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Dear Editor,
Since emerging in 2019, the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has caused an ongoing human
pandemic of coronavirus disease 2019 (COVID-19).1 Vaccines against
COVID-19 were developed and rolled out for large-scale vaccination,
including two mRNA vaccines (BNT162b2 and mRNA-1273) encod-
ing SARS-CoV-2 pre-fusion spike protein.2,3 These mRNA vaccines
have demonstrated strong immunogenicity and high efficacy, and
offer the additional advantage of rapid development.4,5 Further
mRNA vaccine candidates include those targeting the receptor-
binding domain (RBD), including one from our group,6,7 which
mediates engagement of the viral spike protein with its cellular
receptor human angiotensin-converting enzyme 2 (hACE2). Pre-
viously, we reported the development of a protein subunit COVID-
19 vaccine, ZF2001, based on the dimeric RBD of viral spike protein
as immunogen.8,9 This vaccine showed an efficacy of 81.4% against
symptomatic COVID-19 in the Phase 3 clinical trial,10 and has been
approved in China, Uzbekistan, Indonesia and Colombia. To leverage
advantages of the mRNA platform, we applied the RBD-dimer
immunogen design as an mRNA vaccine. Here, we report the
immunogenicity and efficacy of the RBD-dimer mRNA vaccine in
mice. We also demonstrate that the flexibility of mRNA platform can
be highly advantageous for rapid immunogen updates according to
SARS-CoV-2 variants, exemplified by Delta and Omicron.
The vaccine mRNA transcript contains a 5ʹ untranslated region

(UTR), the RBD-dimer coding sequence (HB-01 strain, prototype)
(Supplementary information, Ref. 9), a 3ʹ UTR, and a poly-adenyl
tail generated from a linear DNA template (Fig. 1a). In vitro
immunogen expression was verified by detection of RBD-dimers
in the supernatant of mRNA-transfected HEK 293 T cells via
Western Blot (Supplementary information, Fig. S1). Thereafter, the
mRNA was encapsulated into lipid nanoparticles (LNP) as mRNA
vaccine, with an average diameter of 97 nm (Supplementary
information, Fig. S2). To evaluate the immunogenicity of the
prototype RBD-dimer mRNA vaccine, groups of BALB/c mice were
immunized with two doses of 5 μg or 15 μg mRNA vaccine, at a
14 days interval (Fig. 1b). Another group of mice was immunized
with LNP-GFP as negative control. After first and second
immunization, the serological RBD-binding IgG and neutralizing
antibodies were measured. The results showed that the first dose
induced significant binding and neutralizing antibody production,
and the second dose boosted the antibody titers to high levels
(binding antibody titer >105; neutralizing antibody titer >104)
(Fig. 1c, d). Of note, in a head-to-head comparison with the RBD-
trimer mRNA vaccine candidate BNT162b1 (from BioNTech),11 the
RBD-dimer mRNA vaccine elicited comparable levels of antibodies
at different time points after priming at higher or equal doses
(Supplementary information, Fig. S3). Moreover, immunization of
mice with the prototype RBD-dimer mRNA vaccine elicited a
strong cellular immune response as demonstrated by ELISpot

assays and intracellular cytokine staining (ICS), which showed a
marked increase of IFNγ-secreting T cells, whereas the Th2
cytokine (IL-4) was only moderately induced in high dose
(15 μg), but not low dose (5 μg) group (Fig. 1e; Supplementary
information, Fig. S4). Hence, these data indicate that the RBD-
dimer mRNA vaccine induced Th1-biased cytokine production.
To evaluate the efficacy of prototype RBD-dimer mRNA vaccine

in vivo, the immunized BALB/c mice were challenged with a high
dose (5 × 105 TCID50) of SARS-CoV-2 (hCoV-19/China/CAS-B001/
2020 strain) via intranasal route at 28 days post second dose
(Fig. 1b). Mice were transduced with recombinant type 5 adenovirus
expressing hACE2 5 days prior to SARS-CoV-2 infection. Lung tissues
were collected for virus titration and pathological examination
3 days post challenge. High viral loads were detected in the lungs of
mice within the sham-treated group, with a genomic RNA (gRNA)
burden of average 1.68 × 109 copies/g and subgenomic RNA
(sgRNA) of average 2.97 × 108 copies/g (Fig. 1f, g). For mice
immunized with either low dose (5 μg) or high dose (15 μg) of
RBD-dimer mRNA vaccine, the viral gRNA titers significantly
decreased to 8.99 × 105 (5 μg) and 2.14 × 106 (15 μg) copies/g,
respectively (Fig. 1f). The viral sgRNA was below detection limit in all
immunized mice, indicating the complete inhibition of virus
replication by the vaccine-induced immune response (Fig. 1g). In
addition, the pathologic analysis of lung tissues revealed that
vaccination relieved the pathological damage and inflammatory
response caused by SARS-CoV-2 infection, such as thickened
alveolar walls, vascular congestion, and inflammatory cell infiltration
(Fig. 1h). These results demonstrate that the RBD-dimer mRNA
vaccine was immunogenic in mice, induced a strong humoral as
well as Th1-skewed cellular immune response, and caused
protection against SARS-CoV-2 infection in the lung.
Since the beginning of the pandemic outbreak, new SARS-CoV-

