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Abstract
Objective  Ovarian cancer is the most lethal gynecologic cancer. Resveratrol (RSV) is known to alter metabolism in cancer. 
It affects the nuclear retinoid-X-receptor (RXR), which implies a modulating effect of RXR to gynaecologic cancers. Fur-
thermore, RSV targets Sirtuin1 (Sirt1), a histone deacetylase.
Study design  123 tissue samples of patients with serous or mucinous ovarian cancer were examined for expression of Sirt1 
and RXR. Ovarian cell lines were treated with RSV and consequences on viability and apoptosis were evaluated. The influ-
ence of RSV to Sirt1 and RXR expression was analyzed by western blotting
Results  A correlation of nuclear Sirt1 and RXRα expression could be detected (p = 0.006). Co-expression of nuclear RXRα 
and cytoplasmic (p = 0.026) or nuclear (p = 0.041) Sirt1 was associated with significantly increased overall survival in 
advanced tumour stages. Viability was decreased in all cell lines after stimulation with resveratrol, while cell apoptosis was 
increased. RSV treatment led to significant lower Sirt1 expression in A2780 cells (p = 0.025) and significant increased RXR 
expression in cisA2780 cells (p = 0.012)
Conclusion  In order to use RSV as medical target, studies could be developed to improve the understanding of drug resist-
ance mechanisms and consequently improve treatment outcome.
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Abbreviations
BrdU	� Bromodeoxyuridine
IRS	� Immunoreactivity score
PPARα	� Peroxisome proliferator-activated receptor alpha

RSV	� Resveratrol
RXR	� Retinoid X receptor
Sirt1	� Sirtuin 1
TUNEL	� Terminal deoxynucleotidyl transferase dUTP 

Nick-End Labelling
VDR	� Vitamin D receptor

Introduction

Ovarian cancer is the most lethal gynaecologic malignancy 
and the eighth leading cause of cancer-related mortality 
among women worldwide [1, 2]. The overall 5-year sur-
vival rates have barely improved over the past few decades 
remaining at 40–45% for advanced stages and around 80% 
of patients progressing within 18 months [3, 4]. The poor 
prognosis of ovarian cancer is mainly related to late-stage 
diagnosis and the rapid development of resistance to current 
chemotherapy regimens [2, 5].
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Resveratrol (RSV), a naturally plant polyphenol origi-
nates from grapes and berries, has been proven to alter 
metabolism in cancer [3] and to regulate tumour micro-
environment [6]. The regulatory effect of RSV on cancer 
is complex: besides inhibition of cell growth, RSV is also 
involved in enhancing chemo-sensitivity and blocking the 
cancer invasion of cancer cells in vitro [7]. In addition, 
it has been confirmed that RSV improves the efficacy of 
cisplatin in ovarian cancer [8].

RSV is also able to modulate vitamin D receptor 
(VDR)-signaling and it can induce dimerization of VDR 
with one of its partners, the nuclear retinoid X receptor 
(RXR) [9]. Three retinoic X receptors are known: RXRα 
[10], RXRβ [11], and RXRγ [12]. Although the distri-
bution of RXR subtypes is different, their functions are 
similar: modulating gene expression they control numer-
ous functions by dimerization with other nuclear hormone 
receptors, contributing thereby to activities of different 
cell fates [13]. As the VDR is known to be involved in 
gynaecologic cancers, the interaction of VDR with the 
RXR implies that also the RXR may have a modulating 
effect on gynaecological cancers [14].

Sirtuin1 (Sirt1) is a NADP-dependent histone deacet-
ylase, which regulates cellular metabolism and cellular 
pathways [15–20]. Its role regarding cancer progression 
remains controversial as it can act as tumour suppressor 
or as tumour promotor [21]. In ovarian cancer, Sirt1 over-
expression was correlated with improved overall survival 
[22]. By complex mechanisms (via interaction of NF-kB), 
Sirt1 can be influenced by RSV: it can be targeted by RSV, 
which can lead to suppression of tumourigenesis in colo-
rectal carcinoma [23].

