as model systems. To measure the rate of decomposition of thrombi, a static method was used, 
in which the formed clots were treated by a thrombolytic composite in a suspension with a concentration of 
1 kU/mL (Fig. 4a) condensed by a magnet (Fig. 4b). A clot in saline solution (Fig. 4c) and a clot treated with an 

Figure 3.  HR SEM image of the nanocomposite (12.5% uPA@ferria) (a) and appearance of it after (b) grinding 
and subsequent colloidation; (c) thrombolytic nanoparticle size distribution after filtration; clot surface 
coated with thrombolytic nanoparticles immediately after preparation (d); after 15 minutes of treatment 
with thrombolytic nanoparticles (e,f) a magnified area of the clot partially decomposed by thrombolytic 
nanoparticles with respective EDX image mapping on the carbon (g) and iron (h) atoms.

Figure 4.  Visual appearance (upper and middle lines) and relative lysis kinetics (bottom line) for a blood clot 
in the presence of a thrombolytic composite (a), magnetically targeted thrombolytic composite (b), saline (c), 
and in the presence of a uPA solution (d). Lysis of human thrombus in the presence of a magnetically targeted 
thrombolytic composite (e).
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equivalent amount of urokinase solution (Fig. 4d) were taken as control systems. The process of decomposition 
was monitored spectrophotometrically by measuring the absorbance at 515 nm. The points were taken in the 
range from 0 to 90 minutes with a step of 30 minutes. As can be seen from the figures, in the absence of a throm-
bolytic agent the clot destruction essentially does not proceed, whereas the presence of plasminogen activators 
promotes the intensive fibrin network destruction and release of erythrocyte residues, which colors the solution. 
It should be noted that although an uncondensed thrombolytic composite is approximately four times less active 
than the free enzyme, its condensation on a blood clot significantly accelerates the rate of lysis, increasing it to 
an average of 250% at the same concentration of the enzyme. For applications in larger volumes, the efficiency of 
magnetically controlled systems will increase proportionally to a decrease in the concentration of dissolved free 
enzyme and, when used in the human body with an average blood flow volume of 5 L, can be up to 4000 times 
higher (see experimental details for calculations) than that for the free enzyme due to the ability to localize the 
drug at a certain point.

To confirm the efficiency of the system in conditions close to real life, we have carried out experiments on real 
human blood clots, since these will be the target of thrombolytic therapy. The thrombolytic system was tested on 
a real human thrombus (Fig. 4e) from an arteria carotis communis fragment removed during endarterectomy. The 
thrombolytic composite concentrated by a magnet promoted the destruction of the clot, which clearly indicates 
applicability of solid-state thrombolytic composite material in real systems. The actual thrombus decomposition 
rate was slightly lower than that prepared from blood, which can be explained by the more complex structure of 
the real system compared to the model one.

This article is the first report on a new class of solid-state thrombolytic systems with external magnetic control 
characterized by high stability and biocompatibility, which logically follows the previously described develop-
ment of thrombolytic sol-gel systems. In its mechanism of action the validity of such composites is not limited 
by the amount of active enzyme in the composite, since the functionality is not associated with the release of the 
enzyme. Due to the nanoporous architecture and organization of the composite material the catalytic domain of 
entrapped urokinase can interact with plasminogen, which, on the one hand, leads to the formation of plasmin 
and, on the other, prevents the release of urokinase from a magnetite matrix. Such materials are able to function 
for a long time, since the concentration of plasminogen activator does not change over time. When in blood 
flow, magnetic thrombolytic particles can subsequently be localized at different locations without loss of catalytic 
activity. This feature is especially important when it comes to floating and decomposing blood clots, for which 
conventional surgical methods are essentially futile. As evidenced by in vitro experiments, the composite was  
2.5 times more active than free urokinase due to localization by an external magnetic field. While scaling the 
system on human blood volume, the efficiency of a magnetically controlled composite can be up to 4000 times 
higher than that for free enzyme due to the ability to localize the drug at a certain point, thus correspondingly 
reducing the drug dosage and side effects.

Experimental Details
Materials.  Chemicals.  The hydrosol was prepared from iron (II) chloride tetrahydrate, iron (III) chlo-
ride hexahydrate and ammonia, all from Sigma-Aldrich. Recombinant urokinase (Purolase©), 100 kU/mL with 
a molecular weight of 49.3 kDa, was obtained from Russian Cardiology Research and Production Complex. 
Lyophilized human plasma and human thrombin (150 NIH units/mg), chromogenic substrate for plasmin 
(For-Ala-Phe-Lys-pNA) and saline solution were obtained from “Kvik” LTD Company.

