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Abstract

Altered metabolism proceeding seroconversion in children progressing to Type 1 diabetes has previously been
demonstrated. We tested the hypothesis that non-obese diabetic (NOD) mice show a similarly altered metabolic profile
compared to C57BL/6 mice. Blood samples from NOD and C57BL/6 female mice was collected at 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13
and 15 weeks and the metabolite content was analyzed using GC-MS. Based on the data of 89 identified metabolites OPLS-
DA analysis was employed to determine the most discriminative metabolites. In silico analysis of potential involved
metabolic enzymes was performed using the dbSNP data base. Already at 0 weeks NOD mice displayed a unique metabolic
signature compared to C57BL/6. A shift in the metabolism was observed for both strains the first weeks of life, a pattern that
stabilized after 5 weeks of age. Multivariate analysis revealed the most discriminative metabolites, which included inosine
and glutamic acid. In silico analysis of the genes in the involved metabolic pathways revealed several SNPs in either
regulatory or coding regions, some in previously defined insulin dependent diabetes (Idd) regions. Our result shows that NOD
mice display an altered metabolic profile that is partly resembling the previously observation made in children progressing
to Type 1 diabetes. The level of glutamic acid was one of the most discriminative metabolites in addition to several
metabolites in the TCA cycle and nucleic acid components. The in silico analysis indicated that the genes responsible for this
reside within previously defined Idd regions.
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Introduction

Type 1 diabetes is an autoimmune disease which in contrast to

the majority of other autoimmune diseases arises already at young

age [1]. The genetic contribution to the disease has been estimated

to be ,50%, including .50 involved loci [2], (www.t1dbase.org).

In addition, environmental factors such as infections, diet and

climate has been attributed as potential underlying contributors.

Although the pathogenesis process in diabetes is so far only

detectable as either the appearance of islet-specific autoantibodies

and/or the mononuclear infiltration in the islets of Langerhan’s, it

is evident that this process is preceded by other molecular and

cellular events, which in turn could be reflected by the

metabolome. In line with this it has been demonstrated that

children with genetic predisposition for T1D development and

that progress to T1D display an altered serum metabolic profile

compared to the group of non-progressors [3,4]. Specifically the

levels of succinic acid and phosphatidylcholin were reduced at

birth, and elevated levels of glutamic acid preceded seroconver-

sion, i.e. appearance of autoantibodies specific for insulin and

glutamic acid decarboxylase (GAD).

The metabolic changes in relation to time of diabetes onset have

also been studied in the congenic BB rat model [5]. An alteration

in the metabolic profile was observed in DP rats compared to DR1

and DR2 rats 1–2 weeks prior to diabetes onset, and at this time

point, based levels of 17 metabolites, it was possible to discriminate

progressors versus non-progressors. In line with the studies in

humans, phospholipids and the amino acid isoleucine was altered.

However, in the rat model it was not possible to score any

metabolic differences at earlier time points than 1–2 weeks prior to

disease onset.

The NOD mouse is another vastly used model for T1D [6]. In

this strain diabetes develops spontaneously and the pathological

process resembles in many ways T1D in humans. Mononuclear

infiltration in the Langerhans’ islets is detected already from 4–5

weeks whereas overt diabetes develops at 3–4 months of age and

onwards. T1D in NOD mice is a multigenetic disease where some

of the .30 involved loci (Idds) [7] are in direct syntenic

relationship with some of the human IDDMs. Moreover,

environmental factors also play an important role where

infections, diet and climate clearly has been demonstrated to play

a pivotal role [1]. Involvement of different immune cells subsets

has been extensively explored and although the disease is

transferable with T-cells solely [7], B-cells are without any doubt

crucial in the initiation of the pathogenesis process [8]. It is,

however, not clear how the disease in NOD mice is initiated.

Recently it was demonstrated that female NOD mice that

progress to T1D display an discrete metabolic profile compared to

genetically identical individuals that do not develop T1D [9] and

this could potentially be explained by differential microbiota in the

two groups. However, in this study metabolic alteration due to

genetic influences was not tested. In the current study we tested the
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hypothesis that NOD mice display an altered metabolic signature

compared to the non-diabetic C57BL/6 reference strain. In

addition we hypothesized that a potential deviation in the

metabolism, as if being a contributor to the initiation of the

pathogenic process, should be apparent already in young mice,

prior to the onset of insulitis.