Recently, RSV was described to activate RXR and stim-
ulate Sirt1 in mammalians [9]. The competitive binding 
of RXR and Sirt1 to PPARα (a peroxisome proliferator-
activated receptor) could be due to structural similar-
ity between these proteins. Sirt1 binds to PPARα more 
strongly than RXRα suggesting that Sirt1 interacts with 
PPARα directly rather than RXR [24]. Regnault et  al. 
noticed that RSV induced Sirt1 and RXR in muscle 
hypoxia [25]. Unfortunately, the effect of RSV on Sirt1 
and RXR expression in ovarian cancer cells has not been 
well documented until now.

In the present study, we immunohistochemically exam-
ined the expression of RXRα and Sirt1 in mucinous and 
serous ovarian cancer and analyzed the relationship between 
RSV, RXRα and Sirt1 in ovarian cancer in vitro. Consid-
ering the potential medical role of resveratrol in ovarian 
cancer, we evaluated the effects of RSV by proliferation 
and apoptosis experiments. In addition, we investigated the 
mechanism of RSV resistance to apoptosis in ovarian cancer 

cell lines. This study aimed to analyze RXRα and Sirt1 as 
potential therapeutic targets in ovarian cancer.

Materials and methods

Material

In this study, we used ovarian cancer tissue samples of 
123 patients who underwent surgery for ovarian cancer 
from 1990 to 2002 at the Department of Gynecology and 
Obstetrics, Ludwig-Maximilians-University of Munich, 
Germany. Patients who underwent surgery due to serous 
or mucinous ovarian cancer were included while other 
histological subtypes were excluded due to low number. 
The median age was 59 years (range 20–88 years) and 
median overall survival was 2.67 years. The distribution 
of clinic-pathological variables can be seen in Table 1. 
As positive controls for immunohistochemical staining, 
we utilized palatine tonsil for Sirt1 staining and first tri-
mester placenta for RXR staining, both received from the 
Department of Obstetrics and Gynecology of the Ludwig-
Maximilians-University of Munich. Clinical and follow-up 

Table 1   Patients’ characteristics

N %

Subtype
 Serous 110 89.4
 Mucinous 13 10.6

Age
 ≥ 60 61 49.6
 < 60 62 50.4

FIGO
 I/II 29 23.6
 III/IV 92 74.8
 NA’s 2 01.6

Grading
 1/2 76 61.8
 3 40 32.5
 NA’s 7 05.7

Progression (18 years)
 No progression 101 82.1%
 Progression 21 17.1%
 NA’s 1 0.1%

Overall-Survival (18 years)
 Right censured 38 30.1%
 Died 84 68.3%
 NA’s 1 0.1%
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data for statistical analyses were provided by the Munich 
cancer registry and retrieved from medical records.

Ethics approval

All ovarian cancer specimens had been collected for his-
topathological diagnostics during surgery. They were no 
longer used for clinical tests. Patients’ data were anonymized 
and authors were blinded for clinical information during 
experimental analyses. The study was conducted in consent 
to the Declaration of Helsinki and was approved by the local 
ethics committee of the Ludwig-Maximilians University of 
Munich (reference number 227-09 and 18-392).

Immunohistochemistry

Paraffin-embedded slides of 3 µm were dewaxed in xylol 
and washed in 100% ethanol. For inhibition of the endogen 
peroxidases, tissue samples were incubated in 3% metha-
nol/H2O2 and rehydrated in a descending alcohol series. 
Slides were afterwards heated in a pressure cooker using 
sodium citrate buffer (pH 6.0; containing 0.1 M citric acid 
and 0.1 M sodium citrate in distilled water). After cooling 
and washing in PBS (phosphate-buffered saline), all slides 
were incubated with blocking solution to avoid non-spe-
cific binding of the primary antibodies. Subsequently, the 
slides were stained with the primary antibodies anti-Sirt1 
and anti-RXRα (Table 2) and incubated. After washing, the 
secondary complexes of the ABC detection kits were applied 
following the manufacturer’s protocols to detect reactivity. 
Immunostaining was visualized with the substrate and the 
chromogen-3, 3′-diaminobenzidine (DAB) for 1 min. For 
exact staining protocol, see Table 2.

