
GC-Profile: a web-based tool for visualizing and
analyzing the variation of GC content in
genomic sequences
Feng Gao and Chun-Ting Zhang*

Department of Physics, Tianjin University, Tianjin 300072, China

Received December 19, 2005; Revised and Accepted January 18, 2006

ABSTRACT

In order to understand the evolution, structure and
function of genomes, it is important to know the gen-
eral compositional features of DNA sequences. Based
on the quadratic divergence, a new segmentation
algorithm to partition a given genome or DNA
sequence into compositionally distinct domains
has been put forward. With the aid of the technique
of cumulative GC profile, the distribution of segmen-
tation points can be displayed intuitively. We have
therefore developed them into GC-Profile, an interac-
tive web-based software system, which can be used
to segment prokaryotic and eukaryotic genomes.
GC-Profile provides a quantitative and qualitative
view of genome organization. Based on the obtained
results, the relationships between the G+C content
and other genomic features, such as distributions
of genes and CpG islands, can be analyzed in a per-
ceivable manner. It shows that GC-Profile would be an
appropriate starting point for analyzing the isochore
structure of higher eukaryotic genomes, and an
intuitive tool for identifying genomic islands in pro-
karyotic genomes. GC-Profile is freely available
at the website http://tubic.tju.edu.cn/GC-Profile/. In
addition, precompiled binaries, together with
examples and documentation, can also be freely
downloaded for a local execution.

INTRODUCTION

With the advent of high-throughput DNA sequencing,
genomic sequences of numerous prokaryotic and eukaryotic
organisms have become publicly available. In order to under-
stand the evolution, structure and function of genomes, it is
important to know the general compositional features of DNA

sequences. Delineating compositionally homogeneous G + C
domains in DNA sequences can provide much insight into the
understanding of the organization and biological functions of
genomes. Furthermore, quantitative analysis of compositional
heterogeneity of genome sequences reveals important statis-
tical properties that are useful to locate the origin and terminus
of replication in bacterial (1) and archaeal (2) genomes, and to
detect horizontally transferred genes and genomic islands (3).

Historically, many windowless methods have been devel-
oped to calculate the G + C content, which are usually given
the name of ‘segmentation of DNA sequences’. Among them,
the methods of entropic segmentation (4,5), hidden Markov
model (HMM) (6,7) and wavelet shrinkage technique (8)
should be mentioned. Recently, a computer program (Iso-
Finder), based on a modified version of the entropic composi-
tional segmentation algorithm, has been available online and
can be used to identify isochores (9).

Our group has developed a suite of segmentation programs.
The first program is the cumulative GC profile (10), which has
been applied successfully to prokaryotes (3) and eukaryotes
(11). Recently, we also developed a new segmentation algo-
rithm for DNA sequences, which is based on the quadratic
divergence (12). We have since developed them into
GC-Profile, an interactive web-based software system, avail-
able as a public resource at http://tubic.tju.edu.cn/GC-Profile/.

METHODS

A new segmentation algorithm of DNA sequences

The genome order index S is defined by (13)

S � SðPÞ ¼ a2 þ c2 þ g2 þ t2‚ 1

where a, c, g and t denote the occurrence frequencies of A, C,
G and T, respectively, in a genome or a DNA sequence, and
S can serve as an appropriate divergence measure to quantify
the compositional difference between two DNA sequences
(12). Consider a genome with N bases. Let n be an integer,
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2 < n < N � 1. For a given n, the genome sequence is
partitioned into two sub-sequences, one left and the other
right. The compositional difference between the right and
left sub-sequences can be quantified by the quadratic
divergence, as described in the following. Let w1 ¼ n/N
and w2 ¼ (N � n)/N be two weight coefficients. Let
Pl ¼ (al,cl,gl,tl) and Pr ¼ (ar,cr,gr,tr) be two vectors, where
al, cl, gl, tl and ar, cr, gr, tr are the occurrence frequencies of
bases A, C, G and T in the left and right sub-sequences,
respectively. Define the quadratic divergence