Materials and Methods

Ethics statement, animals and blood sampling
NOD and C57BL/6 mice were originally obtained from

Bomholtgaard, Denmark and bred and maintained in the

transgenic animal facility (UTCF) at Umeå University. Diabetes

Figure 1. Score plots from Principal Component Analysis (PCA) showing the first (horizontal) and second (vertical) component for
all models. A. 0–3 weeks; both NOD and B6 change over time and likewise display divergent metabolic profiles at each time point. The plot
accounts for 37.5% of the variation in the metabolite data. B. 4–15 weeks; the metabolic pattern has stabilized and the two strains are readily
separable. The plot accounts for 32.5% of the variation in the metabolite data. C. PCA at the chosen time points of 0 w, 3 w, 4 w, and 15 weeks
respectively; at each time points the strains are clearly different.
doi:10.1371/journal.pone.0035445.g001
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incidence in our colony reached 50% in females after 5 months.

None of the mice in the study developed diabetes during the

sampling period. Experimental procedures were performed in

compliance with the relevant Swedish and Institutional laws and

guidelines and approved by the Umeå research animal ethic

committee (A14-09). Blood samples were taken from individual

female mice at the time points 0 weeks (new born) through 6 weeks

(n = 8 in all groups except for NOD 3 w n = 7, B6 newborn, 1 w

and 5 w n = 7 respectively and B6 6 w n = 5). In order to obtain

sufficient blood for analysis at these early time points the animals

had to be sacrificed subsequently. From the 7–15 weeks old mice

individuals were consecutively sampled (n = 8 in all groups). None

of the mice became diabetic throughout the study. After sampling

the blood was kept in room temperature for one hour and stored at

4uC over night. Clots was removed, remaining sera spun in a

microfuge at 13 000 rpm for five minutes, where after the sera was

stored in 280uC until the GC/MS analysis.

Metabolite extraction and GC-MS analysis
Extraction of metabolites from plasma was undertaken

following the protocol of A et al. This method has been shown

to produce semi-quantitative data of good linearity, making it

appropriate for comparisons across specie as well as time in this

study [10]. A detailed flow chart and protocol is provided as Text

S1 and Figure S1. In brief, an aliquot, 25 mL, of thawed serum was

added to Sarstedt safety cap tubes and 225 mL of the extraction

mixture consisting of methanol:water (9:1) containing 11 isotopi-

cally labeled internal standards were added. The mixture was

shaken for 2 min at 30 Hz and stored in an ice-bath for 2 h before

centrifugation for 10 min at 4uC and14000 rpm. 200 mL of the

supernatant were evaporated to in GC-MS-vials.

The samples were derivatized using methoxyamine and

MSTFA as described by A et al. and GC-MS analyses were

carried out according to the same protocol.

Data Processing GC-MS
All non-processed MS-files from the metabolic analysis were

exported from the ChromaTOF software in NetCDF format to R

(version 2.10.1) in which all data pre-treatment procedures, such

as base-line correction chromatogram alignment, data compres-

sion and Hierarchical Multivariate Curve Resolution (H-MCR)

were performed using custom scripts as described by Jonsson et al.

[11]. All manual integrations were performed using in-house R

scripts. The data processing protocols resulted in peak areas for the

derivatized metabolites and corresponding mass spectra.

Metabolite libraries, metabolite identification and
quantification

The metabolites were identified by comparison of retention

indices and mass spectra with data in commercial, as well as in-

house, retention indexes and mass spectra libraries using NIST

MS Search 2.0 (National Institute of Standards and Technology,

2001). The data processing of the GC-MS data using the H-MCR

script resulted in initial datasets. All variables were checked

manually and variables originating from internal standards and

analytical or processing artifacts excluded.

Figure 2. Heat map showing metabolites (that is significantly
(p,0.05) different (if labeled in color) in NOD compared to B6
mice. Compounds within the defined classes display similar pattern.
The plot is sorted according to compound classes.
doi:10.1371/journal.pone.0035445.g002
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The dataset was normalized using the 11 added internal

standards; a non-centered principal component analysis (PCA)

model was built on the basis of the intensity of selected ions

originating from the internal standard compounds and all

metabolite intensities was divided by the first component from

this model [12].

Statistical analysis
In order to identify trends in the metabolite data metabolite

concentration fold changes were calculated for NOD compared to

B6 at each time point. This was done by dividing the average

concentration in the NOD group with the average concentration

in the B6 group. In cases where the fold change was below 1 it was

replaced with the negative inverse value for clarity. To obtain a

clear overview of the data fold changes was plotted for all time

points where the difference was found statistically significant

according to two-sided Student’s t-tests for samples with equal

variance (p = 0.05).