For the light microscopy analysis, the semi-quantitative 
immune-reactive score (IRS) is calculated via the multiplica-
tion of optical staining intensity (grades: 0 = no, 1 = weak, 
2 = moderate and 3 = strong staining) and the percentage 
range of positive stained cells (0 = no staining, 1 =  ≤ 10% 
of the cells; 2 = 11–50% of the cells; 3 = 51–80% of the cells 
and 4 =  ≥ 81% of the cells were stained for the antibody, 
respectively). Palatine tonsil was used as control for Sirt1 

and first trimester placenta was used as control for RXR 
staining.

Cell culture

Human ovarian cancer cell lines with different characteris-
tics (A2780, UWB1.289 and cisA2780, see Table 3) were 
used in the study. The cell lines were ordered from Gibco 
(see Table 3).

Assays

Cell viability assay

A2780, UWB1.289 and cisA2780 ovarian cancer cells were 
seeded at the density of 1.5 × 104 cells/well in 96 well plates 
with 200 μl medium. After 20 h cell culture medium was 
replaced with fresh culture medium with 50 µM and 100 µM 
of resveratrol (RSV; Sigma, America; order number: R5010-
100MG) for 24 h. Untreated control cells were plated in 
medium only. To each well, 20 μg MTT (Sigma, USA; order 
number: M-5655) were added for 1.5 h at 37 °C to show via-
bility. After removing MTT from the plates, 200μL DMSO 

Table 2   Antibodies and chemicals used for the immunohistochemis-
try

a Anti-Sirt1 rabbit IgG, polyclonal antibody, concentration: 1:1000; 
Atlas Antibody, Sweden; order number: SHPA006295
b Anti-RXRα rabbit IgG, polyclonal antibody, concentration: 1:200; 
PPMX, Japan; order number: pp-k8508-10
c HRP-Polymer-Kit (mouse/rabbit); Zytomed Systems, Germany; 
order number: POLHRP-100
d ABC detection kid; Vectastain, USA; order number: AK-6401
e Dulbecco’s phosphate buffered saline; Gibco, USA; order number: 
14190-094

Anti-Sirt1a Anti-RXRαb

PBSc PBSc

Blocking solutiond: 20 min Blocking solutiond: 20 min
primary antibodya: 1:1000
Incubation: 16 h, 4 °C min

Primary antibodyb: 1:200
Incubation: 16 h, 4 °C

ABC detection kide ABC detection kide

Chromogen: DABe (1 min) Chromogen: DABe (1 min)

Table 3   Cell lines

a,b,c Gibco
d Gibco, USA; Order number: 21875-034
e Foetal Bovine Serum, biochrom, Germany; order number S0615

A2780a UWB1.289b cisA2780c

Cell type Epithelial ovarian cancer cell Epithelial ovarian cancer cell Epithelial ovarian cancer cell
Characteristics Mucinous Serous brca1-null Mucinous, carboplatin-resistant
Culture medium RPMI 1640d + 10% FBSe RPMI 1640d + 10% FBSe RPMI 1640d + 10% FBSe
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(dimethyl sulfoxide; concentration: 0.5%; SERVA, Ger-
many; order number: 20385, 0.5%) were added and mixed 
thoroughly on the shaker for 5 min at room temperature. 
The optical density was examined at 595 nm using Elx800 
universal Microplate Reader. Each experiment was carried 
out in triplicate.

Marker of proliferation: BrdU

To confirm the results, we used BrdU-Assay, which is 
more sensitive. A2780, UWB1.289 and cisA2780 ovar-
ian cancer cells were cultured at the density of 1.0 × 104 
cells/well together with various dilutions (50/100 µM) of 
resveratrol in 96-well plates. For the labelling of DNA 
replication BrdU (Bromodeoxyuridine; Roche, Switzer-
land; order number: 11647229001) was added to the cul-
ture medium for 2 h. The final concentration of BrdU was 
10 μM. After the removal of BrdU by pipette, 200 µl/well 
FixDenat (Bromodeoxyuridine; Roche, Switzerland; order 
number: 11647229001) were added and cells were incu-
bated for 30 min at room temperature. Afterwards, FixDe-
nat solution had to be removed thoroughly and 100 µl/
well anti-BrdU-POD (Bromodeoxyuridine; Roche, Swit-
zerland; order number: 11647229001) working solution 
were added. Cells were then incubated for approximately 
90 min at room temperature and washed 3 times with 
PBS. 100 µ/well substrate solution BrdU was added and 
incubation for 20 min was performed. To each well 25 µl 
1 M H2SO4 were added and the absorbance of the samples 
was measured by an ELISA reader at 450 nm.

