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Abstract: Several scoring systems have been devised to objectively predict survival for patients with
intrahepatic cholangiocellular carcinoma (ICC) and support treatment stratification, but they have
failed external validation. The aim of the present study was to improve prognostication using an
artificial intelligence-based approach. We retrospectively identified 417 patients with ICC who were
referred to our tertiary care center between 1997 and 2018. Of these, 293 met the inclusion criteria.
Established risk factors served as input nodes for an artificial neural network (ANN). We compared
the performance of the trained model to the most widely used conventional scoring system, the
Fudan score. Predicting 1-year survival, the ANN reached an area under the ROC curve (AUC) of
0.89 for the training set and 0.80 for the validation set. The AUC of the Fudan score was significantly
lower in the validation set (0.77, p < 0.001). In the training set, the Fudan score yielded a lower AUC
(0.74) without reaching significance (p = 0.24). Thus, ANNSs incorporating a multitude of known
risk factors can outperform conventional risk scores, which typically consist of a limited number of
parameters. In the future, such artificial intelligence-based approaches have the potential to improve
treatment stratification when models trained on large multicenter data are openly available.

Keywords: intrahepatic cholangiocarcinoma; survival prediction; risk scoring; machine learning;
artificial intelligence; artificial neural network; Fudan score

1. Introduction

Intrahepatic cholangiocarcinoma (ICC) is the second most common type of primary
liver cancer after hepatocellular carcinoma (HCC). The incidence of ICC is low in Western
countries but has been rising continuously in recent decades [1-4]. Unfortunately, symp-
toms of ICC mostly appear in the late stages of the disease. Thus, resection, which is the
only curative treatment option, is not possible in the majority of cases [5]. In addition,
recurrence rates after initial resection exceed 60% [6]. Novel treatment options have become
available in recent decades, and knowledge on prognostic factors is growing [7,8]. This
is allowing treatment during the course of disease to be more individualized. Due to this
growing heterogeneity, risk prediction is becoming more and more difficult.
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Conventional scoring models for risk stratification have been proposed by several
groups [9-11]. Most of them were designed primarily for patients undergoing curative
resection and use histopathological factors, such as microvascular invasion or tumor
grading, which are only available postoperatively [9-11]. Even though all attempts have
initially shown promising results, they have failed external validation and have not entered
clinical use [12,13]. The only available score for all patients regardless of subsequent
treatment is the Fudan score [14]. The tumor itself plays a major role in this score, which
comprises tumor diameter, number of lesions, tumor boundary, level of tumor marker
carbohydrate antigen 19-9 (CA19-9), and serum alkaline phosphatase (AP) level. All of
these parameters are easily assessable during the initial patient work-up. Thus, the score
provides an ab initio method for assisting clinicians in patient stratification. However,
the score has never been externally evaluated for patients with ICC regardless of the
initial therapy.

All of the conventional scoring approaches are easy to calculate and may be com-
prehensible, but it remains questionable whether such a limited number of parameters is
sufficient to achieve reliable prediction for clinical decision making.

An alternative to conventional scoring systems is the increasing integration of ma-
chine learning (ML) approaches into risk assessment. Systems based on ML have proven
their feasibility and superiority compared to conventional scoring systems in survival
prediction for hepatocellular and colorectal cancer [15-17]. Thus far, for ICC, a few similar
approaches have been tried for the subgroup of resected patients in order to calculate the
risk of recurrence, to decide upon adjuvant treatment, and to predict the median overall
survival (OS) [18-20]. For these decisions, such approaches outperformed the conventional
scoring systems.

We hypothesize that the main reason for the superiority of ML algorithms over conven-
tional approaches is based on the possibility of including a wider range of parameters. In
particular, artificial neural networks (ANNSs) are ideal to include a wide range of different
parameters and offer flexible scalability when complexity increases [15].

Thus, this study attempted to build an ANN based on a much broader range of
parameters in order to improve prediction for patients with ICC prior to making decisions
on treatment. In a second step, we evaluated our newly designed model against the
conventional Fudan score in a head-to-head comparison.

