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One goal of computational anatomy (CA) is to develop tools to accurately segment
brain structures in healthy and diseased subjects. In this paper, we examine the
performance and complexity of such segmentation in the framework of the large
deformation diffeomorphic metric mapping (LDDMM) registration method with reference
to atlases and parameters. First we report the application of a multi-atlas segmentation
approach to define basal ganglia structures in healthy and diseased kids’ brains. The
segmentation accuracy of the multi-atlas approach is compared with the single atlas
LDDMM implementation and two state-of-the-art segmentation algorithms—Freesurfer
and FSL—by computing the overlap errors between automatic and manual segmentations
of the six basal ganglia nuclei in healthy subjects as well as subjects with diseases
including ADHD and Autism. The high accuracy of multi-atlas segmentation is obtained at
the cost of increasing the computational complexity because of the calculations necessary
between the atlases and a subject. Second, we examine the effect of parameters on total
LDDMM computation time and segmentation accuracy for basal ganglia structures. Single
atlas LDDMM method is used to automatically segment the structures in a population of
16 subjects using different sets of parameters. The results show that a cascade approach
and using fewer time steps can reduce computational complexity as much as five times
while maintaining reliable segmentations.

Keywords: subcortical segmentation, computational anatomy, brain mapping, LDDMM

INTRODUCTION
Computational anatomy (CA) methods have been at the forefront
of neuroimaging studies of neurodevelopment and neurodegen-
eration. Software such as FSL (Jenkinson et al., 2012), AFNI
(Cox, 2012), BrainVoyager (Goebel, 2012), Caret (Van Essen,
2012), FIASCO (Aguirre, 2012), SUMA (Saad and Reynolds,
2012), FreeSurfer (Fischl, 2012), and SPM (Ashburner, 2012)
have been used to analyze structural and functional properties of
the human brain via magnetic resonance images (MRI), diffusion
tensor images (DTI), and functional MRI (fMRI) at a resolution
of 1 mm3. In addition, pipelines for registering and visualiz-
ing hundreds of images have emerged. These include DTIStudio
(Jiang et al., 2006), LONI (Dinov et al., 2006), ANTs (Avants
et al., 2008), and 3D Slicer (Pieper et al., 2004). At the heart
of these methods is the modeling of anatomical structures and
their huge variation, an active field originally formalized as CA
(Grenander and Miller, 1998). The main difficulty is the com-
plexity of anatomical structures and the large variation between
individuals. Here anatomical structures are represented as a col-
lection of coordinate systems: landmark points, curves, surfaces,

and sub-volumes. These structures are represented as deformable
templates, with the space of anatomical images being the set gen-
erated by the group of diffeomorphic transformations acting on
the template with associated probability laws, which describe their
variation. The transformations are detailed so that a large family
of shapes may be generated with the precise topology of the tem-
plate maintained. In particular, our methods have demonstrated
localized shape differences in multiple sub-cortical structures in
neuroimaging studies of Alzheimer’s Disease (Qiu et al., 2008a,
2009c), ADHD (Qiu et al., 2009b), Autism (Qiu et al., 2010),
schizophrenia (Wang et al., 2008), and Tourette Syndrome (Wang
et al., 2007).

The theoretical framework we have adopted is based on the
large deformation diffeomorphic metric mapping (LDDMM)
algorithm (Beg et al., 2005) and advances have been developed
by others as well (Risser et al., 2010, 2011; Auzias et al., 2011).
It also has been demonstrated that the best registration methods
have high dimensional and diffeomorphic properties that have
in common many of the properties incorporated into LDDMM
(Klein et al., 2009, 2010). The LDDMM approach allows shape
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to be uniquely encoded by the vectors normal to the outline
of the template (Miller et al., 2006). This property provides the
basis of our shape analysis projects and is thus crucial in locat-
ing changes in multiple structures caused by disease leading to
a better understanding of the effect of disease on neighboring
structures.