TUNEL  Terminal deoxynucleotidyl transferase (TdT) dUTP 
Nick-End Labeling (TUNEL) assay has been designed to 
detect apoptotic cells that undergo extensive DNA degra-
dation during the late stages of apoptosis. TUNEL staining 
was performed to assess in situ DNA fragmentation using a 
commercial kit (FragELTM DNA Fragmentation Detection 
Kit, Colorimeric-TdT Enzyme, USA; order number: Qia33-
1EA) following the manufacturer’s protocol.

Apoptosis assay

As a more specific method, Caspase assay was used to con-
firm the results. Hereby apoptosis was evaluated by measur-
ing the level of caspase-cleaved cytokeratin 18 (M30, Roche, 
Switzerland; order number: 121140322001). The ovarian 
cell lines A2780, cisA2780 and UWB1.289 were seeded at 
a density of 1.0 × 104 cells/well on 96-well plates in 200 μl 
medium. After 20 h, 50 or 100 µM RSV were added and 
cells were incubated for 24 h. M30 CytoDeath (Roche, Swit-
zerland; order number: 121140322001, dilution 1:1000) was 
used to detect the apoptotic cells.

Western blotting

Cell lysates were extracted from A2780, cisA2780 and 
UWB1.289 cells with radio-immuno-precipitation assay 
buffer (RIPA, Sigma-Aldrich, St. Luis, USA; order number: 
R0278-50ML). For Western blotting, 20 µg of cell lysates 
was first separated in 10% sodium dodecyl sulphate–pol-
yacrylamide gel electrophoresis and then transferred to a 
polyvinylidene fluoride membrane. The membrane was 
blocked in 10% casein and then incubated with the primary 
antibodies for 16 h at room temperature. We used the same 
antibodies as for immunohistochemistry (see Table 2).

GAPDH was used as a housekeeping gene and mouse 
monoclonal anti-GAPDH antibody (GeneTex, America; 
order number: GTX277408) was diluted 1:1000 in 10% 
CASEIN (Vector, Germany; order number: ZE0925). After-
wards, the membrane was incubated with the goat–anti-
rabbit secondary antibody (Vector; bioZol; Germany; order 
number: VEC-BA-1000, dilution 1:1000) conjugated with 
alkaline phosphatase and detected with 5-bromo-4-chloro-
3′-indolylphosphate/nitro-blue tetrazolium (BCIP/NBT)-
chromogen substrate solution (Vector; bioZol; Germany; 
order number: Vec-SP-5020). Western blots were scanned 
and quantified using the GelScan V6.0 1D Analysis Soft-
ware (SERVA, Electrophoresis GmbH, Heidelberg, Ger-
many). Band intensities of Sirt1 and RXRα were normalized 
with band intensities of GAPDH. The blots were repeated 
three times.

Statistics

SPSS Statistics 25 was used for data collection, processing 
and analysis. The Wilcoxon’s test was used for the evaluation 
of Sirt1, RXR and GAPDH values between related groups. 
Spearman’s test was applied to compare the IRS of Sirt1 and 
RXR staining in the ovarian cancer patients. Survival rates 
were shown by Kaplan–Meier curves. p value < 0.05 was 
considered as statistically significant.

Results

Correlation of RXRα and Sirt1 expression 
with Clinical and Pathological Data

Sirt1 and RXRα expression was analyzed in 123 cases 
of ovarian cancer (110 serous and 13 mucinous cases) 
(Table 1).

