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The whole blood transcriptional regulation
landscape in 465 COVID-19 infected samples
from Japan COVID-19 Task Force
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Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease
that has caused millions of deaths, where comprehensive understanding of
disease mechanisms is still unestablished. In particular, studies of gene
expression dynamics and regulation landscape in COVID-19 infected individuals
are limited.Here,we report on a thorough analysis ofwholebloodRNA-seqdata
from 465 genotyped samples from the Japan COVID-19 Task Force, including
359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative
causal expression quantitative trait loci (eQTLs) including 34 possible coloca-
lizationswithbiobankfine-mapping results of hematopoietic traits in a Japanese
population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent
sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples
(e.g.,REST and STING1), allfine-mapped at single variant resolution.Weperform
differential gene expression analysis to elucidate 198 genes with increased
expression in severe COVID-19 cases and enriched for innate immune-related
functions. Finally, we evaluate the limited but non-zero effect of COVID-19
phenotype on eQTLdiscovery, and highlight the presence ofCOVID-19 severity-
interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a
comprehensive catalog of whole blood regulatory variants in Japanese, as well
as a reference for transcriptional landscapes in response to COVID-19 infection.

RNA-sequencing (RNA-seq) is an important data source to understand
disease biology1. Studies comparing the transcriptomic landscape of
healthy and diseased samples have been widely performed to identify
target genes and pathways for different diseases2. Also, RNA-seq data
coupled with genotype data are powerful resources to understand the
impact of genetic variation on gene expressions. Such studies of
expression quantitative loci (eQTL) have been highly effective in
deciphering the genetic basis of human traits3,4, by connecting geno-
type and phenotype through gene expression regulations. Recent
development in statistical fine-mapping5 and colocalization6 methods
have further provided principles to pinpoint the causalmechanisms at
single variant resolution.

Coronavirus disease 2019 (COVID-19) is a recently-emerged
infectious disease7,8, with symptoms including respiratory failures.

More than millions of deaths to date are related to COVID-199,10, and
the world is seeking a deeper understanding of disease mechanisms
for comprehensive therapeutic strategies. As part of such efforts11,12, a
genome-wide association study (GWAS)meta-analyzing genomicsdata
fromCOVID-19 cases and population controls has been performed13 to
identify genomic loci associated with disease severity and suscept-
ibility. At transcriptomics level, differential expression analyses have
been performed to nominate large numbers of genes presenting
expression dynamics upon COVID-19 infection14,15, motivating us for
further investigation, replication and validation of these results.
In particular, although studies focusing on eQTL effect of COVID-19
risk variants using external databases exist16–18, a comprehensive study
of gene expression regulation landscape specifically in COVID-19
infected individuals is still limited.
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In this research, we provide a thorough analysis of whole blood
RNA-seq data for 465 genotyped samples from the Japan COVID-19
Task Force19 (JCTF; Fig. 1), together with the results of cis-eQTL and
cis-sQTL statistical fine-mapping, colocalization with biobank fine-
mapping results and trans-eQTL search. We also utilize the different
COVID-19 symptom severity information across samples to show the
widespread effect of COVID-19 infection on the transcriptional
landscape as well as its limited but non-zero effect on eQTL dis-
covery, and characterize the set of eQTLs interacting with COVID-19
phenotype.

Results
Identifying cis-eQTLs from the JCTF RNA-seq data
We performed an eQTL call for 105,142,365 cis variant-gene pairs (v-
g) in 465 samples that passed quality control (QC; Fig. S1; “Meth-
ods”) step. 1,314,278 v-gs (1.24%) had p value lower than genome-
wide threshold (< 5.0 × 10−8; corresponding to 11.5% = 787,597 of
6,826,012 variants or 41.3% = 8199 of 19,870 genes; Fig. 2a;
Tables S1, S2). The result was nearly perfectly consistent regardless

of whether or not including COVID-19 severity status as a covariate,
presumably because the effect is largely captured by PEER factors20

(Only six variant-genes were off bymore than 2 in a binned −log10(p)
scale; Figs. S2, S3, Supplementary Data 1). When compared with
whole blood eQTL data in GTEx4, 32.4% (34,059,915 out of
105,142,365) of v-gs were missing, reflecting the different genetic
background between two populations (Japanese versus mainly
European) (Fig. 2b leftmost bar, Fig. S4). The proportion of v-gs with
p value lower than 5.0 × 10−8 in GTEx consistently increased along
with p value threshold in our dataset. For example, when filtering to
variant-genes with p value lower than 10−100, 85.5% (6908 out of
8076) of the variants (or 93.5% of the non-missing variants) showed
p value < 5.0 × 10−8 in GTEx (Fig. 2b rightmost bar), validating our
association statistics.

Statistical fine-mapping of cis-eQTLs
We then performed statistical fine-mapping using two methods21,22 for
8199 genes that harbored at least one variant with genome-wide sig-
nificancep < 5.0 × 10−8 (= “eGenes”), aswell as additional 570genes that

Fig. 1 | Overview of the study. Japan COVID-19 Task Force (JCTF) has collected
DNA, RNA, and plasma from COVID-19 cases along with detailed clinical informa-
tion. A subset ofn = 500 (n = 465 afterQC) harboring RNA-seqdatawas analyzed in
this study. COVID-19 disease severity was used together with RNA-seq data to

perform differential gene expression and intron usage analysis (red). Imputed
genotyping data with RNA-seq data was used to perform cis-e/sQTL and trans-
eQTL analysis, followed by fine-mapping (for cis-QTLs), colocalization and vali-
dation with external dataset (dotted line).
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harbored rare significant variants, and identified 1169 putative causal
v-gs (i.e. p-causal eQTLs, defined as v-gs with posterior inclusion
probability = PIP > 0.9 across two methods21,22; Fig. 2c, Fig. S5, con-
taining 1059 unique variants and 1096 unique genes; Table S1). We
used a uniform threshold of p < 5.0 × 10−8 to define eGenes for con-
sistency with previous fine-mapping literatures23,24, but alternative