To date, many MRI studies of subcortical gray matter nuclei
have defined a single measure of structural volume. While this has
the advantage of being quantitative, it does not give specific infor-
mation about subregions of atrophying nuclei. This information
would be useful in order to determine whether MRI morphomet-
ric results correlate with neuropathologic studies, to define better
the subregional distribution of atrophy, and for correlation of
pathologic changes with clinical features of the disease. Methods
of statistical shape analysis have proved useful for studying nor-
mal age related changes in subcortical nuclei and for studying a
number of other diseases (Bansal et al., 2007; Brun et al., 2009;
Chung et al., 2010; Stein et al., 2011; van den Bogaard et al.,
2011). Such analysis based on our LDDMM framework (Miller
and Qiu, 2009) has proved useful for studying changes in sub-
cortical nuclei in normal aging and several diseases (Csernansky
et al., 1998, 2000, 2002; Wang et al., 2007; Qiu and Miller, 2008;
Qiu et al., 2008b, 2009a,b,c,d, 2010). For example, analysis with
the LDDMM based surface based morphometry (SBM) pipeline
revealed heterogeneity of atrophy in subcortical structures in
studies of Huntington’s disease (Younes et al., 2012) and dementia
(Miller et al., 2012).

So as the usage of neuroimaging software expands, it becomes
critically important to provide novel analyses that go beyond
volumes and/or other scalar quantities at the voxel or regional
level. Specifically, the ability to segment subcortical structures in
hundreds of scans which can then be used for shape analysis.
However, segmentation accuracy and performance is limited by
two complementary factors.

The first is the restriction to a single atlas as in MRIStudio
which has become widely used in neuroimaging studies of MRI
and DTI data as evidenced by meta-data search in Google Scholar.
Currently, MRIStudio consists of three programs: DTIStudio
(Jiang et al., 2006), DiffeoMap and ROIEditor. In particular,
DiffeoMap is a program for image transformation based on
LDDMM and ROIEditor uses the results of DiffeoMap to per-
form image analysis with respect to a single atlas both at the
voxel and regional level. The restriction can be compounded by
the wide anatomical variability in structures. For example, ven-
tricles differ in shape and geometry in neuroimaging studies of
aging and dementia (Reig et al., 2007). Further, proximity of
sub-cortical structures can affect the accuracy and performance
of automated segmentation algorithms resulting in conflicting
results at the volumetric level (Heckemann et al., 2010). Here we
explore the incorporation of multi-atlases to drive the segmen-
tation of subcortical structures which should lead to improved
statistical significance in shape analysis even from a small sample.

The segmentation problem, which relies on learning anatom-
ical information from pre-segmented training datasets, is usually
handled in the Bayesian framework by solving a maximum a pos-
teriori (MAP) estimation problem. The information of multiple
pre-segmented training datasets can be combined naturally in the

Bayesian framework. Compared with single atlas based segmenta-
tion, multi-atlas based segmentation has been shown to be more
powerful and more accurate (Rohlfing et al., 2004; Heckemann
et al., 2010; Langerak et al., 2010; Lotjonen et al., 2010). More
recently we have demonstrated the use of LDDMM with multi-
ple atlases in which both the diffeomorphic coordinate change as
well as the atlas being selected is unknown. Such an approach has
been shown to be efficient in mediating large deformations in the
context of building reliable segmentations of both subcortical and
cortical structures (Tang et al., 2012).

This leads to the second problem which is the computational
complexity of LDDMM which can be compounded by multi-
ple atlases. By default, LDDMM computes the geodesic along
the Riemannian manifold from the template to the target in
ten uniform time steps (Beg et al., 2005; Ceritoglu et al., 2009;
Tward et al., 2011). As such it takes about 30 min to map one
whole brain at 1 mm3 resolution using a parallelized implemen-
tation on Intel Xeon CPU E5530 at 2.40GHz with 16 cores. By
evolving the flow field over time, it allows for large deforma-
tions which come at a cost in terms of computational resources.
In the multiple atlas setting, the computational requirements
increase as order number of atlases. In an attempt to overcome the
computational complexity, LDDMM has inspired alternative dif-
feomorphic implementations image registration algorithms such
as DARTEL (Ashburner, 2007), Diffeo DEMONS (Vercauteren
et al., 2009) and Spherical Demons (Yeo et al., 2010) to name
but a few. These methods essentially compute the mapping in
one time step to generate a “stationary velocity field” in the spirit
of exponential maps for finite dimensional groups. While these
mappings no longer satisfy the conservation law and therefore
metric property giving rise to complete encoding of the diffeo-
morphic flow of the shape in the initial tangent vector (Miller
et al., 2006), their diffeomorphic features make them power-
ful alternatives for generating segmentations which are accurate.
Then metric structure can be derived from the segmentations as
demonstrated (Miller and Qiu, 2009). By reformulating the opti-
mization problem, LDDMM can be recast as EPDiff, i.e., an initial
value problem (IVP) in which geodesic shooting is used to evolve
the initial momenta to match with the target shape (Miller et al.,
2006; Marsland and McLachlan, 2007; Ashburner and Friston,
2011; Vialard et al., 2012).