Sirt1 expression was distinguished into cytoplasmic 
and nuclear staining (Table 4). Cytoplasmic and nuclear 
Sirt1 expression was detectable in 115 cases (93.5%). 8 
cases (6.5) did not express Sirt1 in the cytoplasm and the 
nucleus. Median IRS was 4. In the examined subcategories 
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(mucinous, serous, high grade, low grade and different 
FIGO stages; Table 4; Fig. 1A–D) the median IRS was 
also 4 for both, nuclear and cytoplasmic expression. No 
significant differences regarding histological subtype 
(p = 0.915), FIGO stage (p = 0.568) or grading (p = 0.076) 
in cytoplasmic as well as in nuclear expression (histol-
ogy: p = 0.639; FIGO: p = 0.408; Grading: p = 0.514) 
were found (Table 4). High cytoplasmic Sirt1 expression 
(IRS ≥ 4) was detectable in 75 cases (61.0%), 48 cases had 
an IRS < 4 (low IRS; 39.0%). Increased nuclear expression 
with an IRS ≥ 4 was found in 82 cases (high; 66.7%). 41 
cases had a nuclear Sirt1 IRS smaller than 4 (low; 33.3%).

A total of 114 cases of ovarian cancer expressed RXRα 
(see Table 4) in the nucleus with a median of 2, 4 did not 
express RXRα at all and 5 cases were not evaluable. Cyto-
plasmic RXRα staining was not detectable. High RXRα 
expression (IRS ≥ 3) was detectable in 44 cases (35.7%) as 
compared to low expression (IRS < 3) in 74 cases (60.2%). 
Analysis of the correlation between RXRα expression 
and histopathological parameters revealed: median IRS 
in serous specimens was 2 (SD ± 0.147) compared to a 
median IRS of 3.5 in mucinous carcinomas (SD ± 0.499; 
p = 0.424; Table 4; Fig. 1E–G). Regarding the grading and 
FIGO, the median IRS was 2 in high grade and low grade 
cancers (p = 0.309) as well as in different FIGO stages 
(p = 0.405).

A significant positive correlation between nuclear Sirt1 
and RXRα in IRS staining was detected using Spearman’s 
test (p = 0.006; Table 5). 

As shown in the Kaplan–Meier curve (Fig. 2), co-expres-
sion of Sirt1 and nuclear RXRα was associated with signifi-
cant longer survival time after diagnosis in advanced tumour 
stages (FIGO III/IV). This is significant for cytoplasmic 
Sirt1 expression (p = 0.026; Fig. 2a) as well as for nuclear 
Sirt1 expression (p = 0.041; Fig. 2b).

Correlation of resveratrol to apoptosis of ovarian 
cancer

The results of the MTT assay showed that viability 
was decreased in all cell-lines (A2780, cis A2780 and 
UWB1.289) after stimulation with resveratrol (RSV). This 
effect was dose-dependent (Fig. 3). Cell apoptosis, meas-
ured via BrdU assay, indicated that the apoptotic features 
were obviously improved in 100 μM RSV treated cells 
(Fig. 4, p < 0.003), meaning that apoptosis was increased. 
Furthermore, cell morphology observation showed a change 
in apoptotic markers (the brown cytoplasm, marked by 
M30): apoptosis rate was significantly increased in A2780 
cells and UWB1.289 treated with resveratrol 100  µM 
(p = 0.043; Fig. 5) compared to the control. In A2780cis, 
M30 was significantly increased in cells treated with RSV 
50 µM and RSV 100 µM in comparison with the control 
(p = 0.042 and 0.043; Fig. 5).

After RSV treatment, the percentage of TUNEL stained 
cells increased, meaning that apoptosis rate increased 
(Fig. 6; p = 0.043).