2. Materials and Methods

The study was approved by the responsible ethics committee (permit number 2018—
13618, date of approval: 15 October 2018). Patient records and clinical information were de-
identified before analysis. Additional examinations were not performed. The TRIPOD and
STROBE guidelines were followed for the construction of the manuscript (Supplementary
Tables S1 and S2) [21,22].

2.1. Patients

Between January 1997 and January 2018, 417 patients with histopathologically con-
firmed ICC were referred to our tertiary care center. After retrospectively identifying these
patients using established clinical registry software, 124 were excluded for the reasons
described in Figure 1. The final analysis was performed on the remaining 293 patients.

2.2. Diagnosis, Treatment and Follow-Up

Histopathological diagnosis was performed based on the European Association for
the Study of the Liver guidelines for the diagnosis and management of ICC [7]. All
patients underwent contrast-enhanced computed tomography (CT) or magnetic resonance
imaging (MRI) for treatment planning and staging. Prior to making a treatment decision,
all patients underwent an extensive discussion with an interdisciplinary tumor board
consisting of visceral surgeons, hepatologists/oncologists, diagnostic and interventional
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radiologists, pathologists, and, if needed, radiation therapists. Follow-up comprised
clinical examination, blood sampling, and cross-sectional imaging.

Patients with
histopathologicially
confirmed ICC
(n=417)

Missing cross-sectional
imaging at initial
diagnosis
(n = 36)

\ 4

Lost to follow-up early
after discharge
(n=6)

\ 4

Missing CA19-9 or AP
levels at initial
diagnosis
(n=68)

\ 4

MRI/CT scan did not

_| include the level of the

L3 vertebrae
(n=14)

\ 4

Included in final
analysis
(n=293)

Figure 1. Flow diagram showing the reasons for exclusion from the study. CA19-9, carbohydrate
antigen 19-9. AP, alkaline phosphatase. MRI, magnetic resonance imaging. CT, computed tomography.

2.3. Data Acquisition

Patient data were acquired using the clinical registry unit (CRU). The CRU is an
established registry that prospectively collects all patients with liver cancer treated at our
tertiary care referral center [23]. The data for this study were retrospectively collected and
analyzed. The CRU dataset includes all baseline characteristics, including demographic
data, serological parameters, treatment-related parameters, and information on the tumor
burden, including size and number of intrahepatic lesions, tumor boundary type, translobar
and extrahepatic spread, and the presence of nodal and distant metastases. Standardized
cut-offs for the serological and imaging parameters were derived from the original Fudan
score [14]. In particular, the tumor boundary was assessed as described in the original
paper [14]. Translobar spread was specified as tumor expansion per continuitatem or as
intrahepatic metastasis in more than one lobe. According to the current AJCC/UICC TNM
staging system, an extrahepatic spread exists if the tumor perforates the viscera of the liver
and/or infiltrates adjacent organs [24]. The psoas muscle index (PMI) was defined as the
total area of the psoas muscle at the level of the L3 vertebra divided by the squared body
height [25,26]. For the definition of high and low PMI, we used cut-offs derived previously
by our group using optimal stratification. In the resected group, “low” was defined as
<5.7 cm?/m? for men and <5.1 cm?/m? for women, whereas in the non-resected subgroup,
the values were <5.5 cm?/m? for men and <4.8 cm?/m? for women [25]. In the case of
missing data, the information was updated using the radiology information system and
the laboratory database. The primary endpoints were median OS and the 1-year survival
rate. OS was defined as the time interval between the initial diagnosis and death or last
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follow-up. Death dates were acquired and updated with information from the appropriate

Residents’ Registration Offices.

2.4. Calculation of the Fudan Score

The Fudan score was calculated as described in its original publication [14]. Figure 2 sum-
marizes the included parameters, their weights, and the grouping used for risk stratification.

Fudan Score
Factors Sum of the points Risk groups
Tumor diameter 1 Point
>10cm
0 Points » Low risk
Multiple tumor lesions 1 Point
1 Point » Intermediate risk
Obscure tumor 1 Point
boundary 23
Points High risk
CA19-9 level 1 Point
AP level .
> 147 UJL 1 Point

Figure 2. Calculation of the Fudan score. CA19-9, carbohydrate antigen 19-9. AP, alkaline phosphatase.