The combination of metabolites that provided the optimal

discrimination between NOD and B6 mice was found using

Orthogonal Projections to Latent Structures-Discriminant Analy-

sis (OPLS-DA) on unit variance scaled data [13–15]. OPLS-DA is

a multivariate classification technique that is used for predicting

groupings for observations and for characterizing the groups. B6

was set the value zero and NOD the value one, using a dummy

matrix. By using 7-fold cross-validation [16] and optimizing the

prediction results for models discriminating the two genotypes

using backwards variable selection [17] at the time points 0, 3, 4, 5

and 15 weeks the optimal combination of metabolites for

describing the differences between NOD and B6. These time

points were judged as the most crucial based on the previous

analyses.

Analysis of genetic differences between B6 and NOD in
relation to metabolic data

The pathways involved in the metabolism of selected metab-

olites were collected from the Kyoto Encyclopedia of Genes and

Genomes or KEGGs pathway database for mice (http://www.

genome.jp/kegg). The metabolic pathways were selected based on

metabolomics data and are the pathways where the largest

metabolic differences between NOD and B6 were observed. The

extent of the pathways was defined by the availability of

metabolomics data, i.e. pathways were extended as far as possible

with the available data. All enzymes present in a metabolic

pathway were examined. Occurrence of the enzymes in Idd

regions was analyzed using the web resource from www.T1Dbase.

org. SNPs in these enzymes were collected from the Mouse

Phenome Database using the mouse SNP wizard (http://

phenome.jax.org/db/q?rtn = snps/wiz1) listing polymorphisms

between the NOD/ShiLtJ and the control C57BL/6J strains.

Any SNPs present in the 59 upstream or 39 downstream regions

were also collected by including 2000 bps on either ends in the

search criteria. Non-synonymous SNPs were analyzed for their

effect on change of sequence and function using SIFT at http://

sift.jcvi.org/. All the analysis was carried out based on build-37 of

Entrez Genome View, which is being updated as new SNPs are

identified.

Figure 3. Backward variable selection was used to find the metabolites that were most discriminative between the stains. Box-
Whisker-plots show the prediction of stain by the OPLS model with the best predictive ability at five different time points. Values close to zero
indicate that the individual was predicted as B6 and values close to one that it was predicted as NOD. The metabolites included in the respective
models are designated below.
doi:10.1371/journal.pone.0035445.g003
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Results

NOD and B6 mice display discrete metabolic signatures
Individual serum samples from NOD and B6 mice (0–15 weeks,

n = 184) were analyzed by GC-MS. Based on the levels of 89

identified metabolites an initial overview of the data was obtained

by employing Principal Component Analysis (PCA). PCA is an

unsupervised statistical technique that summarizes multivariate

data in a smaller number of latent variables [18]. This allows

identification and visualization of groupings, trends and outliers in

the data. A metabolic shift in both strains was observed during the

first 0–3 weeks (Figure 1A), a pattern that was stabilized after 4

weeks (Figure 1B). Notably, comparing NOD and B6 mice, the

two strains could clearly be distinguished already at 0 weeks

(Figure 1C), as well at later time points (Figure 1D–F).

To obtain an overview of the individual metabolites that were

significantly different between the two strains we calculated fold

changes for all metabolites at all time points (Figure 2). Blue and

red color indicates that significantly higher respectively lower

concentrations were found in NOD compared to B6 mice. The

metabolites in the plot were sorted according to compound classes

in order to depict general trends in the dataset. We observed that

similar compounds showed similar behavior over time, i.e. natural

amino acids were generally lower in NOD compared to B6, until

four weeks where a general shift to an increased level was found.

This shift was caused by a general increase in of amino acids in the

week 4 NOD mice compared to week 3. In B6 amino acid levels

were generally constant or slightly decreasing from week 3 to 4

(Table S1).

Figure 4. Metabolic pathways possibly responsible for the differences observed in NOD and B6 mice. Metabolite concentrations at
weeks 0, 3, 4, 5 and 15 are indicated with colors. Red indicates significantly increased in NOD, blue indicates significantly increased in B6 and white
indicates no significant difference. Enzymes involved in metabolism are also show in the plot. Red text indicates that the gene is in Idd region and
bold, italic text indicates SNPs differentiating NOD and B6 mice. A. Metabolism around the TCA cycle with glutamic acid and glutamine. B. Metabolism
of nucleic acid compounds.
doi:10.1371/journal.pone.0035445.g004
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At birth the NOD mice had higher levels of four out of five

TCA cycle intermediates and this was reversed at week four where

four of these compounds (citric acid, fumaric acid, malic acid and

alpha-ketoglutaric acid) showed a large increase in B6 but not in

NOD (see Text S1, Table S1, Figures S1 and S2). These new

levels were maintained until 15 weeks of age with four of these

compounds showed a significant decrease in NOD relative to B6.