The relationship between Sirt1 and RXRα

We tested the involvement of Sirt1 and RXRα in RSV-
induced apoptosis in ovarian cancer cell lines. Sirt1 expres-
sion was significant lower in A2780 cells treated with res-
veratrol 100 µM (p = 0.025; 50 µM: p = 0.208; Fig. 7A) as 
compared to its control. No significant difference in the 
Sirt1 expression after RSV-treatment was found in cisA2780 
(p = 0.327 and 0.069; Fig. 7B) and UWB1.289 (p = 0.401 
and 0.575; Fig. 7C). RXRα expression was significantly 
increased in cisA2780 cells treated with RSV 50 µM and 
RSV 100 µM in comparison with the control on protein level 
(p = 0.012 and 0.017; Fig. 7E). In A2780 (p = 0.208 and 

Table 4   Expression profile 
of RXRα and Sirt1 staining 
regarding clinical and 
pathological characteristics

Sirt1 cytoplasm Sirt1 nucleus RXRα Nucleus

Median (± SD) p Median (± SD) p Median (± SD) p

Histology 0.915 0.639 0.424
 Serous 4 (± 1.94) 4 (± 1.81) 2 (± 0.15)
 Mucinous 4 (± 3.23) 4 (± 2.39) 3.5 (± 0.50)

FIGO 0.568 0.408 0.405
 I/II 4 (± 2.43) 4 (± 1.78) 2 (± 1.48)
 III/IV 4 (± 1.98) 4 (± 1.91) 2 (± 1.55)

Grading 0.076 0.514 0.309
 G1/G2 4 (± 2.20) 4 (± 1.96) 2 (± 1.394)
 G3 4 (± 1.50) 4 (± 1.82) 2 (± 1.773)
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0.069) and UWB1.289 cells (p = 0.093 and 0.069) treated 
with RSV 50 µM or RSV 100 µM for 24 h, no significant dif-
ferences were found as compared to their controls (Fig. 7D, 
F). Expressions were analyzed by western blot (Fig. 7G).

Discussion

Our report shows that the expression of nuclear RXRα and 
Sirt1 in advanced ovarian cancer is significantly associated 
with longer overall survival. Resveratrol could reduce the 
proliferation and even increase apoptosis of ovarian cancer 
cells. On protein level, resveratrol (100 µM, 24 h) upregu-
lated the expression of RXRα in the carboplatin-resistant 
cell-line cisA2780 and downregulated Sirt1 expression in 
A2780.

Current studies focus on RSV, a naturally plant polyphe-
nol which is able to inhibit cell growth. Furthermore, it was 
shown to enhance chemo-sensitivity and to stop cancer inva-
sion [7]. In addition, RSV was observed to induce apopto-
sis in ovarian cancer cells [26, 27]. Pizarro et al. reported 
that 100 µM RSV reduced cell viability and caused apop-
tosis after 24 h of treatment in neuroblastoma cells. In our 
experiment, we used the same concentration and treatment. 

We could confirm that RSV partially blocked cell prolifera-
tion and induced apoptosis in all examined ovarian cancer 
cell lines. The effect of apoptosis seems to be synergistic 
to cisplatin [28]. In addition, the recent studies have dem-
onstrated that RSV (200 μM/48 h) promoted an excessive 
cellular ROS (2–3 times) production which induced cellular 
death [29]. With reference to this study, it may also be of 
significance that the used concentrations were higher and 
time of RSV exposition was longer (200–500 µM, 48 h) as 
compared to our study design.

Sirt1, a member of the Sirtuin family, is a NADP-
dependent histone deacetylase and has a conserved cat-
alytic core domain. Sirt1 regulates cellular defense and 
cell fate [15–20]. It has been considered to act dualisti-
cally either suppressing or promoting cancer, depend-
ing on the temporal and special distribution of different 
Sirt1 upstream and downstream factors [30]. As Sirt1 is 
described to induce chemo-resistance and to be associ-
ated with poor prognosis in ovarian cancer [31–34], we 
intended to analyze treatment with RSV in regard to Sirt1. 
Exposure to RSV was correlated with decreased Sirt1 
expression in mucinous ovarian cancer cell-lines (A2780). 
Pizarro et al. determined that the decrease of Sirt1 stimu-
lated by RSV is not responsible for apoptosis induction 
[35]. Based on these results, Sirt1 inhibitors could not 
change cell viability or apoptosis rates [35]. Bjorklund 
et al. showed that the RSV induced potentiation of plati-
num drugs in ovarian cancer was not correlated to the Sirt1 
1 level by using RSV-concentrations up to 40 µM [36]. Our 
results contrast these findings. However, in our experi-
ments higher concentrations of RSV were used. Neverthe-
less, these findings seem not to be transferable to all ovar-
ian cancer cells, as RSV did not decrease Sirt1 expression 