2.5. Design of the Neural Network

The neural network was built using Tensorflow (https://www.tensorflow.org/, ver-
sion 1.13.0, Google LLC, Mountain View, USA, accessed on 31 January 2021) and Keras (
https:/ /keras.io/, version 2.2.0, Francois Chollet, Google LLC, Mountain View, CA, USA,
accessed on 31 January 2021). It consisted of three fully connected hidden layers with 16,
12, and 8 nodes, respectively. To simplify, each of the hidden layers is a specific, complex
mathematical function with different functional characteristics and designed to produce
a defined output. By the conjunction of each defined output from each layer, a neural
network can make a specific, overall prediction [27]. Rectified linear unit (ReLU) was used
as the activation function on all hidden layers and sigmoid classification for the final output
layer. To prevent overfitting, we used L2-regularization. Standardization was performed
on all input parameters by subtraction of the mean and division by the standard deviation.

As input nodes, we included all factors of the Fudan score (tumor diameter, number
of lesions, tumor boundary, CA19-9 and AP serum levels) as well as potentially meaningful
parameters (tumor spread, extrahepatic tumor extension, the presence of lymph node and
distant metastases). Furthermore, we included a low PMI as a parameter representing the
patient’s overall condition and the albumin level as a parameter representing the hepatic
reserve. The final output results for the network were survival and death one year after
initial diagnosis. The ANN is visualized in Figure 3.

2.6. Training and Validation of the ANN

For an 80:20 split, all patients with an initial diagnosis before 31 December 2013
(n = 233, 80%) were allocated to the training set. Patients with an initial diagnosis after-
wards (1 = 60, 20%) formed the holdout validation set. As suggested elsewhere, the holdout
validation dataset was only used for final evaluation of the models and their compari-
son [15]. In the training set, a five-fold cross-validation approach was used to maximize
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the training capabilities of the ANN. Figure 4 provides an overview on the process used
for model training and validation.

Hepatic

tumor Tumor size
burden

Number of lesions

Tumor boundary

Tumor spread N
‘\v
Extent of \\»‘M\
disease Tumor growth A\‘Q ll&o
\ \/, 0 = survival
Lymph node metastases
1=death
Distant metastases
i) )
; I -
Serologic Ca19-9 ’“’l ’A‘A‘.\\\\ ‘I A l Output Layer
parameter "I‘J!V.;‘\\W
s /
” /’/jyfa
it
Albumin ‘//

Other

factors Low PMI

1 )

Input Layer

Figure 3. Visualization of the created artificial neural network.

Model 1 I%
Model 2 %
Initial diagnosis M
odel 3
veioe | [ - 0
12/31/2013
Average of the five folds
— Model 4 I%I
Training set i E
Model 5 P
All patients — i :
Five-fold cross-validation in i E
the training set i E
(grey = training folds, | ]
red = testing folds) X7
Initial diagnosis
after Holdout validation set
01/01/2014
— For independent model
evaluation and
comparison

Figure 4. Visualization of the created artificial neural network.
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2.7. Statistical Analysis

Statistical analyses and graphic design were performed in R 4.0.3 (A Language and Envi-
ronment for Statistical Computing, http://www.R-project.org, R Foundation for Statistical
Computing, Vienna, Austria, accessed on 31 January 2021). Continuous data were reported as
medians and ranges. Categorical and binary baseline parameters were reported as absolute
numbers and percentages. Fisher’s exact tests, chi-squared tests, or Mann-Whitney U tests
were used for p-value computations between the training and test sets, where appropriate.
Survival analysis was performed using the packages “survminer” (https://cran.r-project.org/
package=survminer, accessed on 31 January 2021, R Foundation for Statistical Computing,
Vienna, Austria) and “survival” (https://CRAN.R-project.org/package=survival, accessed on
31 January 2021, R Foundation for Statistical Computing, Vienna, Austria). Strata were com-
pared by log-rank testing. Univariate and multivariate Cox proportional hazard regression
models assessing hazard ratios (HRs) and corresponding 95% confidence intervals (Cls) were
performed to determine the influence of risk factors on the median OS. Performance of the
Fudan score in individual survival prediction was assessed using Harrell’s concordance index
(C-Index) [28]. A C-Index of 0.5 indicates no predictive ability and 1.0 indicates perfect predic-
tive power. The performance of the Fudan score and the ANN model for predicting the 1-year
survival rate was measured using the area under the receiver operating characteristic curve
(AUC). The AUC ranges from 0 to 1: 0.5 indicates no predictive ability, 1.0 indicates perfect
prediction, and <0.5 indicates “anti-prediction”. A p-value of <0.05 was considered significant.