possible choices such as q value based per-gene false discovery rate
(FDR) are equally possible. For example, using FDR <0.05 threshold
resulted in 13,898 genes; See Fig. S6 and Supplementary Note. To test
the validity of our fine-mapping results, we compared the PIPs from
two study populations (JCTF versus GTEx; Fig. 2d, S7a–c). The fraction
of variant-genes identified as p-causal eQTLs in GTEx consistently
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increased along with the PIP threshold in our study (JCTF). Moreover,
among 505 p-causal eQTLs where PIPs were also calculated in GTEx,
nearly half (46.1%, n = 233) were also identified as p-causal eQTLs in
GTEx, and for the most confident set (i.e. PIP = 1 in our study; n = 90
with non-missing GTEx PIP) (Fig. 2d) of v-gs, the fraction of p-causal
eQTLs in GTEx reached 71.1% (64 out of 90). Out of the remaining 26
variant-genes, 21 were explained byone ormoreof (1)moderately high
PIP (>0.5) (n = 9), (2) harboring top PIP in the gene, even though it does
not reach the PIP > 0.9 threshold (n = 12), (3) non-negligible PIP (>0.1)
only in SuSiE (n = 20) in GTEx, or (4) >10-fold differences in the minor
allele frequencies between JCTF and GTEx (n = 16), suggesting that
inconsistencymainly reflected the differences in allele frequencies and
LD structures, as well as the uncertainty of the fine-mapping algo-
rithms (Figs. S4, S7d, e). We also evaluated the performance of prior-
itizing p-causal eQTLs identified in GTEx using two measures (p value
or PIP in JCTF), and showed that PIP achieves higher area under
precision-recall curve (AUPRC) (0.354 vs 0.094, Fig. 2e). These results
demonstrate the robustness of our fine-mapping results, as well as
largely shared causal regulatory architecture between two study
populations at single variant resolution.

We also investigated the marginal effect sizes (β) in two datasets,
for the v-gs passing FDR threshold (<0.05) in GTEx v8, and confirmed
the high effect size correlation and the effect direction concordance
(r =0.74 and 83%, p < 10−100). The concordance was underscored when
shifting to higher PIP bins, for both our dataset and GTEx (100%
direction concordance when PIP > 0.9 in both; Fig. 2f). In addition to
serving as another evidence for largely shared causal effect in two
populations, these observations suggest that PIP in JCTF improves our
ability to prioritize regulatory v-gs, even after given the PIPs fromGTEx
(or vice versa). We further confirmed that by comparing a regulatory
effect prediction score (Expression Modifier Score = EMS24) distribu-
tion in JCTF and GTEx (Figs. 2g, S8a, b) -- The proportion of variant-
genes with low (high) EMS nearly consistently decreases (increases)
along with the PIP in JCTF, across different PIP bins in GTEx (p value <
6.2 × 10−7 in Fisher’s exact test for proportion of variant-gene
with EMS > 1).

32.4% (34,059,915 out of 105,142,365) of the v-gs in JCTF, including
396p-causal eQTLs, aremissing inGTEx. To validate the quality of such
p-causal eQTLs in JCTF-unique variants, we compared the distance to
transcription starting site (dTSS) distribution stratified by the different
PIPs (PIP in JCTF, for variant missing vs existing in GTEx, and PIP in
GTEx; Fig. 2h). TSS-proximal variants were enriched for p-causal eQTLs
similarly in all three categories (p >0.05 in Fisher’s exact test for dif-
ference in the fraction of PIP > 0.9 in the top bin), suggesting that the
PIPs of JCTF-unique variants are equally calibrated as those of variants
existing in GTEx (either from fine-mapping in JCTF or fine-mapping in
GTEx). We also compared the fraction of reporter assay QTLs
(raQTLs)25; again confirming the similarity in the enrichment pattern
between categories (Fisher’s exact test p >0.05 for the top PIP bin in
two cell types; Fig. S8c, d, “Methods”).

These results show that discovering eQTLs from RNA-seq data of
different genetic background and refining the eQTL signals via statis-
tical fine-mapping is important for identification of p-causal eQTLs, for
(1) it improves the ability to prioritize regulatory eQTLs compared to
fine-mapping in a single population, when a variant exists in both
populations (i.e. improving the specificity in regulatory variant dis-
covery), and (2) it allows discovery of novel p-causal eQTLs with the
same level of calibration in PIP estimate for population-unique variants
(i.e. improving the sensitivity). Regarding (1), we also investigated
eQTL data from African American individuals in Multi-Ethnic Study of
Atherosclerosis study26 (MESA, n = 233), and discovered that utilizing
PIPs from both JCTF and GTEx in combination increases the ability to
prioritize likely-regulatory eQTLs in MESA (Fig. S9), highlighting the
value of integrating information from even larger (>2) numbers of
cohorts with diverse backgrounds.

splice QTL (sQTL) fine-mapping and colocalization
We next performed sQTL call followed by statistical fine-mapping with
the same pipeline (e.g. filtering to p < 5.0 × 10−8 before applying fine-
mapping algorithms). We identified 2,387 p-causal variant-introns27 in
106,020,550 variant-intron pairs (Fig. 3a). p-causal sQTLs (v-gs with
sQTL PIP > 0.9 for at least one intron in the corresponding gene region,
n = 1549) were enriched for known canonical splice donor or acceptor
sites (Fig. 3b). On the other hand, a large majority of p-causal sQTLs
(98.3%) were not annotated as splice sites, and a substantially higher
but still a minority fraction of p-causal sQTLs presented non-zero
scores in a deep-neural network based prediction28 (SpliceAI; 22.0% at
PIP > 0.9; Fig. 3c), suggesting a wide range of splice effects that are not
limited to canonical sites29 (and/or slight miscalibration of PIPs).

Alternative splicing can also result in a difference in the overall
mRNA expression level (e.g. via nonsensemediated decay30). When we
quantified the distribution of dTSS stratified by both sQTL PIP and
eQTL PIP (Fig. 3d, circle and square shape dots), not only the v-gs with
high eQTLPIP (eQTLPIP > 0.1,n = 2882with sQTLPIP > 0.001), but also
the v-gs that are unlikely to be causal eQTLs (eQTL PIP < 0.001,
n = 484,977 with sQTL PIP > 0.001) were heavily concentrated towards
TSS-proximal regions (40.3x enrichment for the top dTSS < 100 bin
compared to random; p = 2.2 × 10−5 in Fisher’s exact test comparing the
top and bottom PIP bin), suggesting the presence of both shared and
distinct mechanisms of eQTL and sQTL effects. We then performed a
colocalization analysis between sQTLs and eQTLs. Of 916,223 variant-
gene pairs with sQTL PIP > 0.001, 422 were identified as possibly
colocalizing v-gs (colocalization posterior probability31 = CLPP >0.1;
Fig. 3e). For example, we nominated rs2274955 (chr1_179914055_G_A)
as a p-causal s/eQTL for TOR1AIP1, a gene well studied for alternative
splicing patterns32,33 (Fig. 3f, g; Fig. S10). rs2274955 is a canonical splice
donor of the intron 9. Of note, there is a clear sQTL signal independent
from that of rs2274955 including 49 tightly linked (r2 > 0.8) variants
with p value < 10−200. While two fine-mapping algorithms nominated an
upstream variant rs2249346 (chr1_179878500_C_T) as the putative