DSðPl‚PrÞ ¼ w1SðPlÞ þ w2SðPrÞ � Sðw1Pl þ w2PrÞ‚ 2

where S(P) is defined by Equation 1. The segmentation algo-
rithm proposed here is based on the quadratic divergence.
Suppose that n* is a point, at which DS(Pl, Pr) reaches max-
imum, then n* is a compositional segmentation point of the
genome found first. The new algorithm is also recursive as in
(4,5), i.e. after n* is determined, the same procedure is applied
to both the resulting left and right sub-sequences, respectively.
Recursively apply the procedure until the halting parameter is
less than a given threshold t0, or the resulting sub-sequence is
shorter than a given minimum length (12).

Cumulative GC profile

We define

zn ¼ ðAn þ TnÞ � ðCn þ GnÞ‚
n ¼ 0‚ 1‚ 2‚ . . . ‚ N‚ zn 2 ½�N‚ N	‚

3

where An, Cn, Gn and Tn are the cumulative numbers of the
bases A, C, G and T, respectively, occurring in the sub-
sequence from the first base to the nth base in the DNA
sequence inspected. Here zn is the z-component of the
Z-curve, which is a three-dimensional curve that uniquely
represents a DNA sequence (14,15). Usually, for an
AT-rich (GC-rich) genome, zn is approximately a monoto-
nously increasing (decreasing) linear function of n. To amplify
the deviations of zn, the curve of zn 
 n is fitted by a straight
line using the least square technique,

z ¼ kn‚ 4

where (z, n) is the coordinate of a point on the straight line
fitted and k is its slope. Instead of using the curve of zn 
 n, we
will use the z0 curve, or cumulative GC profile, hereafter,
where

z0n ¼ zn � kn: 5

Let G + C denote the average G + C content within a region
Dn in a sequence, we find from Equations 3–5

G þ C ¼ 1

2
ð1 � k � Dz0n

Dn
Þ � 1

2
ð1 � k � k0Þ‚ 6

where k0 ¼ Dz0n/Dn is the average slope of the z0 curve within
the region Dn. The above method to calculate the G + C
content is called a windowless technique (10).

SERVER IMPLEMENTATION

The web server GC-Profile is implemented on Apache server
and the web interface is designed using Common Gateway

Interface (CGI) Perl scripts. The segmentation algorithms,
which are based on the quadratic divergence and cumulative
GC profile, are written in the language of C++. The output
graphs are generated by gnuplot graphic routine (http://www.
gnuplot.info/).

INPUTS/OUTPUTS OF THE WEB SERVER

Input options

GC-Profile has a user-friendly and intuitive input interface.
Users can choose to paste the sequence in the box or upload the
sequence (FASTA format) in a file.

The following inputs are required for the web server
GC-Profile.

(i) Halting parameter t0 for segmentation. The default value
is 1000, but this can be changed according to the require-
ments of users. Note that t0 > 0 (12).

(ii) Minimum length. Generally, the minimum length is
set to be 1000 bp for prokaryotic genomes and
3000 bp for eukaryotic genomes (12).

(iii) Gap size to be filtered. The default value is 1% of the
input sequence, i.e. gaps more than 1% of the input
sequence are retained, otherwise they are simply
deleted. Other values are also provided to satisfy
user’s need.

(iv) The graph size to output. It defaults to medium
(800 · 600 pixels). User can change the size from
small (640 · 480 pixels) to giant (2400 · 1800 pixels).

(v) Whether to label the coordinates of segmentation points
to the cumulative GC profile.

(vi) Whether to plot z0 curve instead of �z0 curve. By default
�z0 curve is plotted.

(vii) Whether to set as multiplot mode, in which plots are
placed on the same page.

(viii) Whether to upload a data file containing density distribu-
tion of genes (CpG islands; and other genomic elements).
With this option the corresponding distribution will be
plotted against the G + C content.