This paper examines performance and complexity of LDDMM
with reference to atlases and parameters. A natural way is to
examine tradeoff of computational complexity vs. segmentation
reliability. Hence we examine segmentations of multiple sub-
cortical structures from ongoing large scale neuroimaging studies
which are different and more complex than those previously
studied (Tang et al., 2012, 2013).

METHODS AND DATA
DATA
The first dataset included thirty whole brain, high resolution T1-
weighted 3D-volume MPRAGE images (matrix size = 256 × 256,
echo time = 3.76 ms, repetition time = 7.99 ms, field of view =
256 mm, slice thickness = 1.0 mm) acquired from a 3T Philips
Gyroscan NT scanner (Royal Philips Electronics, Amsterdam, The
Netherlands). The dataset included 13 healthy subjects (mean
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age 10.42 years old; 5 males, and 8 females), 6 male subjects
with autism spectrum disorder (ASD) (mean age 9.74 years old)
and 11 subjects diagnosed with Attention Deficit/Hyperactivity
Disorder (ADHD) (mean age 10.2 years old; 4 males, and 7
females). The second dataset included sixteen whole brain, high
resolution T1-weighted 3D-volume MPRAGE images. Eight were
healthy subjects (mean age 20.75 years old; all female) acquired
from a Philips Intera 3T scanner (Royal Philips Electronics,
Amsterdam, The Netherlands; matrix size = 256 × 256, echo
time = 3.8 ms, repetition time = 8.1 ms, field of view = 256 mm,
slice thickness = 1.0 mm). Four were diagnosed with primary
progressive aphasia (mean age 68 years old) acquired from a 1.5T
Philips Gyroscan NT (Royal Philips Electronics, Amsterdam, The
Netherlands; matrix size = 256 × 256, echo time = 32 ms, repe-
tition time = 6.85 ms, field of view = 230 mm, slice thickness =
1.0 mm). The other 4 were subjects with Alzheimer’s disease (AD)
(mean 75.6 years old) acquired from a 1.5T Philips Gyroscan NT
(Royal Philips Electronics, Amsterdam, The Netherlands; matrix
size = 256 × 256, echo time = 3.2 ms, repetition time = 6.9 ms,
field of view = 240 mm, slice thickness = 1.2 mm). All data were
resampled to isotropic 1 mm3 voxel resolution and image size of
181 × 217 × 181.

LDDMM
Given an atlas image I0 and a target image I1, which can be rep-
resented as functions I0, I1:� ⊆ R3 → R on the spatial domain
� ⊆ R3, the LDDMM algorithm (Beg et al., 2005; Ceritoglu
et al., 2009) computes a diffeomorphic transformation ϕ:� →
� between these images such that I1 = I0·ϕ−1. The diffeomor-
phism ϕ = φ1 is defined as the end point of the curve ϕ = φt, t ∈
[0, 1] satisfying the ordinary differential equation φ̇t = vt (φt),
where φ0 = Id is the identity transformation and vt :� → R3, t ∈
[0, 1] is the time dependant velocity vector field of the flow of
deformation.

The diffeomorphism ϕ is calculated as: ϕ = φ1 = ∫ 1
0 vt (φt) dt

with φ0 = Id, where the optimal vt is estimated by solving the
variational problem:

v̂ = arg min
v:φ̇t = vt (φt)

(∫ 1

0
‖Lvt‖2

L2 dt + 1

σ2

∥∥∥I0 · φ−1
1 − I1

∥∥∥2

L2

)
(1)

Theoretically, the minimizer of equation (1) results in a geodesic
path for the curve φt in the space of diffeomorphisms. To ensure
that the solution lies in the space of diffeomorphisms, smoothness
is achieved by defining the operator L as: L = −α∇2 + γI3 × 3,
where ∇2 is the Laplacian operator.

In LDDMM, steepest gradient descent approach is used to per-
form the minimization in equation (1) and the velocity field at
each gradient descent iteration k is updated with

vk + 1
t = vk

t − ε(∇vk
t
Et), (2)

where ∇vEt is the gradient of the cost in equation (1).