Fig. 2 | Overview of eQTL call and statistical fine-mapping from 465 samples in
COVID-19 Task Force, and their comparison with publicly available eQTL data
(GTEx). a Unique variant-gene pairs (top), variants (middle) and genes (bottom)
classified into different marginal p value bins. The lowest p value was taken as a
representative for variants and genes. b The number of variant-genes (y, top panel)
classified into different marginal p value bins in GTEx v8 (y, bottom panel. 5e-
8 = 5.0 × 10−8.), for different marginal p value thresholds (x < −log10(p value) for
each x). c Unique variant-gene pairs (top), variants (middle) and genes (bottom)
classified into different posterior inclusion probability (PIP) bins assigned by sta-
tistical fine-mapping of eGenes. ThemaximumPIPwas taken as a representative for
variants and genes. d The number of variant-genes (y, top panel) classified into
different PIP bins in GTEx v8 (y, bottom panel), for different PIP thresholds (x < PIP
for each x). e Precision-recall curve (PRC) for the task to classify variant-genes with
0.9 < PIP in GTEx and the ones with PIP < 0.001 from GTEx, using marginal p value

(purple) or PIP (green). f Probability of presenting the same effect direction (first
row), and the Pearson correlation of two (signed, marginal) effect sizes (second
row)when comparing the effect sizes in JCTF andGTEx for different PIP bins. x-axis
shows PIP bin in JCTF, andwithin an x-axis window, values are sorted alongwith PIP
in GTEx. Error bar is the standard error of mean estimated via Fisher’s z-transfor-
mation, and the large error bar is due to having small data points (n = 4).
g Distribution of a regulatory effect prediction score (Expression Modifier Score =
EMS)bin for different PIP bins in our study (y-axis) andGTEx (x-axis). The fraction is
represented as the area in each bin (the binning is coarser than in f). h Enrichment
of variant-genes in specific range of distance to the transcription starting site
(dTSS) for each PIP bin (color) and in each dataset condition compared to random.
EMS is not available for variants missing in GTEx, and dTSS is of the best individual
features predictive for putative causal eQTLs in the absence of EMS24.
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causal sQTL for intron 2, our manual inspection suggests rs2245425
(chr1_179889309_G_A) as the causal variant, disrupting the canonical
splice acceptor site of intron 2 and introducing subtle intron length
differenceof 3 bp (and therefore hasminimal effect to the overall gene
expression level; Fig. 3g left). This example of TOR1AIP1 highlights
independent sQTL signals where one of them results in an order of

magnitude stronger eQTL signal, as well as the limitation of fine-
mapping algorithms with uniform prior.

Our sQTL fine-mapping overall highlighted a wide variety of
putative causal sQTL effects that exist within or outside of the context
of canonical splice sites or causal eQTL effects, motivating us for fur-
ther comprehensive characterization of splice pattern variations.
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eQTL colocalization with putative complex-trait-causal variants
from biobank studies
To investigate the phenotypic relevanceof p-causal eQTLs identified in
our study, we compared our statistical fine-mapping results with that
of a large-scale biobank study from the same geographical region (the
Biobank Japan Project; BBJ23,34, n = 178,726). Focusing on 13 hemato-
poietic traits (i.e., red blood cell, while blood cell, and platelet-related
traits), we identified 34 possibly colocalizing variant-gene-trait pairs
(CLPP >0.1; Fig. 4a, Fig. S11), including 6 with high confidence
(CLPP >0.75; Supplementary Data 2).

We highlight three examples in Fig. 4b–e and Supplementary
Note. In particular, rs2902548 (chr10_102727625_C_T), an intronic SNP
on the Sideroflexin 2 (SFXN2) gene, was putatively causal for both
decreased SFXN2 expression in JCTF and increased mean corpuscular
hemoglobin (MCH) in BBJ34 (β = −0.29 and 0.026 for the T allele,
PIP > 0.99 in both, resulting in CLPP >0.99; Fig. 4d). A study35 reported
that the gene is involved in mitochondrial iron homeostasis and
showed that knocking out the SFXN2 gene results in an increase of
mitochondrial iron level in cultured human cells, suggesting that
rs2902548 increases MCH through down-regulation of SFXN2 gene.
The alternative allele (T) of rs2902548 is themajor allele only in EAS in
gnomAD36 (Fig. 4e), and that the variant shows eQTL PIP > 0.9 in
GTEx24, but the effect on MCH does not reach genome-wide sig-
nificance inUKbiobank (UKB37), possibly becauseof loweffect size and
smaller allele frequency.

We next investigated the colocalization landscape in a cohort
fromadifferent geographical region. Specifically,we compared the PIP
across two by two patterns of specific enrichment in Japanese or Eur-
opean cohorts (JCTF or GTEx, by BBJ or UKB; Supplementary Data 2).
The proportion of variants presenting PIP > 0.01 specifically in UKB
was higher for the variants presenting PIP > 0.1 specifically in GTEx
(p = 0.01 in Fisher’s exact test; Fig. 4f), suggesting the increase in the
power of colocalization analysis by matching the population.

An attempt to colocalize host genetic factors of COVID-19
We also sought to identify regulatory variants on a set of 47 genes
suggested as relevant with COVID-19 severity in the GWAS conducted
by COVID-19 Host Genetics Initiative (HGI, release 5)13 based on
proximity with the lead variant. Although we identified 11 variants
that are potentially regulatory to total 9 genes through gene
expression regulation (PIP > 0.5) (Supplementary Data 3, Fig. S12), we
note that our results do not nominate phenotype-causal variants or
genes with high confidence (Supplementary Note). Further omics
studies on COVID-19 infected population with a diverse population are
warranted.

Biological insights from trans-eQTL analysis
We performed trans-eQTLmapping to nominate 51,516 possible trans-
eQTL variants (passing a loose p value threshold of 5.0 × 10−8; “Meth-
ods”). We used a recently published large trans-eQTL resource from
n = 31,684 predominantly from European samples (eQTLgen38) to
evaluate our findings. We observed consistent effect sizes for all 37
trans-eQTLs that are also annotated as trans-eQTLs in eQTLgen
(pearson r = 0.839 in the unit of z-score; Figs. 5a, S13), and the pro-
portion of variants presenting trans-eQTL effect in eQTLgen were

significantly higher for variants with possible trans-eQTLs effects in
our dataset (orange dot in Fig. 5b). Being a cis-eQTL in our dataset
further increased the chance of being a trans-eQTLs in eQTLgen (green
and red dots in Fig. 5b). We presume this observation, suggesting
trans-eQTL effects mediated by cis-eQTL effects as one of the major
mechanisms38,39, is not simply due to ascertainment in eQTLgen or
tagging of non-causal cis-eQTLs, since the enrichment was higher than
the background when stratified by PIP (Fig. 5c; Fisher’s exact test
p =0.01 for the top PIP bin; Supplementary Note).