(ix) Whether to upload a data file containing absolute
coordinates in the input sequence. This option allows
users to label the positions of some interesting genes,
e.g. horizontally transferred genes, to the cumulative
GC profile. It is very useful to reveal the genomic context
of these genes.

Outputs

By default GC-Profile generates four files for each job: two
tables and two figures. The output web page shows the process
of GC-Profile, and provides links to the results of sequence
segmentation: (i) coordinates, sizes and G + C contents of the
segmented domains as an HTML table (Figure 1A); (ii) num-
ber, coordinates, segmentation strength, segmentation times
and segmented contig of the segmentation points as an HTML
table (Figure 1B); (iii) the cumulative GC profile and (iv) the
GC content of the input sequence in PNG format (Figure 1C
and Figure 2). If upload options are chosen, the density dis-
tribution or the coordinates points labeled to the cumulative
GC profile can also be obtained.
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APPLICATIONS OF GC-PROFILE TO THE
ANALYSIS OF DNA SEQUENCES

The potential applications of GC-Profile are presented here
and will be utilized to demonstrate how GC-Profile may be
used and what kind of information GC-Profile can provide.
Each application is demonstrated by a concrete example.
Additional examples are accessible from the website http://
tubic.tju.edu.cn/GC-Profile/.

Visualization of the isochore organization of
eukaryotic genomes

The nuclear genomes of vertebrates are mosaics of isochores,
very long stretches (>300 kb) of DNA that are fairly homo-
geneous in base composition [for reviews, see (16,17)].

The large-scale variation in base composition affects both
coding and non-coding sequences and seems to reflect a fun-
damental level of genome organization (18). This isochore
organization shows marked variation in a number of important
biological properties, including gene density, chromosome
bands, patterns of codon usage, gene length, replication tim-
ing, recombination rate and the distribution of transposable
elements etc. For more details, see (16,17).

As an example, the isochore map of chicken chromosome
28 is shown (Figure 1). The draft chicken genome sequence,
release galGal2, and the associated CpG island data were
downloaded from http://genome.ucsc.edu/. To display the
global G + C content distribution along the chromosome,
gap size to be filtered was set to be 1% of the chromosome
size. Applying the segmentation algorithm to the resulting

A

Halting parameter = 300.00 Filtered gap size = 47314 bp Minimum length = 3000 bp

B
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contig, eighteen segmentation points were obtained at
t0 ¼ 300 (Figure 1). The region from 2 021 042 (point 7) to
2 644 230 (point 8) bp was deemed as an isochore. The G + C
content of this isochore is 37.08%, the lowest G + C content
among the resulting regions. As shown in Figure 1C, this
region is a desert region of CpG island distribution, which
was calculated in 10 kb long, non-overlapping windows. It
is also shown that the obtained segmentation points have clear
biological implications. Note that the distribution of CpG
islands is closely correlated to the segmented regions with
distinct G + C content. It is worthwhile to point out that
the segmentation points obtained here are exactly the bound-
aries of the related regions. For example, there is an abrupt
decrease (increase) of the density of CpG islands at the first

(second) boundary of the G + C-poorest region between
2 021 042 (point 7) and 2 644 230 (point 8) bp on chicken
chromosome 28 (Figure 1C). Similar phenomena are observed
in other G + C distinct regions. The cumulative GC profiles
and the corresponding isochore coordinates for the latest
release of human, mouse, rat and chicken genomes (hg17,
mm6, rn3 and galGal2, respectively) at UCSC are also acces-
sible from the website http://tubic.tju.edu.cn/GC-Profile/.