∇vEt = 2vt − K ∗
(

2

σ2

∣∣Dφv
t,1

∣∣∇J0
t

(
J0
t − J1

t

))
, (3)

where φs, t = φt · φ−1
s , J0

t = I0 · φt, 0, J1
t = I1 · φt, 1,

∣∣∣Dφv
t, 1

∣∣∣ is the

determinant of the Jacobian matrix, K = (
L†L

)−1
and ∗ is the

convolution operation.
In the numerical implementation of LDDMM, the time

parameter t of the flow is discretized with a fixed total number
of timesteps T, where T = 10 is selected as the default value in
general. Selection of a smaller T causes gradient descent to termi-

nate with a higher final mismatch error
∥∥I0 · ϕ−1 − I1

∥∥2
L2 between

the registered atlas image and the target image. In this article
T = 1 is chosen to approximate the small deformation setup for
comparison with T = 10.

The background space of the images is represented with � =
[0, 1]3and the convolution operation in equation (3) is calculated
in Fourier domain. The operator K acts as a low pass filter at each
iteration of gradient descent and the parameters α and γ controls
the amount of smoothing and the elasticity of the deformation.
Selection of these parameters depends on the size of the deforma-
tion (in pixels) necessary to register the features of the atlas image
to the features of the target image. Resampling the atlas and tar-
get images to same resolution and doing an initial rigid or affine
alignment as a preprocessing step for LDDMM allows the selec-
tion of α/γ in the range of 0.01–0.001 to accurately register the
features of MR brain data with a typical resolution in the range
of 0.5–2 mm/voxel. As α/γ decreases in the 0.01–0.001 range, the
image matching quality increases and the deformations become
more local and elastic (Beg et al., 2005; Ceritoglu et al., 2009;
Tward et al., 2011).

In the cascading implementation of LDDMM (Ceritoglu et al.,
2009), The final diffeomorphic deformation ϕ between images
I0andI1 is calculated by combining deformations ϕ1, ϕ2, . . . , ϕn

and ϕ = ϕ−1
1

· ϕ−1
2 · ... · ϕ−1

n where (i) ϕ1is calculated between

I0and I1, (ii) ϕ2is calculated between I0 · ϕ−1
1 and I1, (iii) ϕ3 is

calculated between I0 · ϕ−1
1 · ϕ−1

2 and I1. In each step, the regu-
larization parameter γ is fixed to be 1 and α is decreased to ensure
that final registration is more robust and does not converge to an
apparently incorrect solution compared to computing ϕ directly
between I0 and I1using very small α value (Ceritoglu et al., 2009)
directly without cascading. The cascading implementation does
not calculate a geodesic trajectory between the images and the
mathematical properties of LDDMM such as metric distance and
the encoding of the diffeomorphic flow of the shape with the
initial tangent vector are not retained.

It is worth noting that geodesic trajectories can be obtained
via multi-scale approaches (Risser et al., 2011; Vialard et al.,
2012) where a weighted sum of Gaussian kernels is used to
define the operator K in equation (3) control the elasticity of the
deformation at each scale.

SEGMENTATION VIA SINGLE-ATLAS
The single-subject atlas is the JHU-DTI-MNI atlas (Oishi et al.,
2009), which is a single-subject template in the ICBM-DTI-81
space. The template has an isotropic 1 mm3 voxel resolution and
image size of 181 × 217 × 181. Histogram matching was applied
to the atlas and subject image, followed by initial affine align-
ment of the atlas onto the subject via AIR (Woods et al., 1998a,b).
MRIStudio was then used to register the subject to the atlas. The
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resulting diffeomorphism was used to transfer the ROIs defined in
the atlas to the subject space resulting in ROIs segmented in the
subject space. This procedure is illustrated in Figure 1. All exper-
iments were performed using Intel Xeon CPU E5530 at 2.40GHz
with 16 cores.