Although individual examples require cautious interpretation and
confirmation with larger sample sizes, we highlight two biologically
suggestive findings. First, we replicated the trans-eQTL association
presumablymediated by cis-eQTL effect on theREST38,40 gene (Fig. 5d),
for three biologically relevant genes at p < 5.0 × 10-8 threshold (GDAP1,
RAB39A, and GPHN, while the other 85 trans-genes nominated in
eQTLgen did not reach significance, presumably reflecting the sample
size differences). Second, the lead cis-eQTL (rs78233829) for Stimu-
lator Of Interferon Response CGAMP Interactor 1 (STING1) gene
expression (β = −0.311) showed negative trans-eQTL effect for four
genes (LTA, IFIT2, RHEBL1 and PMAIP1. β = −0.246, −0.259, −0.39, and
−0.327 respectively) passing the bonferroni-corrected threshold of
p < 3.6 × 10−13. These four genes are all related with interferon
activity41–45 (e.g. IFIT2 is a well-known interferon-induced gene), sug-
gesting the trans-eQTL effect mediated by the IFN pathway (Fig. 5e).
We note that previous GWAS19 did not suggest an association of the
variant against COVID-19 infection (p >0.05), warning us that eQTL
effects on immune-related genes do not necessarily result in currently
detectable effects on COVID-19 susceptibility.

The effect of severe COVID-19 phenotype on transcriptional
landscape
Our cohort is unique in that the sampleswereascertained forCOVID-19
infection with ranging severity. To understand the influence of the
severe COVID-19 phenotype on the transcriptional landscape, we
divided the samples into two groups (severe vs non-severe phenotype;
n = 359 and 106, respectively) and performed differential gene
expression analysis (Fig. 6a).We observed larger number of geneswith
increased expression in severe cases-group (198 significantly increas-
ing genes vs 10 decreasing genes at Bonferroni threshold and >2 fold
difference, fisher exact test p = 1.1 × 10−46; Supplementary Data 4, 5).
The genes with increasing expression in severe cases-group are enri-
ched for innate immune system annotations such as neutrophil
degranulation (Fig. 6b), consistent with previous reports15,46,47. To
understand the cell type specificity of such differentially expressed
genes, we calculated the expression enrichment for 28 immune cell
types in ImmuNexUT48, stratified by the differential expression status
of the genes (Fig. 6c, Figs. S14, S15; “Methods”). Neutrophils (Neu),
Low-density granulocytes (LDGs) andmonocytes consistently showed
enrichment in expression-increasing genes, while naive CD4 and CD8
were depleted, again highlighting innate immune system activation in
severe COVID-19 phenotype49,50. We note that such changes are often
observed as a general response to infection51,52.

Differential expression results in whole blood are known to be
sensitive to cell type composition changes53.Whenwe applied cell type
decomposition on our bulk expression data using CIBERSORT54 and

Fig. 3 | Overview of sQTL call and statistical fine-mapping from 465 samples in
COVID-19 Task Force. a Unique variant-intron pairs (top), variants (middle) and
introns (bottom) classified into different PIP bins. The highest PIP was taken as a
representative for variants and introns. b Binned distribution of the distance to
transcription starting site (TSS) for sQTLs in different PIP bins. c The fraction (top)
and the number (bottom) of variant-introns classified as splice regions (left),
donors (center) or acceptors (right) variants, for different sQTL PIP bins. d Unique
variant-gene pairs (top), variants (middle) and genes (bottom) classified into dif-
ferent bins of colocalization posterior probability (CLPP) with eQTL PIPs in the

same study. The highest CLPP was taken as a representative for variants and genes.
eBinned distribution of thedistance to transcription starting site (TSS) for sQTLs in
different PIP bins, for the ones with (top) and without (bottom) suggestive eQTL
colocalization. f Locus zoom for eQTL and sQTL effect on TOR1AIP1 gene.
rs2274955 (dotted line in the right) is on the canonical splice donor site of intron 9
(9th gray square from the left), whereas rs2249346 (dotted line in the left) is
upstream of the transcription start site (TSS) of the gene. g Detailed description of
the splice pattern differences. In d–f, maximumPIP was taken for introns in a single
gene to derive a PIP for each variant-gene.

Article https://doi.org/10.1038/s41467-022-32276-2

Nature Communications |         (2022) 13:4830 6



included major inferred cell type composition as covariates, fewer
genes reached statistical significance, although the enrichment pat-
terns remained roughly consistent (Fig. S16, Supplementary Data 6, 7).
We thus note that part of the observed gene expression differences is
due to changes in the fraction of cell types rather than an increased
expression within a cell type, in agreement with ref. 15.

We also performed differential splicing analysis to identify dif-
ferences in intron usage25 in response to severe COVID-19 phenotypes.
One hundred and ninety introns corresponding to 73 genes were
identified to have different usage (Bonferroni adjusted p <0.05,
absolute fold change > 2; Supplementary Data 8, 9), with mild enrich-
ment in geneswith immune system-related functions suchasCD82 and

Fig. 4 | Colocalization of eQTLs with possible hematopoietic trait-causal var-
iants suggested in biobank studies. a Number of variant-gene-trait pairs (y axis)
with suggestive colocalization posterior probabilities (0.01<CLPP), for different
hematopoietic traits (x axis) in Biobank Japan (BBJ). b–d Association p value (top),
eQTL PIP (second row) and BBJ trait PIP (third row) of the SNVs in ±1 Mb (b, c) or
±100 kb (d) window, aswell as the location of the genes (bottom row). The putative

causal variants and genes are colored with purple. e The alternative allele fre-
quency of rs2902548 in gnomAD. Additional descriptions about these variant-
genes are available in Supplementary Note. f Percentage of variant (y axis) with
suggestive hematopoietic trait-causal signal (0.01<PIP) only inBiobank Japan (top),
or only in UK Biobank (bottom), for variants with possible putative causal eQTL
effects (PIP >0.1) unique to GTEx (left), or our dataset (right).
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Fig. 5 | Insights from trans-eQTL analysis. a Scatter plot showing the trans-eQTL
effect sizes (z-score) in our analysis (x-axis) and in eQTLgen (y-axis) for the 37
variant-genes identified as trans-eQTL both in two analyses. The color represents
the nominal p value in our analysis. b Percentage of variants presenting trans-eQTL
effect in eQTLgen (FDR <0.05), for variants in our datasetwithdifferent conditions
(x-axis). c Enrichment of variants presenting trans-eQTL effect in eQTLgen (circle)

or assessed in eQTLgen (diamond) relative to all the variants in our dataset, for
variants with different maximum cis-eQTL PIP (x-axis). d, e Association p value
(top), cis-eQTLPIP (second row) and the locationof the genes (third row) for ±1Mb
(d) or 0.5Mb (e) of the variant with possible trans-eQTL effects mediated by cis-
eQTL effects, with schematic overview of the trans-eQTLmechanisms. Blue dotted
line represents the decrease of the effect (arrow; positive, non-arrow; negative).
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SERPINB2 (Fig. S17). We did not observe evidence of differential spli-
cing for OAS112 and ACE211 (two major genes known for links between
their splicing pattern and COVID-19 disease phenotype; Fig. S17h, i).