In addition from four weeks of age NOD had lower levels of most

measured free fatty acids; the notable exception being arachidonic

acid which from week seven was increased. We also observed that

methyl-inositol and pseudouridine differentiated the stains at all

ages by being consistently increased in NOD compared to B6.

Table 1. Genetic variation in the enzymes involved in metabolic pathways of interest.

Name Gene/E.C Number Idd
59 UTR
SNP

Non Synonymous
Exon
SNP(Dangerous/
Tolerated)

Intron
SNP

39 UTR
SNP

Glutamine synthetase Glul/6.3.1.2 Idd5.4b/Idd5.4

Glutaminase Gls/3.5.1.2 2

Glutamate dehydrogenase Glud1/1.4.1.3

4-aminobutyrate aminotransferase Abat/2.6.1.19

Glutamate oxaloacetate transaminase 1 Got1,2/2.6.1.1 1 41

L-amino acid oxidase 1 Lao1/1.4.3.2 2 1 (0/1) 2

Glutamic acid decarboxylase 1 Gad1/4.1.1.15 1 25

Argininosuccinate synthetase 1 Ass1/6.3.4.5 5

Adenylosuccinate synthase like 1 Adssl1/6.3.4.4

Adenylosuccinate lyase Adsl/4.3.2.2

Argininosuccinate lyase Asl/4.3.2.1

Ureidopropionase Upb1/3.5.1.6 1 (0/1) 42

Dihydropyrimidinase Dpys/3.5.2.2 4 147 3

Dihydropyrimidine dehydrogenase Dpyd/1.3.1.2 33

Uridine phosphorylase Upp1/2.4.2.3

Hypoxyxanthine guanine
phosphoribosyl transferase

Hprt/2.4.2.8 1

Adenosine monphosphate deaminase 1/2/3 Ampd1,2,3/3.5.4.6 1,2-Idd18.2/3-Idd27 1(Ampd1)
87(Ampd3)

7
(Ampd3)

Purine nucleoside phosphorylase Pnp/2.4.2.1 1

Xanthine dehydrogenase/oxidase Xdh/1.17.1.4/1.17.3.2 3 2 (1/1) 66

Adenosine deaminase Ada/3.5.4.4 3

Adenosine kinase Adk/2.7.1.20 3* 339

ecto-59-nucleotidase/CD73 Nt5e/3.1.3.5 Idd 2 59

Deoxycytidine kinase Dck/2.7.1.74

Ectonucleoside triphosphate
diphosphohydrolase 1/CD39

Entpd1/3.6.1.5 2

Ectonucleoside triphosphate
diphosphohydrolase (adenosinetriphosphatase)

Entpd2/3.6.1.3 2 (0/2) 3 1

Nucleoside-diphosphate kinase Nme7/2.7.4.6 1 4

Isocitrate dehydrogenase ldh3a,3b,3g/1.1.1.41 Idd2/Idd13 2

Succinate-Coenzyme A ligase Suclg1/Suclg2/Sucla2 6.2.1.4 79 2

Succinate dehydrogenase complex Sdha,b,c,d/1.3.5.1 a-Idd14/d-Idd2 3 (Sdha)1(Sdhb)
3(Sdhc)

2 (0/2) 15(Sdha)
50(Sdhb)
52(Sdhc)

3*

Fumarate hydratase 1 Fh1/4.2.1.2 3

Malate dehydrogenase 1 Mdh1,2/1.1.1.37 19

3-hydroxy-3-mehtylglutaryl-CoenzymeA reductase Hmgcr/1.1.1.34 Idd14

Pannexin (Panx 3- imp in cartilage) Panx1,2,3 Panx3-Idd27 12

P2X purinoreceptor P2rx1,2,3,4,5,6,7 20 1 (0/1) 68

P2Y purinergic receptor P2ry1,2,4,6,10,12,13,14 P2ry2,6-Idd27 8 19(P2ry2)
10(P2ry6)
7(P2ry12)

*Defined locus in regulatory region.
doi:10.1371/journal.pone.0035445.t001
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The most discriminative metabolites include inosine and
glutamic acid

As the PCA analysis and statistical tests of metabolite differences

indicated major changes in the metabolic profiles the first weeks of

age (i.e. weeks 3–5) we performed a more thorough analysis for

these time points, also including the 0 and 15 weeks of age time

points as reference time points. To identify the metabolites

discriminating the two stains the most at the five time points,

multivariate models with reduced number of metabolites was

tested until separation of the mouse strains started deteriorating.