Identification of genomic islands in prokaryotic genomes

Horizontal gene transfer is recognized as a major
force for microbial evolution, as it leads to ‘evolution in
quantum leaps’ (19,20). Genomic islands are formerly

C

Figure 1. An example of output pages of GC-Profile when the input is the sequence of chicken chromosome 28. (A) Coordinates, sizes and G + C contents of the
segmented domains as an HTML table. (B) Number, coordinates, segmentation strength, segmentation times and segmented contig of the segmentation points
as an HTML table. (C) The negative cumulative GC profile for chicken chromosome 28 marked with the segmentation points obtained. The lower plot shows the
distributions of the G + C content and CpG islands along chicken chromosome 28. The G + C content is calculated for the domains segmented at t0 ¼ 300. Here,
the halting parameter t calculated for each segmentation point is also referred to as the segmentation strength, which is defined based on the quadratic divergence
instead of the Jensen–Shannon divergence.
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mobile genetic elements that have been acquired by the core
genomes via horizontal gene transfer (21,22). They often con-
sist of DNA regions that differ from the core genome in their
G + C content and codon usage (22). Depending on the
functions they encode, genomic islands can be classified
further as pathogenicity islands, metabolic islands, secretion
islands, resistance islands and symbiosis islands (21–23).

Below we show the negative cumulative GC profile for the
genome of Vibrio vulnificus CMCP6 chromosome I marked
with the obtained segmentation points (Figure 2). The
segmentation results show that from 357 145 to 394 176 bp,
2 432 023 to 2 603 700 bp and 3 250 386 to 3 281 945 bp, there
are three regions of low GC content, which are recognized
as genomic islands. These regions have been designed as
VVGI-1, VVGI-2 and VVGI-3, respectively in (3). In
Figure 2, the negative cumulative GC profile for the genomic
islands is distinct from that of the rest of the genome, in that
the genomic islands have relatively low GC content, as
reflected by abrupt drops in the negative cumulative GC profile
at the regions of the genomic islands identified. The abrupt
drop in the negative cumulative GC profile indicates that
there are clear boundaries between the genomic islands and
the surrounding regions. In addition, these three regions have

many conserved features of genomic islands. For example,
VVGI-1 and VVGI-2 have integrase genes at the 50 end.
VVGI-3 has unusual GC content, codon usage and
amino usage, and eight transposase genes. For more details,
please refer to (3). Here, we also mapped the genes in
horizontal gene transfer database (HGT-DB) (24) to the nega-
tive cumulative GC profile. It can be seen that the three
regions contain clusters of horizontally transferred genes,
which strongly suggests that these regions are horizontally
transferred genomic islands.

CONCLUSION

In this article, we present a publicly available, interactive
web-based platform, GC-Profile, which is dedicated to analyz-
ing the compositional heterogeneity of DNA sequences.
GC-Profile implements a new segmentation algorithm based
on the quadratic divergence, and integrates a windowless
method for the G + C content computation, known as the
cumulative GC profile. The integration of cumulative GC
profile with the coordinates of segmentation points leads to
a clear graphical representation of the G + C content variation
along a genome or chromosome and enables us to establish the

Figure 2. The negative cumulative GC profile for the genome of V.vulnificus CMCP6 chromosome I marked with the segmentation points obtained. It shows that
from 357 145 to 394 176 bp, 2 432 023 to 2 603 700 bp and 3 250 386 to 3 281 945 bp, there are three regions of low GC content, which are recognized as genomic
islands. The segmentation points are obtained at t0 ¼ 100. Here, we also mapped the horizontally transferred genes from HGT-DB to the negative cumulative GC
profile. It can be seen that the three regions contain clusters of horizontally transferred genes, which strongly suggests that these regions are horizontally transferred
genomic islands.
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relationships between the G + C content and other genomic
features, such as distributions of genes and CpG islands. It
shows that GC-Profile would be an appropriate starting point
for analyzing the isochore structures of higher eukaryotic gen-
omes, and an intuitive tool for identifying genomic islands in
prokaryotic genomes. The advantage of the technique is that
an investigator is able to study the variation of GC content in
a perceivable and precise manner. The precise boundary
coordinates obtained by the segmentation algorithm and the
associated cumulative GC profile provides a useful platform to
analyze a genome or chromosome.
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