eQTL effects are relatively stable in severe COVID-19 phenotype
We next sought to evaluate the effect of COVID-19 infection on the
eQTL call.We compared the fraction of eGenes (geneswith at least one

variantwith eQTL p value < 5.0 × 10−8) unique to our study and toGTEx,
stratified by the differential expression status of the genes. We
observed adecrease in the fractionof eGenes unique to JCTF, for genes
highly expressed in severe COVID-19 cases (Fig. 7a, 0.57× for top bin
and chi square contingency test p =0.008). To further understand the
biology of eGenes uniquely discovered in different cohorts, we com-
pared the replication rate of eGenes in different immune cell types in

Fig. 6 | Transcriptional interpretation of COVID-19 susceptibility. a Volcano
plot showing the difference of the RNA expression level between severe and non-
severe COVID-19 cases (x axis, log2(severe/non-severe)), and the statistical sig-
nificance (likelihood ratio test p value, y axis). Color shows the log10(count per

million + 1). bGO term enrichment of top-enriched genes in severe cases (n = 198),
including genes such as CD177 (Human Neutrophil Alloantigen 2a), or FOXC1 as
reported in refs. 46,47. c Cell-type-specific enrichment of the gene sets with dif-
ferent levels of differential expression, for 28 cell types from ImmuNexUT.
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ImmuNexUT48 (Fig. 7b). There was a very strong correlation (r > 0.99)
between the replication rate in two cohorts (JCTF and GTEx), sug-
gesting overall biological consistency between eGenes in our datasets
and in GTEx. On the other hand, neutrophils (Neu) and LDGs particu-
larly showed low replication rate in JCTF relative toGTEx. These results
combined with the pathway and expression enrichment quantified in
the previous section together indicate that severe COVID-19 pheno-
types might slightly change the transcriptional regulation landscape
and decrease our power to identify eQTLs, especially for neutrophils
presumably due to increased mean and variance in the gene expres-
sion in response to viral infection that is near-independent of the
genotypes in the cis-regions (Supplementary Note).

Nevertheless, as examined in Fig. S18 (concordance in the baseline
expression level) and Fig. S1 (concordance in the eQTL signal), we
assume the overall ascertainment bias is limited, allowing us to repli-
cate themajority of the GTEx results. Together with our GWAS study19,
our observation agrees with55 that the majority of the transcriptional
differences observed are the consequence of infection rather than
genetic variations.

Characterization of eQTL effects interacting with severe COVID-
19 phenotype
We then hypothesized that COVID-19 infection allows us to capture a
set of interaction eQTLs (ieQTLs) that presents eQTL effects of

Fig. 7 | The effect of COVID-19 phenotype on transcriptional regulation land-
scape. a The fraction of genes that are identified as eGenes only in our analysis
(orange)or inGTEx (cyan) (y-axis), both (brown) or neither (gray), for a set of genes
with different levels of differential expression (x-axis).b Scatter plot presenting the
proportion of eGenes (p < 5.0 × 10−8) identified either in whole blood RNA-seq in
our study (x-axis) or GTEx (y-axis), that are replicated in each of the 28 cell types

from ImmuNexUT. c–e Examples of COVID-19-interaction eQTLs (ieQTLs). y axis is
the normalized expression, and the position of each dot is shifted randomly along
x-axis direction for visualization purposes. f The fraction of COVID-19-ieQTLs
replicated as estimated neutrophil count-ieQTLs, as a function of significance.
Error bar ina and f are the standarderror of themeanof thebottombar. Errorband
in b to e denotes the 95% confidence interval.
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different magnitude for different conditions (e.g. larger effect in mild
phenotype), and performed ieQTL analysis (“Methods”). 13 ieGenes
(genes with minimum p value for the interaction term < FDR=0.05
threshold, including 10 ieGenes with p < 5.0 × 10−8) were discovered
(Supplementary Data 8). As examples, ZNF641 is subject to different
levels of regulatory effect for each COVID-19 phenotype bin (Fig. 7c).
CLEC4C, known for its role in antiviral immune response and cold56,57,
shows decreased expression in severe cases, only when the T/T alleles
are observed at rs11055602 (Fig. 7d). The variant is nominally asso-
ciated with infectious phenotype in Finngen58,59 (p = 1.8 × 10−5).
Although CLEC4C is also almost exclusively expressed in plasmacytoid
dendritic cells48 (pDCs), the same effects for these two genes are
replicated in GTEx as ieQTL for neutrophil score (Figs. S19, S20).

To further characterize such ieQTLs in the context of neutrophil
degranulation, we examined the proportion of genes identified as
ieQTLs interacting with an inferred neutrophil score in GTEx4,60

(Fig. S19c). While the proportion of such neutrophil-ieGenes increased
along with the significance threshold in our ieQTL analysis, it did not
exceed 60% at the most stringent threshold (adjusted p < 0.05). For
example, the eQTL effect of rs285171 on MYBL2 gene diminished in
samples with severe and most severe COVID-19 symptoms (Fig. 7e),
where such interaction was not replicated in neutrophil ieQTL analysis
in GTEx (of note, MYBL2 gene is known to be involved in stress
responses61,62 and is only lowly expressed in neutrophils; Fig. S20).

Next, we tested ieQTL effects for each of the inferred cell type
composition from CIBERSORT54. This not only replicated the neu-
trophil ieQTLs (Fig. 7f; MYBL2 also reaching significance) but also
highlighted ieQTL effects with wide range of cell types, such as

interaction with increased M0 macrophage, decreased naive B cells
and CD8+ T cells compositions (Fig. 8).

We also performed fine-mapping of the eQTL and ieQTL signals
separately for 13 ieGenes and observed that the signals are mostly
shared (Figs. S21, 22, Supplementary Note). Finally, we note that these
ieQTLs are not among the GWAS significant variants in refs. 13, 19.

In summary, our results suggest that the interaction between the
genotype and COVID-19 phenotype status is characterized by
dynamics of cell type composition such as an increase in neutrophils in
COVID-19 patients alongwith the severity of the disease, andmotivates
us for further characterization of the interaction between COVID-19
phenotype and gene expression regulation.