3. Results
3.1. Baseline Characteristics

Of the 293 patients analyzed in this study, 176 (60.1%) were males and 117 (39.9%) were
females. The median age at the initial TACE treatment was 66 years. Median follow-up
for all patients was 12.6 months. Both the training and the validation set had no statistical
differences in their baseline characteristics. Median OS of the patients in the training set
was 13.1 months (95% CI 10.1-16.7 months) and 16.3 months for patients in the validation
set (95% CI 11.1-22.8 months). Table 1 displays the baseline characteristics of the cohort.

Table 1. Baseline characteristics of the patient cohort.

Training Set Validation Set

All (n = 293) (1 = 233) (1 = 60) p-Value
Age, years Median (IQR) 66.0 (57-73) 66.1 (57-73) 65.4 (57-73) 0.79 1
Sex, 11 (%) Male 176 (60.1) 143 (61.4) 33 (55.0) 0381
! Female 117 (39.9) 90 (38.6) 27 (45.0)
1 174 (59.4) 135 (57.9) 39 (65.0) 0.07
Number of intrahepatic 2 30 (10.2) 28 (12.0) 2 (3.3)
lesions, 3 14 (4.8) 14 (6.0) 0(0.0)
1 (%) 4 14 (4.8) 10 (4.3) 4(6.7)
>5 61 (20.8) 46 (19.8) 15 (25.0)
Tumor size, mm Median (IQR) 89 (56-146) 88 (56-145) 98 (55-153) 0901
Tumor boundary type, n Distinct 105 (35.8) 88 (37.8) 17 (28.3) 0231
(%) Obscure 188 (64.2) 145 (62.2) 43 (71.7)
Unifocal or
Tumor spread, 1 (%) intra-lobe.lr 206 (70.3) 161 (69.1) 45 (75.0) 0.431%
metastasis
Translobar
metastasis 87 (29.7) 72 (30.1) 15 (25.0)
. Yes 64 (21.8) 51 (21.9) 13 (21.7) 0581
UICC Tstage 2 3, 1 (%) No 229 (78.2) 182 (78.1) 47 (78.3)
Lymph node metastases, Yes 88 (30.0) 70 (30.0) 18 (30.0) 1.00 ¥
1 (%) No 205 (70.0) 163 (70.0) 42 (70.0)
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Table 1. Cont.
_ Training Set Validation Set
All (n = 293) (1 = 233) (1 = 60) p-Value
. . Yes 74 (25.3) 57 (24.5) 17 (28.3) 0.621
Distant metastases, 1 (%) No 219 (74.7) 176 (75.5) 43(717)
AP Ser[‘};“Llevels' Median (IQR) 161 (102-290) 158 (99-306) 168 (116-256) 050
Ca 19'95?111“? levels, Median (IQR) 80 (22-800) 82 (18-773) 70 (31-1046) 0461
Ag’}ﬁ“" Median (IQR) 3.8 (3.4-4.2) 3.9 (3.4-42) 3.8 (3.4-4.1) 0291
Initial therapy Resection 143 (48.8) 116 (49.8) 27 (45.0) 0.19
Ablation 3(1.0) 1(0.4) 2(3.3)
TACE * 14 (4.8) 9(3.9) 5(8.3)
SIRT * 29 (9.9) 24 (10.3) 5(8.3)
Che“;‘;g;erapy 54 (18.4) 41 (17.6) 13 (21.7)
BSC 50 (17.1) 42 (18.0) 8(13.3)

* Of the 43 patients who received transarterial treatments, 20 received additional chemotherapy (7 = 12 in the training set, n = 8 in the
validation set). UICC, union internationale contre le cancer. CA19-9, carbohydrate antigen 19-9. AP, alkaline phosphatase. ¥ Mann-Whitney
U test used. ¥ Fisher test used. ' Chi-squared test used.

