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Abstract
The ongoing COVID-19 pandemic has pushed scientists and technologists to find novel strategies to develop new materials 
to prevent the transmission, spread, and entry of pathogens into the human body. In this report, the fabrication of polyvinyl 
chloride (PVC)-SiO2-Ag composite is presented, in which the percentage of Ag is 0.84% wt. Our findings render that this 
composite eliminates (> 99.8%) bacteria and fungus (Staphylococcus aureus, Escherichia coli, Penicillium funiculosum) 
and SARS-CoV-2, by surface contact in 2 h hours and 15 min, respectively. Specific migration analysis shown that the use 
of the PVC-SiO2-Ag composite is considered safe and effective for food preservation. This research and innovation front can 
be considered a breakthrough for the design of biocide materials. Future directions for this exciting and highly significant 
research field can open the door to the development of new technologies for the fabrication of packaging films to protect 
consumer products (such as fruits, vegetables, and other foods).
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Introduction

Currently, microorganisms (including bacteria, fungi 
and viruses) are one of the main causes of disease in the 
world [1]. The public health outbreaks caused by emerg-
ing COVID-19 infectious diseases constitute the forefront 
of current global safety concerns and a significant burden on 
global economies [2–4]. While there is an urgent need for 
the effective treatment of these outbreaks based on antiviral 
and vaccines, it is essential to explore any other effective 
intervention strategies that may reduce the mortality and 
morbidity rates of the disease [5, 6]. The development of 
innovative materials able to prevent the transmission, spread, 
and entry of COVID-19 pathogens into the human body is 
currently in the spotlight. The synthesis of these materials 

is, therefore, gaining momentum, as methods are providing 
nontoxic and environmentally acceptable “green chemistry” 
procedures [7].

It has been known for over a century that silver nanopar-
ticles (Ag NPs) are one of the most active against micro-
organisms and they are widely used due to their antiviral 
properties and the lower chance of developing resistance 
when compared to conventional antivirals [8–10]. Ag NPs 
present excellent bio-activities and have been incorporated 
into a wide variety of consumer products including protec-
tive equipment, clothing, food containers, packaging, and air 
purifiers (Project on Emerging Nanotechnologies) [11]. Nev-
ertheless, Ag NPs are reactive and unstable in physiological 
conditions, and their practical applications are often ham-
pered by oxidization, which results in aggregation and the 
loss of antimicrobial activity [12]. To solve this problem, Ag 
NPs can be dispersed on metal oxides to form metal/semi-
conductor composites, which are employed with success in a 
wide range of applications, including heterogeneous cataly-
sis, energy conversion and environmental applications [13].

Ag NPs display a unique characteristic associated with 
the localized surface plasmon resonance (SPR) behavior [14, 
15], which render remarkable antimicrobial activity [16–18]. 
This is mainly due to the following factors: (i) the SPR 
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adsorption and high electron trapping ability of Ag NPs are 
beneficial for promoting solar energy conversion [19, 20], 
water splitting [21, 22], photocatalytic [23–25] and antimi-
crobial [26–29] activities of the composites, (ii) the excellent 
conductivity of Ag NPs at the interface improve the transfer 
of charges from SPR metals to semiconductors, thus lead-
ing to enhanced activity[30]. Previously, we demonstrated 
an anti-SARS-CoV-2 activity, which efficiently hampered 
infection and transmission via surfaces; in particular, an 
antimicrobial coating, a polycotton fiber Ag based material, 
that could rapidly kill bacteria Staphylococcus aureus (S. 
aureus), Escherichia coli (E. coli), fungi (Candida albicans), 
and SARS-CoV-2 by contact was presented [31].

The amorphous semiconductor SiO2 meets many impor-
tant requirements, i.e. ease of synthesis and low cost, high 
biocompatibility and biodegradability, hydrophilicity, stabil-
ity, optical transparency tunable size, and versatile surface 
chemistry [32, 33]. Due to its unique characteristics, it has 
been employed in a wide range of applications, such as cos-
metics, food, pharmaceuticals and medicine [34, 35]. Taking 
advantage of SiO2 as an efficient host for stabilizing Ag NPs 
and the SiO2-Ag heterojunction has attracted considerable 
attention due to its excellent properties [36–38], in the fol-
lowing study by our research group, Ag NPs were stabilized 
with semiconductor amorphous SiO2 to form a SiO2-Ag 
heterojunction. This heterojunction was immobilized in a 

polymeric matrix (ethyl vinyl acetate), to render a highly 
virucide material [31]. In this study, we also confirmed, by 
using scavenger experiments, that hole (h+), hydroxyl radi-
cal (⦁OH), and hydroperoxyl radical (⦁O2H) are the reac-
tive species along the mechanism of the virus elimination 
process [31]. It is assumed that the formation and separation 
of electrons, e−, and h+, are enhanced due to the synergistic 
interaction/effect generated at the surface of the SiO2 semi-
conductor and the SPR of the Ag NPs at the interface. In 
the semiconductor, the h+, at the valence band, reacts with 
H2O by decomposing it into ⦁OH and a proton (H+). The 
e− migrates to the conduction band reacting with O2 to form 
a superoxide radical (⦁O2

−), which in turn interacts with H+ 
forming the radical ⦁O2H. These free radicals are capable of 
killing microorganisms by oxidizing and breaking down the 
cell walls and membranes of bacteria, fungi, and viruses, as 
demonstrated in different heterojunctions formed by Ag NPS 
and binary and ternary metal oxides [31].