Preparation of a ferria hydrosol.  Pure ferria hydrosol was prepared ultrasonically from iron (II) chloride tetrahy-
drate and iron (III) chloride hexahydrate as described in ref. 19. The mass fraction of the magnetite nanoparticles 
with an average particle size of 10 nm in sol was 2 wt%.

Preparation of thrombolytic coatings.  200 μL of freshly prepared hydrosol was treated with 0 to 10 μL of urok-
inase solution (100 kU/mL) with an enzyme mass fraction of 5 wt% and stirred for 5 minutes. Using a Mayer 
rod, the resulting mixture was applied on a slide as a 6 micron-thick layer and dried in a vacuum desiccator 
to yield composite materials with enzyme contents from 0 to 12.5 wt%. The coating obtained was washed with 
3 mL of distilled water, and enzyme activity of wash solutions was evaluated as described below. To evaluate the 
enzyme release, a similar amount of the mixture was dried in a quartz cuvette, treated with 2 mL of distilled water 
and analyzed by taking a 210 nm absorption spectrum over time upon constant stirring for 12 hours. Enzymatic 
activity of wash water was evaluated by reaction with a chromogenic substrate, as described in more detail below 
(Evaluating enzymatic activity of urokinase).

Preparation of uPA@ferria thrombolytic nanoparticles.  A Petri dish containing 200 μL of freshly prepared sol 
was mixed with 0 to 10 μL of urokinase solution (100 kU/mL). After stirring, the contents were dried in a vacuum 
desiccator. The resulting composite material was crushed in an agate mortar, suspended in deionized water and 
passed through a Phenex 200 nm syringe filter to eliminate all particles larger than 200 nm. The resulting suspen-
sion was concentrated on a rotary evaporator under reduced pressure at 20 °C and suspended in saline solution 
with a final solid concentration of 1 wt% of enzyme (0.5 kU/mg solid) and used in experiments. To evaluate the 
release of the enzyme, the same amount of crushed composite in a quartz cuvette was treated with 2 mL of saline 
solution and studied by taking a 210 nm absorption spectrum at 37 °C over time. Enzymatic activity of wash water 
was evaluated by reaction with a chromogenic substrate, as described in more detail below.

Preparation of clots from human plasma.  Model clots were prepared from control human plasma with known 
amounts of fibrinogen and plasminogen. 10 μL of standard human plasma solution (plasminogen concentration 
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was 102 μg/mL and that for fibrinogen 2.8 mg/mL) was treated with 10 μL of thrombin solution (150 U/mL). The 
resulting mixture was gently stirred and allowed to stand for 5 minutes. The formed clot was separated and used 
in experiments.

Obtaining clots from human blood.  Model clots were prepared from non-stabilized human blood. 100 μL of 
human blood (fibrinogen 6.92 g/L and prothrombin Quick index 83.575) was treated with 10 μL of thrombin solu-
tion (150 U/mL). The resulting mixture was stirred for 5 minutes by shaking, held for 60 minutes at a temperature 
of 37 °C, and then kept for 5 hours at 4 °C for the final formation. The formed artificial blood clot was separated, 
washed with saline solution and used in experiments.

Human thrombus.  Human thrombus were obtained from a 66-year-old man as a result of arteria carotis interna 
thromboendarterectomy surgery due to critical stenosis up to 90% of the lumen and acute thrombosis (for visual 
appearance see ESI Fig. 5S). The operation was carried out in a single step under endotracheal anesthesia on a 
patient (U., 66) who was admitted to a vascular center with acute ischemic stroke. The post-operative thrombus 
was untreated and used for the next 48 hours.

Methods
All experiments on blood and tissue samples were approved by institutional ethical committee (Mariinskiy 
Hospital, №0915) and are in agreement with the guidelines approved by the Government of Russian Federation 
Ministry of Health N 346N of 12 may 2010. These guidelines follow the Directive 2004/23/EU and 2002/98/EU of 
the European Parliament on usage of human tissues and blood samples for scientific purposes. Informed signed 
consent was obtained from the patients to perform experiments on related biomaterials. Written informed con-
sent was obtained for publication of identifying information relating to participants.