3.2. Risk Factor Identification for the ANN-Based Model

To identify possible risk factors for inclusion in the ANN model, univariate Cox hazard
regression was performed. Except for age > 60 years, a parameter which is included in
the MEGNA score [11], all investigated risk factors reached highly significant p-values
(Table 2). Therefore, all of these factors were used in the input layer of the ANN model.

Table 2. Univariate Cox hazard regression model results.

Factor Univariate

HR (95% CI) p-Value
Age > 60 years 1.2 (0.9-1.6) 0.140
Max. tumor size > 10 cm 1.9 (1.5-2.5) <0.001
Multifocality 2.0 (1.6-2.6) <0.001
Obscure tumor boundary 2.4 (1.8-3.2) <0.001
Translobar spread 2.9 (2.2-3.8) <0.001
Extrahepatic tumor growth 1.6 (1.2-2.2) <0.001
Lymph node metastases 2.1 (1.6-2.7) <0.001
Distant metastases 4.2 (3.1-5.7) <0.001
Ca19-9>37U/mL 2.2 (1.7-2.9) <0.001
AP >147U/L 2.0 (1.5-2.5) <0.001
Albumin < 3.5 g/dL 2.6 (2.0-3.5) <0.001
Low PMI 1.6 (1.2-2.0) <0.001

HR, hazard ratio. CI, confidence interval. CA19-9, carbohydrate antigen 19-9. AP, alkaline phosphatase. PMI,

psoas muscle index.

3.3. Predictive Performance of the ANN

For the ANN, the AUC was 0.89 (95% CI 0.84-0.93) for the training set and 0.80 (95%
CI 0.68-0.92) for the holdout validation set (Figure 5).

3.4. Predictive Performance of the Fudan Score

In a second step, we performed a head-to-head comparison of our newly developed
ANN and the conventional Fudan score. Of the 293 patients, 17 (5.8%) had a low, 52 (17.8%)
an intermediate, 136 (46.4%) a high, and 88 (30.0%) an extremely high Fudan score. The
median OS was 69 months, 50 months, 15 months, and 5 months in the low-, intermediate-,
high-, and extremely high risk groups, respectively (log-rank p-value < 0.001, Figure 6).
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1.001
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Fudan 1
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Figure 6. Kaplan—-Meier curves of overall survival stratified according to Fudan score.
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Figure 5. Visualization of the created artificial neural network. Receiver operating characteristic

curves for the training (blue) and validation (red) sets.
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Regarding individual risk prediction, the Fudan score yielded a Harrell’s C-Index of
0.69 and an AUC for predicting 1-year survival probability of 0.77 (95% CI 0.71-0.82) for
the training set and 0.74 (95% CI 0.61-0.87) for the holdout validation set (Figure 7).

o |
@ |
o
o |
o
=2
=
z AUC =077
[
] AUC=074
= —
O
o~
o
o |
o
T T T T T T
10 08 06 04 02 00
Specificity

Figure 7. Receiver operating characteristic curves for the training (blue) and validation (red) sets
using the Fudan score.

Comparing both models, the AUC differed significantly for the training cohort (0.89
vs. 0.77, p < 0.001), but the difference between both AUCs for the validation set did not
reach significance (0.80 vs. 0.74, p = 0.24).