2 variants rapidly emerged. Different variants including Beta, Delta
as well as the currently circulating Omicron variants have acquired
the ability to evade immune responses induced by COVID-19
vaccines. With more than 30 amino acid mutations in the spike
protein, Omicron variants are currently the most resistant to
COVID-19 neutralizing antibodies and vaccine-elicited sera.12 To
combat the Omicron variants, mRNA vaccine candidates encoding
Omicron-matched spike proteins were developed by several
independent research groups and studies with these have shown
immunogenicity and the feasibility of adapting vaccines to new
variants (Supplementary information, Ref. 10). Sera of mice
vaccinated with mRNA vaccines targeting Omicron BA.1 RBD
showed strong neutralizing activity against BA.1, but displayed
weak or even no neutralization to ancestral variants such as
D614G, Beta and Delta (Supplementary information, Ref. 11). Since
the composition of circulating variants changes over time, it
would be useful to have vaccines that are effective against a broad
spectrum of different SARS-CoV-2 variants.
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Based on the RBD-dimer strategy, we designed a chimeric
tandem Delta-Omicron (BA.1) protein subunit vaccine.13 Com-
pared to the prototype RBD-dimer vaccine ZF2001, the chimeric
vaccine elicited broader responses against SARS-CoV-2 and its
variants, and provided better protection against both Delta and
Omicron.13 In this study, we applied the chimeric Delta-Omicron

(BA.1) design in the mRNA vaccine platform, verified the antigen
expression in vitro (Supplementary information, Figs. S5 and S6),
and evaluated its immunogenicity together with two homologous
RBD-dimer mRNA vaccines (prototype-prototype and Omicron
(BA.1)-Omicron (BA.1)) (Fig. 1a). BALB/c mice were immunized with
two doses of each vaccine, 14 days apart. The Delta-Omicron
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RBD-dimer mRNA vaccine induced a higher geometric mean titer
(GMT) of RBD-binding antibodies than the prototype and Omicron
vaccines (Fig. 1i). The neutralizing activity of mouse sera was
analyzed against pseudotyped virus expressing SARS-CoV-2
prototype, Alpha, Beta, Delta or Omicron (BA.1) spike. Analysis of
sera from prototype vaccine-immunized mice revealed that the
neutralizing GMT was preserved against Alpha (11,038), Beta
(6297), and Delta (7436) variants. However, compared to the
prototype pseudovirus (6712), the neutralizing capacity against
Omicron (1403) was strongly reduced. The lower titers of
neutralizing antibodies against the prototype pseudovirus com-
pared to the Alpha and Delta VOCs are likely due to the lower
binding affinities of RBD-targeting antibodies to prototype RBD, as
shown recently.14 Sera from mice immunized with the Omicron
BA.1 vaccine strongly neutralized BA.1 pseudovirus, but displayed
little cross-neutralization of prototype, Alpha, Beta, or Delta
pseudoviruses (Fig. 1j), consistent with previous observations.15

In the sera of mice immunized with the Delta-Omicron vaccine,
broader neutralizing activity was observed, with comparable GMTs
against prototype (3605), Alpha (4989), and Beta (6804), and high
titers especially against Delta (15,418) and Omicron (40,711)
pseudoviruses (Fig. 1j). In addition, a strong increase in Th1
cytokine (IFNγ and IL-2) secreting lymphocytes was detected
14 days after the second dose of prototype, Omicron or Delta-
Omicron mRNA vaccine, without significant difference between
groups (Fig. 1k). In contrast, no substantial Th2 cytokine (IL-4)
production was observed in all the groups.
Antigen expression of the different mRNA vaccines was evaluated.

After transfection of cells, protein expression was detected for all
candidates. Compared to prototype RBD-dimer, Omicron RBD-dimer
was detected in the supernatant to a lesser extent (Supplementary
information, Fig. S5). This yield reduction of Omicron RBD-dimer may
be due to the decreased stability of Omicron RBD as observed by
others (Supplementary information, Ref. 12). By contrast, the
Omicron RBD fused to a Delta RBD as the chimeric RBD-dimer
largely increased the antigen expression (Supplementary informa-
tion, Fig. S5). The results suggested another benefit of using
chimeric RBD-dimer as the antigen to overcome the poor antigen
expression of Omicron variant. Different expression patterns of the
three dimers could partially explain the differential immunogenicity
results that Delta-Omicron mRNA vaccine induced higher neutraliz-
ing antibody titer against Omicron pseudovirus than Omicron mRNA
vaccine as we have demonstrated (Fig. 1j).
To test a heterologous boosting scenario, prototype protein

subunit vaccine-experienced mice were boosted with either the
Omicron vaccine or the Delta-Omicron vaccine. Before hetero-
logous boost, animals had comparable RBD-binding IgG titers

against the prototype (Supplementary information, Fig. S7). The
heterologous booster with the Delta-Omicron vaccine induced
high neutralizing activity against all previously tested variant
pseudoviruses, whereas neutralization of Omicron BA.1 was
substantially lower after the Omicron booster (Fig. 1l). Given the
recent surge of Omicron BA.2 and BA.2.12.1, and the current surge
of BA.4/5, we also tested the vaccine-elicited serum neutralization
of pseudoviruses expressing spikes from these sub-lineage
variants. In addition, GMTs against the Omicron sub-lineage
variants BA.2, BA.2.12.1, and BA.4/5 were comparable in sera from
mice that received the Delta-Omicron booster. In contrast, GMTs
against these Omicron variants were markedly lower in sera from
Omicron-boosted mice.
Our data support that a chimeric Delta-Omicron immunogen can

improve the vaccine-elicited serum cross-neutralization of SARS-
CoV-2 variants, including the currently circulating Omicron sub-
lineage variants BA.4/5. In summary, the data of a Delta-Omicron
RBD mRNA vaccine tested in mice indicated the feasibility of a rapid
RBD-dimer immunogen update using the mRNA vaccine technology
platform. The variant-adapted multivalent mRNA vaccine strategy
outlined above could accelerate the development of vaccines that
address circulating and emerging SARS-CoV-2 variants.
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