The experimental results indicated that the as-fabricated 
samples exhibited high antibacterial activity towards E. coli 
and S. aureus as well as towards SARS-CoV-2 [31]. Further-
more, this activity can be functionalized as a new technol-
ogy in the manufacture of medical devices, such as reusable 
masks and pharmaceutical packaging, food storage pack-
aging materials, displaying high flexibility, biostability and 
easy processing [39–41]. Emerging foodborne pathogens 

Fig. 1   A-B) TEM images of SiO2-Ag heterojunction. C) Chemical composition from EDS analysis of the sample (weight %)
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are considered a major public health and sanitary control, 
in addition to affecting food processing industries as well 
as consumers. The consumption of food contaminated by 
microorganisms leads to different types of foodborne ill-
nesses, an example is the old chain associated with the re-
emerging outbreaks of COVID-19 in Beijing, China [42, 43]. 
Furthermore, countless cases of diseases that are associated 
with foodborne pathogens are reported every year worldwide 
[44]. Biocide materials covered by polymers is an impor-
tant strategy to be applied for different uses, what makes 
the studies of possible food storage packaging viable and 
promising because they can inhibit the growth of microor-
ganisms and food spoilage, extending the product a longer 
shelf life [45, 46].

Inspired by these pioneering studies, in this communi-
cation we develop a greener and convenient approach for 
the synthesis of polyvinyl chloride (PVC)-SiO2-Ag. PVC 
is one of the most used thermoplastic polymers worldwide, 
due to its versatility, high stability and resistance. As a hard 
thermoplastic it can be used in the packaging of consumer 
products and for biomedical applications, especially for 
surgical and dialysis technologies [47]. The PVC-SiO2-Ag 
composite proposed in this study has the ability to kill bac-
teria (S. aureus, and E. coli), fungus (Penicillium funiculo-
sum (P. funiculosum)) and SARS-CoV-2 by surface contact. 
These results demonstrate that this material constitutes an 
effective platform for simultaneously eliminating different 
pathogens, avoiding their transmission, protecting packag-
ing of consumer products and increasing the shelf life of 
perishable foods.

Materials and methods

Experimental details on the method for obtaining the poly-
meric composite, microbicidal tests and specific migration 
tests can be found in the Supplementary Material.

Results and discussion

Figure 1A-B shows the transmission electron microscopy 
(TEM) and energy-dispersive x-ray spectroscopy (EDS) 
analysis of the SiO2 microstructures, composed of small, 
and dark nanoparticles deposited on their surface. The syn-
thesis of the SiO2-Ag heterojunction and the PVC-SiO2-Ag 
composite are shown in the Supplementary Material. When 
performing the EDS analysis (Fig. 1C) of this region, a ratio 
of almost 2:1 is observed from O (69.33%) to Si (29.83%), 
expected for the structure of SiO2, in addition to a small per-
centage of Ag (0.84% wt) can be sensed. These results con-
firm that SiO2-Ag heterojunction is obtained successfully. 
The stability of Ag NPs was analyzed by spectrophotometry 

in the UV–Vis region, as they are prone to oxidation when 
dried at high temperatures. There were no differences in the 
plasmonic absorption band of Ag NPs (573 nm) between 
samples (heat-treated and not heat-treated), showing that the 
drying process does not alter the Ag NPs (see Fig. S1 in the 
Supplementary Material).

Once the composite was obtained, microbiological 
elimination tests were performed to assess the activity of 
the material against infectious pathogens. This analysis is 
the first step to confirm the use of this material in packaging 
films to protect consumer products, since indirect infections 
can occur due to contact with contaminated surfaces 
[48, 49]. These infections occur because pathogenic 
microorganisms can remain active for long periods on 
different surfaces, depending on the chemical composition 