SEGMENTATION VIA MULTI-ATLAS FUSION
The algorithm for multi-atlas segmentation using LDDMM (Tang
et al., 2012, 2013) is briefly summarized as follows. Assume there
are multiple MRI atlases, each of which contains a collection of
locally-defined charts obtained from manually segmented struc-
tures. A MAP approach is used to estimate the high dimensional
segmentations from the class of generative models representing
the observed MRI which is assumed to be a Gaussian random
fields conditioned on the atlas charts and diffeomorphic change
of coordinates of each chart. The charts and their diffeomorphic
correspondences are unknown and viewed as latent or hidden
variables. The expectation-maximization (EM) algorithm yields
the likelihood-fusion equation which is maximized by the a pos-
teriori estimator of the segmentation labels. The fused likelihoods
are modeled as conditional Gaussian random fields with mean
fields a function of each atlas chart under its diffeomorphic
change of coordinates onto the target. The conditional-mean in
the EM algorithm specifies the convex weights with which the
chart-specific likelihoods are fused. The multiple atlases with the
associated convex weights imply that the posterior distribution
is a multi-modal representation of the measured MRI. As with
the single-atlas segmentation, the resulting diffeomorphism was
used to transfer the ROIs to the subject space resulting in ROIs
segmented in the subject space.

COMPARISON METRICS
Automated segmentation of subcortical structures was compared
with manual segmentations of the same subjects. The man-
ual segmentations are based on anatomical definitions (Wang
et al., 2007; Qiu et al., 2009b, 2010) with the assistance of an
atlas (Mai et al., 1997); for details see http://caportal.cis.jhu.edu/
protocols. Manual segmentation was performed with the open
source software Seg3D which follows the radiological convention
for displaying images.

Accuracy for each ROI was quantified by three metrics.
The first is the kappa statistic (Cohen, 1960) is defined by
κ = (

pagree − prandom
)
/
(
1 − prandom

)
where pagree is the fraction

FIGURE 1 | Example axial slices of atlas and subject T1 weighted MR

image and the boundaries of their ROI labels at each registration step.

(A) Original atlas image and atlas ROIs; (B) atlas image and ROIs after
linear AIR transformation; (C) atlas image and ROIs after AIR and LDDMM
transformations; (D) subject image and subject ROIs.

of voxels in which the given segmentation agrees with the
manual segmentation, and prandom is the fraction one would
expect by random chance (based only on the volumes of fore-
ground and background). Note that κis biased by the volume
size of the structure; generally, the bigger the structure, the
higher the kappa statistic is. For brain structures, a value of
κ = 0.8is considered quite good. The second is the volume
error which quantifies volume difference between two label
defined by VD(LA, LM) = 100|V(LA) − V(LM)|/V(LM) where
V (LA)and V (LM) are respectively the volume size of the auto-
mated and manual segmentation. The third is the L1 misclas-
sification error (Miller et al., 2000) defined by L1 = |A ∪ M| −
|A ∩ M| / |A ∪ M|/2 where A and Mrespectively are the set of
automated and manual labeled voxels.

STATISTICS
In the first experiment, One-Way ANOVA was performed on κ

and L1 from the automated and manual segmentations. Multiple
comparisons were conducted using Tukey’s HSD (honestly sig-
nificant difference) test between pair wise groups. In the second
experiment, two statistical analyses were performed to examine
the effects of LDDMM parameters—T and α—on the segmenta-
tion accuracy of single-atlas based registration. In the first analy-
sis, meanL1 and volume errors were calculated for each subjects
by averaging the errors of the segmented ROIs for that subject.
Then Two-Way ANOVA was conducted to examine the effects of
changing T and α on mean L1and volume error. Multiple com-
parison tests using Tukey’s HSD was carried out after ANOVA. In
the second analysis, the effect of T on the errors for each ROI was
analyzed separately via one sided paired samples t-test between
T = 1 and T = 10 results for given α.