Discussion
In this work, we performed a set of analyses ranging from cis-e/sQTL
fine-mapping, colocalization, trans-eQTL, cis-ieQTL analysis to differ-
ential expression using a dataset of whole blood RNA-seq data from
465 genotyped samples with severe to asymptomatic COVID-19
patients in Japan from JCTF. Comparing our fine-mapping results
with a different cohort (GTEx) showed that statistical fine-mapping
results in one cohort adds information on top of the other, confirming
that the previous observation in biobank complex-trait fine-mapping23

holds true in eQTL fine-mapping as well. Colocalization analysis with
biobank fine-mapping results highlighted putative causal association
between variants and hematopoietic traits through cis-gene regulation
in whole blood, including those enriched for Japanese populations.
sQTL fine-mapping suggested the presenceofboth shared anddistinct
mechanisms of eQTL and sQTL effects. Trans-eQTLs analysis sug-
gested mediation by cis-eQTL as one of its major mechanisms. Finally,

Fig. 8 | COVID-19 severity-interaction eQTLs interacts with composition of
various immune cell types. For each of the 13 genes with COVID-19 severity-
interaction eGenes (FDR<0.05) (= row), significance for interaction eQTL effect
with inferred cell type compositions (= columns) are plotted in −log10(p) scale.
Colors show the significance as well as the direction of the ieQTL effect relative to

the COVID-19 severity (redmeans severe COVID-19 case corresponds to larger cell
type composition in terms of interaction effect, and blue is the other way. Bon-
ferroni p = 1.7 × 10−4 = 0.05/13 genes/22 cell types). Row and columns are sorted
based on the number of positive and negative significant results, where three cell
types with no significant results are removed.
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we evaluated the impact of COVID-19 phenotype on transcriptional
landscape to reveal a widespread increase of immune response related
genes’ expression, characterized the expression change in terms of
tissue specificity, highlighted ieQTLs that show distinct regulatory
pattern and its possible role in COVID-19 phenotype.

Altogether, our study is unique and valuable not only because it
serves as one of the largest reference databases4,48,63,64 of gene
expression regulation at statistically fine-mapped, single variant reso-
lution in a Japanese population, but also because it characterizes gene
expression regulation landscape specifically in COVID-19 infected
samples.

Our study also harbors potential limitations. First, when using our
data as a reference, the effect of COVID-19 infection on our statistical
fine-mapping is limited (e.g. Figs. S2, S18 and Fig. 6c) but non-zero.
Second, the sample size is still not likely to reach saturation. Increased
sample sizes and diversity65 should allow discovery of a larger number
of disease-relevant transcriptional dynamics with statistical con-
fidence, including ones with small effect sizes. Third, although our
analysis utilizing external per-cell type eQTLs strongly suggest acti-
vation of specific blood cell types such as neutrophil or pDCs, con-
fidently distinguishing gene expression dynamics universal to blood
cells versus those due to cell type composition changes remains
challenging from our dataset. Lastly, we applied genotyping followed
by imputation instead of direct whole-genome sequencing (WGS),
thereby not fully assessing regulatory impact of rare variants where
imputation quality is likely to drop.

These points at the same time motivate us for future work that
utilizes WGS, with larger sample size, and ideally RNA-sequencing at
single cell resolution. Methodological developments are also of pro-
minent importance; for example, our analysis of independent sQTL
signals on the same gene (Fig. 3f) highlights the opportunity to include
functional annotations24,66 tailored for sQTL fine-mapping. In addition,
althoughwe focused on hematopoietic traits, further utilizing biobank
scale studies with expanding numbers of variants and phenotypes67

(e.g., other respiratory, immunological, or infectious traits) would be
valuable for novel colocalizing variant identifications.

To date, our result serves as one of the most comprehensive
studies focused on statistical fine-mapping of regulatory variants in a
Japanese population, as well as a reference for transcriptional land-
scapes in response to COVID-19 infection. Our study demonstrates the
value of transcriptomics study with large sample sizes to decipher
disease mechanisms, and motivates us for further characterization of
the shared and distinct regulatory landscape of the genome between
different populations, in healthy and disease state.

Methods
Ethics
We have complied with all relevant ethical regulations. This study was
approved by the ethical committees of Keio University School of
Medicine,OsakaUniversityGraduate School ofMedicine, and affiliated
institutes. Informed consent was obtained from all participants.

The COVID-19 Task Force data
The study participants were recruited through Japan COVID-19 Task
Force, which is described in detail in ref. 19. Briefly, the study samples
included 2520 COVID-19 cases and 3341 controls genotyped using
Infinium Asian Screening Array (Illumina, CA, USA) at the time of this
research. Whole blood-RNA-sequencing was performed for a subset of
the genotyped samples (n = 500) and analyzed in this study. Stringent
sample and variant level quality control (QC) filters were applied (e.g.
sample call rate > 0.97, variant call rate > 0.99), resulting in
n = 465 samples and n = 18,343,752 (including imputed) variants after
imputation. The 465 samples were annotated with four levels of phe-
notype severity; “Most severe” for patients in ICU or requiring intu-
bation and ventilation (n = 209), “Severe” for others requiring oxygen

support (n = 150), “Mild” for other symptomatic patients (e.g. short-
ness of breath; n = 60), and “Asymptomatic” for those without COVID-
19 related symptoms (n = 46). RNA-seq was performed using the
NovaSeq6000 platform (Illumina, CA, USA) with paired end reads
(read length of 100bp), using S4 Reagent kit (200 cycles). We lifted
over the hg19 genotypes to hg38 using GATK LiftoverVcf, and filtered
out the ones without unique mapping. Further details about the
sample collection, genotyping and RNA-seq data generation are
described in ref. 19.

RNA-seq data analysis and QTL calls
We followed the analysis pipeline provided by the GTEx4 [https://
github.com/broadinstitute/gtex-pipeline], with minimal changes.
Specifically, RNA-seq data was first aligned to hg38 human reference
genome (excluding ALT, HLA and decoy contigs) using STAR v2.5.3a
(for eQTL study) and STAR v2.6.0 (for sQTL study), with parameter
‘--sjdbOverhang 100ʼ instead of 75. Transcript amounts were quanti-
fied using RSEM v1.3.0. Sample QC was performed based on the
metrics described in ref. 4 such as total number of mapped reads
(Fig. S1). We changed the threshold of correlation statistics from Di =
−5 (as described in ref. 68) to −15, since we expect lower correlation
between samples with different infectious disease severity status,
resulting in n = 465 samples that were used for all the downstream
analysis (of 500 samples with RNA-seq data, 472 samples passed the
RNA-seq QC metrics, and seven samples were further filtered out
based on genotyping QC metrics as described in ref. 19). Sex chro-
mosomes were not included for QTL analysis. The splicing level was
quantified using LeafCutter25 v0.2.7, with the same filtering criteria.

For cis-eQTL call, the gene expressions were TMM-normalized
and genes with low expression level were filtered out as in ref. 4. Var-
iants with minor allele frequency (MAF) smaller than 1% were filtered
out, and fastQTL (https://github.com/francois-a/fastqtl) was run to
obtain nominal p values against the null hypothesis that the genotype
has no effect on the gene expression, for 105,142,365 cis variant-gene
pairs (defined as distance to transcription starting site, dTSS smaller
than 1Mb), with 60 PEER factors (as recommended in ref. 4), sex and 5
genotype PCs included as covariates. For cis-sQTL call, 15 PEER factors
were used as recommended in ref. 4.