A

B
Day 1 Day 2

PVC

PVC PVC

PVC- SiO2-Ag

PVC- SiO2-AgPVC- SiO2-Ag

0

20

40

60

80

100

)
%(

ytilibai
Vediciborci

M

S. aureus
E. coli
P. funiculosum

%
50.0

%
05.0

%
50.0

0

20

40

60

80

100

)
%(

ytilibai
V

2-
Vo

C-S
R

AS

 3 min

 15 in

0.
01

 %

%
01.02

0.
01

 %

18
.4

2 
%

Fig. 2   (A) Microbicidal results against S. aureus, E. coli and P. funic-
ulosum after 24 h of exposure to pure PVC and PVC-SiO2-Ag com-
posite. (B) Virucidal results against SARS-CoV-2 using PVC-SiO2-
Ag composite
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and physical structure of the surface [50]. The activity of 
the PVC-SiO2-Ag composite was evaluated against the 
bacteria S. aureus and E. coli, and the fungus P. funiculosum 
(Fig. 2A) after 24 h of contact, while activity against the 
virus SARS-CoV-2 was evaluated for 3 and 15 min on 2 
consecutive days (Fig. 2B). The experimental procedure is 
described in the Supplementary Material.

An analysis of the results renders that the PVC-SiO2-Ag 
composite in contact with the microorganisms S. Aureus, E. 
Coli and P. funiculosum suffer eliminations of 99.95, 99.50 
and 99.95%, respectively, whereas for pure PVC no elimi-
nation is observed. As for the SARS-CoV-2 virus, the tests 
were carried out for two consecutive days, at the times of 
3 and 15 min. At 3 min there is an elimination of 81.58% 
of copies of the virus, followed by 99.99% at 15 min. A 
similar result is observed on the second day, with elimina-
tions of 79.90% and 99.99% at 3 and 15 min, respectively. 
As with bacteria and fungus, no reductions in virus copies 
were observed with pure PVC. Therefore, the PVC-SiO2-Ag 
composite becomes an effective platform for avoiding the 
infection, proliferation, and transmission of bacteria, fungi, 
and viruses.

To illustrate the potential of PVC-SiO2-Ag composite 
as a material to protect consumer products, Fig. 3 shows 
the results obtained in which papaya is covered by a pure 

PVP film and an PVC-SiO2-Ag composite film during 
14 days; for comparison purposes a papaya without a cover 
is also included. A time lapse video can be seen in the 
Supplementary Information.

It is observed that for papaya exposed to the environ-
ment, on the third day the top of the fruit begins to deterio-
rate, while on the fourth day, the papaya packed with pure 
PVC film also begins to show these signs of deterioration. 
Papaya packed with the PVC-SiO2-Ag composite film begins 
to show signs of deterioration on the ninth day, increasing 
the fruit's life span by 5 or 6 days, when compared to other 
conditions. Thus, it is observed that in addition to prevent-
ing contact infections against bacteria (S. aureus and E. 
coli), fungus (P. funiculosum), and SARS-CoV-2, the PVC-
SiO2-Ag composite can be applied to increase the shelf life 
of fresh food, since contamination of microorganisms can 
cause food to rot.

In order to investigate the possible migration process of 
Ag NPs at the PVC-SiO2-Ag composite, specific migra-
tion tests were carried out according to Commission 
Regulation (EU) No 10/2011 (Table 1) [51]. To this end, 
three different solvents have been selected: acetic acid 3% 
(v/v), ethanol 50% (v/v), and olive oil. Due to the acid and 
hydrophilic character of acetic acid, this test can be used 
to analyze the response of foods with these characteristics, 

Fig. 3   Papaya degradation 
under ambient conditions for 
14 days with pure PVC film, 
PVC-SiO2-Ag composite film 
and without packaging
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while ethanol and olive oil allows us to investigate alco-
holic/dairy and fatty foods, respectively [52, 53]. The spe-
cific migration analysis shown that for all cases, the Ag 
content was less than 30 µg/Kg, a mass much smaller than 
accepted by Commission Regulation, which allows limits 
below 500 µg/Kg for metals. The specific migration of 
SiO2 was not taken into account, as it is not restricted by 
Commission Regulation [51]. Therefore, the use of the 
PVC-SiO2-Ag composite is considered safe and effective 
for food preservation.

Conclusions

Finding new materials to eliminate microorganisms is 
clearly a high priority with the emergence of the present 
COVID-19 pandemic. In this study, we evaluated the effi-
ciency of the PVC-SiO2-Ag composite and present findings 
render that this material eliminates bacteria (S. aureus, E. 
coli), fungus (P. funiculosum), and SARS-CoV-2, by sur-
face contact. Consequently, there is no doubt that materi-
als incorporating this composite in every-day devices such 
as smartphones clothing, eye- and face-ware like glasses 
and masks constitutes will be the bases of the development 
of new technologies for viral disinfection in the sectors of 
health, processing, storage, and food transportation. In rap-
idly expanding bioengineering branches, this work contrib-
utes to further research to provide comfort and confidence 
to humans worldwide, by preventing the transmission and 
contamination of SARS-CoV-2 and other pathogens, and its 
impacts on society.
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