RESULTS
For the first experiment, multi-atlas segmentation with cas-
cading values of α = 0.01, 0.005, 0.002 and T = 10 was com-
pared with single-atlas segmentation with the same values of
α and T, FSL (version 5.0) and FreeSurfer (version 5.2.0).
Six structures were analyzed (left and right pairs of cau-
date, putamen and globus pallidus). Mean and standard devi-
ation of kappa overlap and L1 errors are shown in Figure 2.
One-Way ANOVA results (FL.caudate = 155.57, FR.caudate = 196.8,
FL.globuspallidus = 95.45, FR.pallidus = 96.85, FL.putamen = 182.73,
FR.putamen = 228.23, df = 3, P < 0.001) for kappa overlap
and (FL.caudate = 163.08, FR.caudate = 187.79, FL.globuspallidus =
73.89, FR.globuspallidus = 75.90, FL.putamen = 186.88, FR.putamen =
244.95, df = 3, P < 0.001) and the multiple comparisons test
with Tukey’s HSD showed that for each of six structures con-
sidered, the automated segmentations obtained from multi-atlas
LDDMM are statistically more accurate than those from the other
three methods. For the second experiment, the following combi-
nations were used: α = {0.01, 0.005, 0.002, 0.002with cascading}
and T = {1, 10}. So, a total of (4 α-values) × (2 T-values) = 8
different automated segmentations were calculated for each sub-
ject using LDDMM single-atlas segmentation. Fourteen struc-
tures (left and right pairs of caudate, putamen, globus pal-
lidus, hippocampus, amygdala, thalamus, ventricle) were ana-
lyzed. Figure 3 (top and middle rows) shows the mean and
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FIGURE 2 | Mean and standard deviation of mean Kappa statistics

(top) and mean L1 errors (bottom) for left and right pairs of caudate,

putamen and pallidus in 30 subjects via four different segmentation

methods: multi-atlas (blue), single-atlas (red), FSL (green), and

FreeSurfer (purple).

standard deviation of these errors computed over 16 subjects.
There was no significant interaction between the effects of T
and α, (F = 1.6785, df = 3, P = 0.17527). Simple main effects
analysis showed that the effects of both α (F = 7.5801, df = 3,
P = 0.00011) and T (F = 9.3323, df = 1, P = 0.0028) are sta-
tistically significant. A similar analysis on mean volume error
showed that there was no significant interaction between the
effects of T and α, (F = 0.16, df = 3, P = 0.9230). Simple main
effects analysis of the mean volume error showed that the effect
of α (F = 4.1938, df = 3, P = 0.0073) was statistically significant
but the effect of T (F = 2.7054, df = 1, P = 0.1026) was not sta-
tistically significant. Multiple comparisons test with Tukey’s HSD,
showed that there is a significant difference (P < 0.01) between
using a high α (0.01) and low α (0.002 with and without cas-
cading). Tables 1, 2 shows the statistically significant differences
(P < 0.01) for L1 error and volume error respectively for the
results at T = 1 and T = 10 at a significance alpha level of 0.01.

Figure 3 (bottom row) shows the average running times of
LDDMM calculations for any selection of α and T for the pop-
ulaton of 16 subjects. Computational complexity of each gradient
descent iteration in LDDMM depends on T linearly. Smaller α

also increases the computation time.

DISCUSSION
In this paper, we examined the computational complexity in map-
ping multiple atlases for segmentation of subcortical structures—
caudate, putamen, and globus pallidus. Our results show that a
cascade of α parameters and selecting fewer time steps can reduce

FIGURE 3 | Mean and standard deviation of mean L1 error (top), mean

volume error (middle) and LDDMM running times (bottom) calculated

from a population of 16 subjects for different values of α, T = 1 (blue)

and T = 10 (red). Mean errors were calculated using 7 pairs of caudate,
putamen, pallidus, amygdala, hippocampus, thalamus, and ventricle for
each subject.

computational complexity as much as five times while obtaining
reliable segmentations.

We also compared the segmentations with two other
methods—FSL and FreeSurfer. LDDMM based segmentation
is capable of achieving comparable or superior accuracy as
measured by either the kappa statistic or the L1 error. Extending
the single-atlas LDDMM based segmentation to multiple atlases,
we found that the segmentation accuracy was significantly
increased. The even split between male and female subjects
in the dataset of 30 subjects suggests that our algorithm is
robust with respect to gender. Then in terms of pathological
variability, the datasets consisted of control subjects, subjects
with autism, as well as subjects with ADHD. So our multi-
atlas LDDMM segmentation algorithm can be applied to a wide
variety of subjects. This is crucial for clinical neuroimaging stud-
ies since the ultimate goal of any segmentation algorithm is
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Table 1 | For each ROI and for each α in LDDMM, the L1 error results

for T = 1 and T = 10 were compared using one sided paired sample

t-test.