4. Discussion

In this study, we evaluated the feasibility of an ANN for ab initio risk prediction
in patients with ICC. In a second step, we evaluated the Fudan score and performed a
head-to-head comparison. In summary, the ANN reached an AUC of 0.89 in the training
set and therefore outperformed the Fudan score (0.77) significantly (p < 0.001). In the
validation set, the ANN was also superior compared to the Fudan score (0.80 vs. 0.74).
However, this difference did not reach significance (p = 0.24), which might be attributable
to the smaller sample size of the validation set. However, ANN models have excellent
scalability; therefore, novel risk factors can easily be added to the developed model. Hence,
these approaches will further improve risk prediction in patients with ICC.

Thus far, several scoring systems have been developed, especially for patients who
have undergone tumor resection. The Hyder nomogram depends on tumor size, nodal
status, vascular invasion, multifocality, presence/absence of cirrhosis, and age [9]. The
Wang nomogram includes carcinoembryonic antigen and CA19-9 levels, vascular invasion,
nodal status, and direct invasion or local metastasis, as well as tumor size [10]. The MEGNA
score stratifies risk groups using the parameters multifocality, extrahepatic tumor extension,
tumor grading, lymph node metastasis, and age [11]. Despite promising initial results, they
all failed in external validation; though the Hyder nomogram had a C-Index of 0.69 in the
derivation cohort, in an external validation by Doussot et al., the C-Index only reached 0.63.
In the same study, the Wang nomogram reached superior values in estimating prognosis
(C-Index 0.72). In two recent evaluations, the MEGNA score was found to be a useful
stratification tool but failed in individual risk prediction [13,29]. Thus, none of the scores
were implemented in the daily clinical routine.
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The only scoring system available for patients regardless of histopathological factors is
the Fudan score. This score consists of five common parameters assessed during standard
work-up at the time of initial diagnosis and is not based on histopathological factors [14].
In a previous study by our group, all the included factors correlated with an impaired
survival in our patient cohort [25]. Thus, the high discriminative ability (p < 0.001) of the
score in this study is not surprising. However, regarding individual survival prediction,
the corresponding C-Index was only moderate (0.69), and 1-year survival prediction
reached values of 0.77 for the training set and 0.74 for the validation set, which can be
classified as a “fair prediction” [30,31]. One reason for the only moderate predictive ability
of the Fudan score in our patient cohort might be the fact that we calculated the score
regardless of the initial treatment. In the original publication, the authors developed the
score on a population of resected cases and evaluated its performance on a small set of
unresected patients.

All of the above-mentioned stratification systems rely on well-known clinical, histopatho-
logical, serological, and imaging-derived factors. However, they may not cover the clinical
complexity because they are all based only on a few, mainly tumor burden-associated factors.
Knowledge about novel risk factors, such as the tumor microenvironment, the influence of
inflammation and immune reactions, body composition assessment, tumor standardized
uptake in hybrid positron emission tomography/computed tomography imaging, and image-
based texture analysis has continuously been increasing [25,32-37]. Therefore, the integration
of these factors into scoring systems has great potential. For a successful translation into daily
patient care, ML-based approaches offer a solution for the conjunction of well-known risk
factors and this emerging knowledge. In addition, automated parameter processing using
ML-based approaches becomes more applicable due to the continuous growth of digitization
in the clinical infrastructure and electronic availability of patient data. In the future, dedicated
software pipelines based on these approaches will enable automatic risk prediction.

However, ML-based studies on survival prediction in patients with ICC are scarce.
Thus far, three attempts have been made: Focusing on tumor burden and the relationship
between tumor size and number, Bagante et al. used a classification and regression tree
model (CART) to identify prognostic groups of patients after curative-intent resection [18].
With their CART model, the group was able to visualize the hierarchical association between
tumor burden and other clinical and histopathological factors. Li et al. applied different
decision tree- and random forest-based ML algorithms to identify the most important
risk factors for patients with ICC after resection [19]. In a second step, they created a
novel scoring system based on the T and N categories of the ICC staging framework in
the AJCC 8th edition, namely, carcinoembryonic antigen, CA19-9, alpha-fetoprotein, and
prealbumin. Although their so-called EHBH-ICC score outperformed the AJCC 8th and
LCSGJ staging systems, the final model’s C-Index was only moderate (0.69 for training and
0.67 for internal validation). The latest attempt by Jeong et al. achieved better values: in
contrast to the two attempts before, but similar to our study, they used a Tensorflow deep
learning algorithm to create a scoring system based on the wide range of four postoperative
histopathological, six serological, and two etiological factors [20]. This system yielded an
AUC of 0.78 in the original study and was more accurate than the AJCC staging system
(0.60). In combination with our results, this supports our hypothesis that the inclusion of
more risk factors enhances individual survival prediction.