For trans-eQTL call, tensorQTL v1.0.5 (https://github.com/
broadinstitute/tensorqtl) was used to perform association tests for
all the trans (i.e. dTSS > 1Mb) genotypes-gene pairs across the genome
filtered to MAF> 5%. We did not explicitly model the inflation of test
statistics due to multi-mapping, but instead applied a relatively loose
thresholding and relied on manual inspection to evaluate the validity
of individual findings.

Statistical fine-mapping of cis-QTLs
Statistical fine-mapping was performed for each of the genes (for
eQTL) and introns (for sQTLs) harboring at least one variant with a
p value lower than genome-wide significance threshold (5.0 × 10−8).We
included rare variants of MAF <1% particularly in this step, although
such rare variants were filtered out and not included in the other parts
of the analysis.Wedid not useq-value based per-gene FDRobtainedby
grouped permutations and instead relied on nominal p values with a
more stringent significance threshold as described in detail in Sup-
plementaryNote, although our analysis suggests that the choicewould
not affect our main findings (Fig. S6). For each of such eGenes and
eIntrons, all the variants within 1Mb of the transcription starting site
(TSS) were included as the region of interests, and the in-sample LD
was directly calculated and adjusted for all the covariates that were
included in the eQTL discovery step, following the best practices
described in refs. 23, 24, 69. Point estimations of the eQTL effect sizes
and standarddeviations from the fastQTLoutputswereused to specify
the marginal test statistics. Two fine-mapping tools, FINEMAP v1.3.1
and susieR v0.11.43 with default parameter settings were used to
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perform statistical fine-mapping. Since the output of FINEMAP and
SuSiE does not always agree with each other (although they correlate
very well; Fig. S5a) and each of them is thought to have potential false
positives, the minimum PIPs from two algorithms were taken to
represent the PIP for each variant-genes (or variant-introns). Especially,
based on functional enrichment analysis, we expect our SuSiE fine-
mapping result presents a higher number of false (and true) positives,
and taking the minimum PIPs results in reduction of false positives
(possibly at the expense of sensitivity; Fig. S5b, c). Additional char-
acterization of statistical fine-mapping results in terms of its sensitivity
to methodological choice are described in Fig. S5d–i and
Supplementary Note.

For statistical fine-mapping of sQTLs, we applied the same pipe-
line to each variant-intron pair, where the intron was defined from the
leafcutter algorithm (thus not necessarily corresponding to canonical
intron annotated indatabases one to one). Since the number of introns
are larger than the number of variant-genes, we filtered out introns
harboring more than 25,000 variants in 1Mb window (typically those
in major histocompatibility complex or other complex regions) to
reduce the computational burden.

For colocalization analyses, the colocalization posterior prob-
ability (=CLPP) for each variant was defined as the product of twoPIPs,
regardless of the study samples identify (Supplementary Note).

Annotation of QTLs
Association statistics in GTEx were obtained from the GTEx web portal
(https://www.gtexportal.org/home/datasets; we only used whole
blood data throughout the study). PIP and the expression modifier
score (EMS) for the variants existing in GTEx were downloaded from
ref. 23. Fine-mapping results of Biobank Japan is collected from ref. 32,
and that from UK Biobank is from http://finucanelab.org/data. Popu-
lation allele frequencies are annotated from the genome Aggregation
Database (gnomAD) (http://gnomad.broadinstitute.org/). Those
represented in hg19 (the Biobank Japan and UK Biobank data) were
matched to our data using hg19 coordinates, and those in hg38 were
matched to our data using hg38 coordinates that we lifted over.

To obtain splicing-related annotations for the variant-genes with
non-trivial (>0.001) sQTLPIPs, we first took themaximumPIP of all the
introns on the same gene. We then ran the Variant Effect Predictor
(VEP) version 104 on the web interface (https://asia.ensembl.org/
Homo_sapiens/Tools/VEP/), and took themaximum of delta scores for
splice donor and acceptor loss/gain as a single representative value for
SpliceAI score. We used ggsashimi (https://github.com/guigolab/
ggsashimi) to visualize sQTL effects.

Differential expression analysis
Differential gene expression analysis was performed using edgeR2

v3.34. All the genes that passed the expression level threshold in the
QTL analysis were included in the analysis. Expected count data from
RSEM was rounded and used as the input matrix. TMM-normalization
was applied to calculate the normalization factor. The samples were
classified as either severe (n = 359, those annotated as “Severe” or
“Most severe”) or non-severe (n = 106, those annotated as “Mild” or
“Asymptomatic”) group in a binary fashion. Log-likelihood ratio test
(LRT) including sex and age in the generalized linear model was per-
formed to quantify the effect size (fold change) and the significance (p
value). We did not discretize the age, with an aim to capture possible
continuous effects of age on gene expression, but the results were
consistent otherwise.

Positively differentially expressed genes (= genes with increased
expression in severe cases) were defined by p value less than (0.05/
#genes) and log2FC > 1, and negatively differentially expressed genes
were defined by the same p value threshold and log2FC < −1. GO term
analysis was performed using g:Profiler web interface (https://biit.cs.
ut.ee/gprofiler/page/citing version: e104_eg51_p15_3922dba).

As a comparison, we also tested different phenotype assignments
(continuous four-rank severity, or comparing the subset of samples of
most severe vs non-symptomatic), a different differential expression
tool that uses median-ratio normalization (DEseq2 v1.32 https://
bioconductor.org/packages/release/bioc/html/DESeq2.html), a differ-
ent threshold to defined the differentially expressed gene set to test
for GO term enrichment, and inclusion of inferred cell type composi-
tion (Fig. S16), all yielding roughly consistent results.

Differential splicing analysis was performed using a custom code.
For each intronic region as part of the intron defined in leafcutter, the
intronic usage fraction was calculated, standardized within an indivi-
dual, and rank-normalized across introns as part of the leafcutter
pipeline. We then performed LRT including COVID status, age and sex
in a standard linear model (the likelihood from linear model was cal-
culated in a closed form corresponding to a minimum least square) to
calculate the nominal p value indicating the association between the
COVID status and normalized intron usage. We applied a Bonferroni-
corrected p value threshold (0.05/#intronic regions) for GO term
enrichment analysis in g:Profiler web interface. The un-normalized
intron usage (%) was used for visualization in Fig. S17.

Comparison with existing COVID-19-associated genes and
variants
COVID-19-associated genes were defined as the set of genes that are
reported in ref. 13, whichare in LD (within r2 > 0.6) or showing evidence
of variant-to-gene connection with the variants with significant asso-
ciation p value in their study. We note that these genes are nominated
solely on the basis of linkage with the variants associated with COVID-
19 disease susceptibility or severity in their study, and thus does not
indicate causal relationship by its own.