The model that provided the optimal separation between the two

stains was determined, and the including metabolites in this model

is presented in Figure 3 and Figure S2. Metabolites belonging to

the nucleic acid group (i.e. uracil, pseudouridin, inosine and

hypoxanthine) as well as to the TCA cycle and related amino acids

(i.e. alpha-ketoglutaric acid and glutamic acid) were among the

most disciminative metabolites.

Pathway analysis reveals potential responsible enzymes
and targeted receptors

The observed metabolic differences between NOD and B6 were

likely due to alterations in the enzymes participating in the

metabolism. Therefore, we analyzed, by using the KEGG data

base, which metabolic enzymes and pathways that could be

involved in metabolism of the most discriminative metabolites

presented in Figure 3. As seen in Figure 4 the most characteristic

differences in metabolism between B6 and NOD could be traced

to two main pathways; metabolism around the TCA cycle with

glutamic acid and glutamine (Figure 4A), and metabolism of

nucleic acid compounds (Figure 4A and B). Based on this analysis

we selected 32 enzymes and three receptors involved in the two

pathways. The corresponding genes for these proteins were

analyzed for any potential genetic differences between NOD and

B6. The positioning and sequences of the corresponding genes in

NOD and B6 were retrieved from the dbSNP database [19]. Our

search yielded 1 274 SNPs out of which 9 SNPs were present in

exons, 71 in the 59, 39 UTRs and the remaining 1 194 in the

intron regions (Table 1).

Out of the 32 enzymes, five enzymes were found to be present

in previously defined Idd regions (Table 1). Eight non synonymous

exon SNPs (one in L-amino acid oxidase1, one in ureidopropio-

nase, two in xanthine dehydrogenase, two in succinate dehydro-

genase, two in ectonucleoside triphosphate diphosphohydrolase)

resulted in amino acid substitutions, although only one SNPs

(Xdh-rs29522348) was predicted by SIFT to be damaging utilizing

both orthologue and homologue alignment. Of the 43 UTR SNPs

in the enzymes, six SNPs (Adk-rs30494865, rs47796269,

rs30728355, Sdhc-rs31555970, rs31555968, rs30909739) were

found to be in the regulatory regions based on the dbSNP

annotation.

In addition, the differences in the nucleic acid related molecules

prompted us to investigate potential cell surface expressed

receptors for these molecules. Three purinergic receptors, i.e.

pannexin, P2X purinoreceptor and P2Y purinergic receptor were

analyzed whereof two of the three receptors were found to be

present in Idd regions (Table 1). When analyzed for the presence of

SNPs, we found 28 located in UTR regions, one in exons (P2rx-

rs13467733) and 116 SNPs in the intron regions.

Discussion

It has previously been demonstrated that children with genetic

predisposition for T1D development and that progressed to T1D

display an altered serum metabolic profile compared to the group

of non-progressors [3]. In this study we employed the NOD mouse

with the hypothesis that this strain would display similar metabolic

alteration as the T1D progressors, with the purpose that this model

could give insight in the underlying molecular cause of these

alterations. We found that NOD mice display a substantial altered

metabolism compared to B6 already as a newborn and this

difference was maintained throughout the 15 weeks analyzed.

In general the amino acid levels were slightly decreased in NOD

prior to weaning, where after there was a general shift towards an

increased level. It has been shown that the level of amino acids in

the blood could be an indication of the status of glucose

metabolism, i.e. higher levels of amino acids would indicate an

increasing degree of catabolism [20]. Indeed the NOD mouse

display higher levels of glucose already at birth and a reciprocal

pattern of glucose levels to the amino acids was noted after

weaning, supporting this notion. In addition, the level of isoleucine

and valine were increased in NOD already in newborns (0 w) as

well as right after weaning (3 w). The BCAAs have been shown to

promote insulin secretion [21] which in turn could have an

negative impact on the b-cells, i.e. excessive insulin secretion could

lead to b-cell death [22].