Compared to other ML approaches and conventional scoring systems, the main
advantage of ANNs may be that a multitude of different variables can be included quickly
and the networks are easily scalable when novel parameters are integrated and complexity
increases [15]. ANNSs have the disadvantage of being kind of “black boxes” with complex
interactions between included parameters and subsequent layers [15]. Furthermore, ANNs
cannot deal with missing values. Thus, datasets have to be as complete as possible. In the
future, this bias may be attenuated, as the digitization of medical records is continuously
progressing and more and more parameters are automatically assessed. However, our
results should only be interpreted as a proof of feasibility due to the single-center design
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and missing external validation. Hence, large-scale validation studies are mandatory in
the future.

One point that further stresses the potential of artificial intelligence-based approaches
for survival prediction is the following fact: even though there was considerable hetero-
geneity regarding initial treatment, our approach reached a strong prognostic ability—even
when applied at the very beginning of the patient’s clinical history.

Our study has several limitations: First, the dataset was acquired in a retrospective
manner and the final sample size was only moderate (1 = 293) due to the monocentric nature
of the study. However, the number of included patients was comparable to other studies
examining the role of risk prediction and stratification for patients with ICC [9-12,14].
Second, as incidence is low in Western countries, the recruitment period was relatively
long. In the meantime, significant improvements have been made in treatment, especially
for patients with an unresectable tumor burden, and indication criteria have changed
tremendously [8,38]. To reduce this bias, we actively decided to choose patients with an
initial diagnosis in 2014 or later for the validation set. Third, we included only patients
with complete datasets and actively decided against imputing missing values. Thus, we
were not able to include important prognostic factors such as the Eastern Cooperative
Oncology Group Performance Status or inflammation parameters such as the neutrophil to
lymphocyte ratio or the platelet to lymphocyte ratio as the determination of these factors
has not been a standard for patients treated before 2010. Therefore, the integration of
these parameters would have considerably reduced the number of patients included into
final analysis. However, especially the growing knowledge on inflammation indices offers
great potential for survival prediction in patients with intrahepatic cholangiocarcinoma
as they are easily available pre-operative serum markers. Fourth, for the sake of a clear
methodology, we decided to use an 80:20 split based on the time of the initial diagnosis.
However, as mentioned above, significant improvements have been made in treatment
and in indication criteria. Therefore, the allocation according to the initial diagnosis date
could have introduced a bias. However, even though treatment options evolved during
the study period, our approach outperformed the Fudan score clearly for the validation
set and reached a good predictive ability. Fifth, scoring systems derived from a single-
center cohort of patients face the problem of “overfitting”. “Overfitting” describes “a
phenomenon occurring when a model maximizes its performance on some set of data,
but its predictive performance is not confirmed elsewhere due to random fluctuations
of patients’ characteristics in different clinical and demographical backgrounds” [39].
Multicenter studies and the inclusion of patients with different ethnic backgrounds will
attenuate this bias. Such studies would also enable us to approach the full capability of an
ANN-based model.

5. Conclusions

ML-based approaches and especially ANNs offer the possibility of integrating a
broad range of different patient parameters into risk prediction. This study proved the
feasibility of this approach for patients with ICC prior to treatment. The ANN outperformed
conventional risk scoring, leading to the conclusion that especially the inclusion of more
risk factors offers a great potential for survival prediction. To reach the full capability
of such approaches, large multicenter clinical databases are needed. Afterwards, such
“big data”-based ANNs could easily be implemented into, for example, web-based risk
calculations and integrated into the clinical routine workflow in order to support clinicians
in daily decision making.
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