Paired t-test results for L1 error

α = 0.01 α = 0.005 α = 0.002 α = 0.002

(cascading)

Left amygdala

Left caudate T1 > T10 T1 > T10

Left hippocampus

Left globus pallidus

Left putamen T1 > T10

Left thalamus T1 < T10 T1 > T10 T1 > T10

Left ventricle T1 > T10 T1 > T10 T1 > T10 T1 > T10

Right amygdala

Right caudate T1 > T10 T1 > T10

Right hippocampus

Right globus pallidus T1 > T10

Right putamen T1 > T10

Right thalamus

Right ventricle T1 > T10 T1 > T10 T1 > T10 T1 > T10

Number of ROIs with
significant
differences

3 4 8 3

Statistically significant (p < 0.01) error differences between large deformation

map (T = 10) and small deformation map (T = 1) are indicated by either “T1 >

T10” or “T1 < T10.”

to be able to accurately delineate brain structures with differ-
ent diseases. The performance of multi-atlas LDDMM, in terms
of segmenting subcortical structures of a different dataset, has
been compared with STAPLE which is a classic label-fusion
based segmentation method (Warfield et al., 2004). The seg-
mentations were demonstrated to be superior to those from
STAPLE (Tang et al., 2012). The high segmentation accuracy
obtained from multi-atlas LDDMM is at the cost of more run-
ning time, given that we need to first segment multiple atlases
and we need to do multiple registrations. This issue led to
the second experiment—analyzing the two parameters α and
T that determines the speed, memory requirement and accu-
racy of LDDMM, trying to find the optimal α and T that
will speed up the registration without affecting segmentation
accuracy.

In LDDMM, α and T are the two most important parameters
that affect the smoothness of the computed diffeomorphism and
the registration accuracy between the images that are registered.
The results of the second experiment showed that decreasing α,
decreased the mean and standard deviation of the errors and
the results are statistically significant. Increasing T and using a
large deformation setup instead of a small deformation setup
also decreased the errors (Table 1) but results are less signifi-
cant. Therefore, in general a small α should be selected for better
registration. When each ROI is considered separately (first 3
columns of Table 1 and Table 2), using a large deformation map
(T = 10) instead of a small deformation map (T = 1) decreased

Table 2 | For each ROI and for each α in LDDMM, the volume error

results for T = 1 and T = 10 were compared using one sided paired

samples t-test.

Paired t-test results for volume error

α = 0.01 α = 0.005 α = 0.002 α = 0.002

(cascading)

Left amygdala

Left caudate T1 < T10 T1 < T10

Left hippocampus T1 < T10 T1 < T10

Left globus pallidus

Left putamen

Left thalamus T1 < T10 T1 < T10 T1 > T10

Left ventricle T1 > T10 T1 > T10 T1 > T10 T1 > T10

Right amygdala

Right caudate T1 < T10 T1 < T10

Right hippocampus T1 < T10 T1 < T10 T1 < T10

Right globus pallidus T1 < T10 T1 < T10

Right putamen

Right thalamus T1 < T10

Right ventricle T1 > T10 T1 > T10 T1 > T10 T1 > T10

Number of ROIs with
significant
differences

6 8 5 4

Statistically significant (p < 0.01) error differences between large deformation

map (T = 10) and small deformation map (T = 1) are indicated by either “T1 >

T10” or “T1 < T10.”

the errors further with smaller α for given ROIs. Instead of using
a single α to compute the final transformation with LDDMM,
using a cascading scheme and decreasing α gradually to com-
pute the final transformation allows the selection of a smaller T
(last column of Table 2 and Table 2). This result is very impor-
tant especially for multi-atlas LDDMM where a large number
of LDDMM computations are necessary for superior segmen-
tation accuracy. Thus in the extreme case of selecting T = 1
leads to the mappings that capture only small deformations
while increasing T with finer discretization of time flow leads
to the mappings that capture larger deformations and are more
smooth.

Considered by some to be the “state of art” registration
method (Ashburner and Friston, 2011), LDDMM has been
shown to yield accurate segmentation of subcortical struc-
tures in diverse datasets. Accuracy is obtained at a cost of
computational complexity. As in the original pipeline (Miller
and Qiu, 2009) in which segmentations were used to drive
geodesic representations from which momentum and statis-
tics were performed, the cascade approach described here
allows us to generate intermediate analyses such as segmen-
tations in a computationally efficient way. This is extremely
important in our multi-atlas formulation with complex-
ity O(N), where N is the number of atlases. Thus via
MRIStudio, LDDMM offers the potential for more precise
and sensitive analysis of anatomical structures in neuroimaging
studies.
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