Interestingly, in accordance with the Oresic study [3] we

observed that glutamic acid was among the metabolites that

discriminated the two strains the most. In addition to the increased

level of glutamic acid a decreased level of glutamine was also

observed as well. Both glutamine, and in particular glutamate,

have effects on the immune system although the exact mechanism

is still to be revealed [23]. Oresic et al hypothesized that initially

anti-GAD antibodies may appear as a result of defective

metabolism. In NOD mice anti-GAD antibodies appear between

3–4 weeks [24] in line with our observed increased level of

glutamic acid. However, in contrast to the human study, no

change of the glutamic acid levels in NOD relative to B6 was

observed after this time point. In the analysis of metabolic

pathways involving glutamic acid and related metabolites of the

TCA cycle, i.e. alpha-ketoglutaric acid, we found that several

enzymes, whereof some were located in previously defined Idd

regions, displayed SNPs. There were a total of 1 078 SNPs in the

introns of the analyzed enzymes which potentially could be critical

for splicing either directly by altering donor, acceptor or branch

sites. The efficiency of splicing could also be affected by intron

SNPs due to splicing enhancer or silencer motifs alternatively by

changing the secondary structure of the RNA. In addition, intron

SNPs have been shown to affect enzyme activity [25], as well as a

affect the expression levels of involved genes [26,27]. A few non-

synonomous exon SNPs were also found and the effect of these

remains to be investigated. In general, the in silico genetic

polymorphism analysis showed that several of the genes that are

involved in metabolism of compounds highlighted both in this and

in the Oresic study, are present in Idd regions. Although this does

not prove involvement or the exact mechanism of involvement, it,

however, supports a possible link between the observed metabolic

changes and the potential responsible gene. This provides an

interesting area for further studies in order to understand the

mechanism behind the observed metabolic differences and their

relation to development of T1D. Indeed, more detailed functional

studies of these enzymes are desired.

One of the most striking differences that we observed was the

difference in the nucleic acid related molecules. Recently it was

found that NOD mice express increased levels of ADA promoting

autoreactive T cell activation and diabetes development [28]. We

have found that enzymes involved in ATP and adenosine

metabolism have both non synonymous as well as intron SNPs.

This can lead to potentially faulty metabolism of ATP and

Metabolomics of Pre-Diabetic NOD Mouse
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adenosine. In this study, increased levels of inosine, a direct

metabolite of adenosine degradation was found. This can be the

result of increased expression of ADA or a defect in ADA and

ecto-nucleotidase enzymes. In addition, non-synonymous SNPs

(rs28232063, rs28232059) were found in the ecto-nucleosidase,

Entpd2, which is responsible for breakdown of ATP. A defect in

this enzyme could lead to increased amounts of available ATP, an

immune activator, causing increased cell activation and possibly

autoreactive T cell activation. When we examined potential

receptors we found three that also displayed some polymorphism

comparing NOD and B6. The combination of both ligand and

receptor alterations that in themselves may not seem that

substantial but in combination could promote disease is plausible.

Indeed, the effect of the P2X7 purinergic receptor has recently

been described to act in combination with CD38 in promotion of

T1D in the NOD mouse [29].

Another interesting observation was that methyl-inositol was

markedly increased in NOD throughout the study. In the BB rat

increased amounts of a methyl-inositol, identified as ribitol, was

also singled out as one of the most discriminative for development

markers for onset of diabetes [5]. This compound is clearly of

exogenous origin and thus this demonstrate that there were not

only metabolic differences but also differences in ability to ingest

and metabolize exogenous compounds between animals that

develop T1D and those that do not. Also campesterol, which is a

plant sterol, was taken up differently between the stains with NOD

displaying lower levels than B6. This also resembles our previous

observation in the BB rat, where sitosterol and other sterol

compounds were found decreased before diabetes onset [5].

The possibility to predict T1D progressors at the pre-diabetic

stage is of importance as prevention, compared to reversion, of

T1D has proven much more efficient, in particular in the NOD

mouse where a large number of interventions has been described,

as reviewed in [30]. If and how the pathways identified in this

study contribute to the development of T1D cannot be proven

conclusively based on our data. The results do, however, indicate

that NOD mice display similar metabolic perturbations to human

T1D progressors. Thus, the combination of metabolic profiling

studies including definition of the underlying molecular mecha-

nisms, and intervention studies such as feeding of certain

metabolites, alternatively pharmaceutical inhibition of certain

enzymes, could be tested in NOD mice. The metabolic

consequences as well as effects on T1D development could hence

be linked and contribute to our understanding of the pathogenesis

leading to T1D development.
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