Characterization methods.  Specific surface area, pore volume and pore size distribution were investigated 
using Quantachrome Nova 1200e by nitrogen adsorption at 77 K and analyzed by the BET and BJH equations. 
Prior to analysis, all samples were degassed at room temperature for 48 hours. The samples for transmission 
electron microscopy (TEM) were obtained by dispersing a small probe in ethanol to form a homogeneous sus-
pension. Then, a suspension drop was coated on a copper mesh covered with carbon for a TEM analysis (FEI 
TECNAI G2 F20, at an operating voltage of 200 kV). To analyze the samples using high-resolution scanning elec-
tron microscopy (SEM), the obtained ground xerogel was deposited on a metal tip and investigated without addi-
tional spraying using a Magellan 400 L ultra-high resolution electron microscope. To analyze plasma clot using 
SEM, the obtained samples were dried under vacuum for 1 hour and investigated without additional spraying 
using a TESCAN VEGA 3 electron microscope. Optical microscopy was done on a LOMO MIKMED 6 micro-
scope with an X10 lens. Hydrodynamic diameter was measured by the DLS technique on Photocor Compact Z. 
Spectrophotometrical measurements of enzymatic activity were carried out using an Agilent Cary HP 8454 Diode 
Array spectrophotometer with TEC.

Evaluating enzymatic activity of uPA.  Activity of the free uPA and uPA@ferria composite was evaluated 
by measuring the level of generated plasmin. 1 mL of the sample was incubated with 100 μL of standard human 
plasma with a known amount of plasminogen (102 μg/mL) for 10 minutes at 37 °C, followed by addition of 0.5 mL 
of a chromogenic substrate with a concentration of 3 mg/mL and incubated for 120 seconds at 37 °C, after which 
1 mL of 30% acetic acid was added and absorbance was measured at 405 nm. In tests on the thrombolytic compos-
ite ability to activate plasminogen, the time for incubating the composite with plasma varied from 5 to 25 minutes.

Thrombolytic activity of uPA@ferria films.  The activity of uPA@ferria films was studied using an opti-
cal microscope The clots were formed as described above with a subsequent deposition on the thrombolytic 
sol-gel coatings formed on a glass slide. Transmission mode was used to see any morphological changes in clots 
during analysis. The thrombolysis was monitored as a function of time. The thickness of the clots was controlled 
with a 10 μm copper foil clamped between glasses. The pictures were taken every 5 minutes with a subsequent 
analysis.

Thrombolytic activity of uPA@ferria nanoparticles.  Thrombolytic activity of the composite was stud-
ied using an optical microscope. A plasma clot formed by the technique described above was placed on a glass 
slide, with 100 μL of a thrombolytic system sol (with an activity of 4 kU/mL) obtained by the method described 
above added to it, and then treated by concentrating the magnetic particles in the clot area or at a distance of 
20 mm from it. Transmission mode was used to see any morphological changes in clots during analysis. The 
thrombolysis was monitored as a function of time. The thickness of clots was controlled with a 10 μm copper foil 
clamped between glasses.

Investigating thrombolytic activity of uPA@ferria nanoparticles using SEM.  A plasma clot 
formed using the technique described above was applied to a metal substrate, with 100 μL of a thrombolytic 
system sol (with an activity of 4 kU/mL) obtained by the method described above added to it, and incubated at 
37 °C for 15 minutes. The treated clot was dried in a vacuum desiccator for 1 hour, after which its morphology was 
studied using an electron microscope.

Blood clot lysis.  A blood clot formed using the method described above was placed in a cuvette with 3 mL of 
saline solution added to it. The cuvette was then treated with 100 μL of thrombolytic composite solution (activ-
ity 4 kU/mL) and studied by taking a 515 nm absorption spectrum at a temperature of 37 °C in kinetic mode. 
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To perform a control experiment, the formed clot was placed in a cuvette containing 3 mL of saline solution 
and studied over time by taking a 515 nm absorption spectrum at a temperature of 37 °C every 30 minutes for 
90 minutes.

Human blood clot lysis.  A 5 cm2 excised fragment of arteria carotis interna was placed in a cuvette, with 
3 mL of saline and 100 μL of thrombolytic composite (activity 4 kU/mL) solutions added to it, and studied by 
taking a 515 nm absorption spectrum at a temperature of 37 °C every 30 minutes for 90 minutes.

Supporting calculations.  Experiments were carried out in a volume of 3 mL. If the volume increases to 
5 L (mean adult blood volume), urokinase concentration will proportionally drop 1600-fold. A magnetic throm-
bolytic composite could be magnetically concentrated in a desired spot by external magnetic field, so the local 
concentration of the composite will not be affected. In a 3 mL cuvette, thrombolytic activity of a concentrated 
composite is 250% higher than of the enzyme solution, so activity of a magnetically concentrated composite 
would be 1600 × 2.5 = 4000 times higher.
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