Cell type specificity analysis
We downloaded the eQTL summary statistics as well as the count
matrix for 28 cell types from the ImmuNexUT study48. Expression
enrichment for a gene set G in a cell type C was defined as the average
of count in cell type C across all the genes in G divided by the average
of the count of genes in G across 28 cell types. i.e.

Expression enrichment (G, C) =∑g2GCntðCÞ=∑g2G∑c2CCntðCÞ=28.

The error bar represents the 95% confidence interval and was
estimated by a bootstrap of 1000 repeats (sampling from the count
matrix each time, allowing for replacement).

To define the eGenes in ImmuNexUT, we relied on marginal p
value instead of FDR, and set the cutoff to be 5.0 × 10−8 to let it be
consistent with the definition of eGenes throughout the analysis.

Interaction eQTL (ieQTL) analysis
We used tensorQTL to perform ieQTL analysis. TensorQTL builds a
linear model including the effect of genotype alone, interaction vari-
able (COVID-19 phenotype severity in our case) alone, as well as the
interaction between those two, and tests the significanceof interaction
term to obtain the p value (marginal, as well as the Benjamini-
Hochberg adjusted ones). We did not apply inverse normal-
transformation to the interaction variable (COVID-19 severity), since
it is in discretized scale (ranging from 1 for non-symptomatic to 4 for
most-severe). Same set of covariates as the eQTL call step were
included (We did not include inferred cell type composition as cov-
ariates. Instead, we have confirmed that the inclusion still leads to
consistent results; r =0.91 in the scale of −log10(p) for 13 ieGenes;
Fig. S23). The neutrophil ieQTLs summary statistics were downloaded
from the GTEx portal. In order to quantify the direction concordance
between two ieQTL summary statistics, we centered the COVID-19
severity value (to account for the inflation in the interaction term due
to different distribution of the interaction variable), and then
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multiplied the effect size of the genetics term βg and interaction term
βgi. The positive value of this product indicates increasing variance of
genetic effect along with the interaction variable (COVID-19 severity in
JCTF, or estimated neutrophil score in GTEx). We define the effect
direction to be concordant when the sign of this product matches
between JCTF and GTEx (i.e. when severe COVID-19 corresponds to
increase of neutrophils count estimation). We validated this quantifi-
cation by confirming that when restricting to genes that are unlikely to
be neutrophil ieQTLs in GTEx (adjusted p = 1, n = 11,945) the sign
showed near 50% (49.7%) concordance (Supplementary Note). For cell
type decomposition, we used CIBERSORT54 web interface (http://
cibersort.stanford.edu/) with the built-in LM22 signature matrix as the
reference and used the TPM matrix of JCTF as the input matrix.

Statistical analysis
All the statistical tests were two sided. No adjustmentwasmade for the
p valueswe report, unless it is clearly stated as “adjusted p value”. Error
bar denotes the standard error of the mean unless noted otherwise.
For standard error estimation of Pearson correlation (Fig. 2f), Fisher’s
z-transformation70 was used. Enrichments of a category C1 in category
C2 (Figs. 2h, 3d, 4c) were defined as the probability of drawing a
variant-gene pair of C1 given that the variant-gene is in C2, divided by
the overall probability of drawing a variant-gene pair of C1 (i.e.
pðvg2C1∣vg2C2Þ

pðvg2C1Þ ). The error bar of enrichment denotes the standard error

of the numerator, divided by the denominator.

The set of softwares and tools used for the analysis as well as data
visualization are listed as below;

CIBERSORT web interface (http://cibersort.stanford.edu/)
DESeq2 v1.32.0 (https://bioconductor.org/packages/release/bioc/

html/DESeq2.html)
edgeR v3.34 (https://bioconductor.org/packages/release/bioc/

html/edgeR.html)
fastQTL v2.165 (http://fastqtl.sourceforge.net)
FINEMAP v1.3.1 (http://www.christianbenner.com/)
GATK v4.1.9.0 LiftoverVcf (https://gatk.broadinstitute.org/)
ggsashimi v.1.1.0 (https://github.com/guigolab/ggsashimi)
g:Profiler web interface (https://biit.cs.ut.ee/gprofiler/page/citing)
GTEx pipeline (https://github.com/broadinstitute/gtex-pipeline)
LeafCutter v0.2.7 (https://davidaknowles.github.io/leafcutter/

index.html)
matplotlib v3.3.4 (https://matplotlib.org)
numpy v1.20.1 (https://numpy.org)
pandas v1.1.4 (https://pandas.pydata.org)
RSEM v1.3.0 (https://deweylab.github.io/RSEM/)
scikit-learn v0.24.1 (https://scikit-learn.github.io/stable)
scipy v1.6.2 (http://scikit-learn.github.io/stable)
seaborn v0.11.1 (https://seaborn.pydata.org)
STAR v2.5.3a and v2.6.0 (https://github.com/alexdobin/STAR)
susieR v0.11.43 (https://github.com/stephenslab/susieR)
tensorQTL v1.0.5 (https://github.com/broadinstitute/tensorqtl)
Variant Effect Predictor (VEP) version 104 web interface (https://
asia.ensembl.org/Homo_sapiens/Tools/VEP/)

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary statistics of eQTL (cis and trans) and cis-sQTL analysis,
aswell as theRNA-seq expressionmatrix19 are available at theNational
Bioscience Database Center (NBDC) Human Database (accession
code: hum0343.v2). The individual genotype data19 is available at
European Genome-Phenome Archive (EGA) (accession code:

EGAS00001006284). The data from colocalization, differential
expression and ieQTL analysis in this study are provided in the Sup-
plementary Data file. The list of publicly available datasets used are
listed below: Biobank Japan (BBJ) and UK Biobank (UKB) fine-map-
ping: NBDC Human Database (accession code: hum0197) and https://
www.finucanelab.org/data eQTLgen trans-eQTL data: https://www.
eqtlgen.org/trans-eqtls.html The expression modifier score (EMS):
https://www.finucanelab.org/data Genome Aggregation Database
(gnomAD) allele frequencies: https://gnomad.broadinstitute.org/
downloads Genotype-Tissue Expression (GTEx) cis-eQTL data:
https://gtexportal.org/home/datasets ImmuNexUT cell type expres-
sion data: https://www.immunexut.org Multi-Ethnic Study of Ather-
osclerosis (MESA) cis-eQTL data: https://www.dropbox.com/sh/
f6un5evevyvvyl9/AAA3sfa1DgqY67tx4q36P341a?dl=0.

Code availability
The code used in this manuscript is available at https://github.com/
QingboWang/japan_covid_taskforce_rna.
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