Table 5   Spearman’s correlation analysis between SIRT 1 and RXRα

Significant results (p < 0.05) are shown in bold

Sirt1nucleus Sirt1cytoplasm

RXRα
 Correlation coefficient − 0.259 0.163
 p 0.006 0.085

Table 6   Multivariate analysis

Prognostic impact of Sirt1 cytoplasm (p = 0.959), Sirt1-nucleus (p = 0.670) and RXRα nucleus (p = 0.213) 
alone was not significant (Table 6)
Significant results (p < 0.05) are shown in bold

Covariate Coefficient (Bi) Exp(B) 95%CI p value

Lower Upper

Subtype 0.109 1.115 0.642 1.937 0.699
FIGO 1.327 3.771 1.956 7.271 0.000
Grade (I/II vs. III/IV) − 0.604 0.547 0.355 0.843 0.006
Age (< 60 vs. ≥ 60 years) 0.359 1.432 0.944 2.170 0.091
Sirt1cytoplasm 0.004 1.004 0.868 1.161 0.959
Sirt1nucleus 0.035 0.965 0.821 1.135 0.670
RXRα nucleus − 0.096 0.908 0.908 1.057 0.213
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Fig. 1   Representative immunohistochemistry images of Sirt1 and 
RXRα in the same view of ovarian cancer samples. a Sirt1 expres-
sion in serous ovarian cancer on a TMA (tissue micro array) with a 
2.5 magnification and an insert at 10 × magnification. b Sirt1 expres-
sion in mucinous ovarian cancer on a TMA with a 2.5 magnification 
and an insert at 10 × magnification. c, d Boxplot: Sirt1 expression in 
the nucleus (c; p = 0.639) and in the cytoplasm (d; p = 0.915) with a 

median IRS of 4 in mucinous and serous ovarian carcinoma. e RXRα 
expression in serous ovarian cancer with a 10 × magnification and an 
insert at 25 × magnification. f RXRα expression in mucinous ovarian 
cancer with a 10 × magnification and an insert at 25 × magnification. g 
boxplot: RXRα expression with a median IRS of 2 and 3.5 in muci-
nous and serous ovarian carcinoma on slides (p = 0.424)
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in carboplatin-resistant cell lines. This finding has to be 
explored more accurately in further experiments since this 
patient group still suffers from very poor survival rates.

Sirt1 affects many nuclear receptors. Some of them, for 
example VDR, need the RXR for dimerization [37–39]. 
RXR plays a critical role in mediating ovarian cancer 
growth suppression [40]. Recent studies have demonstrated 
that RSV can either bind to RXR directly or modulate RXR 
dimerization [9]. Wang et al. also reported that RARα/RXR 
synergism prompt apoptosis and dampened cell prolifera-
tion [41]. Further reports showed that overexpression of 
RXRα could promote tumour growth by interacting with 
tumour necrosis factor-alpha-induced phosphoinositide 
3-kinase and NF-κB signal transduction pathways [42]. In 

addition, a recent study showed that the “rexinoid apopto-
sis” involves activation of both iNOS and eNOS by RXR-
PPARgamma, resulting in the production of apoptogenic 
NO, which induced cell apoptosis [43]. In the present study, 
we evaluated RXRα inhibited resveratrol-stimulated apop-
tosis of ovarian cancer cells. Our results suggest that RXRα 
could play an important role in the regulation of apoptosis 
in human ovarian cancer.

Increased expression of RXRα and Sirt1 was associated 
with increased survival rates in advanced stages of ovarian 
cancer. Little data exist about RXRα in ovarian cancer. But it 
is well known, that its stimulation with retinoids and a high 
amount of RXRα lead to an inhibition of tumour growth 
[40]. In contrast, an overexpression of Sirt1 in ovarian 

Fig. 2   Overall survival in 
patients with cytoplasmic Sirt-
1expression (A; p = 0.026) and 
overall survival in patients with 
nuclear RXRα expression (B; 
p = 0.041). Statistical signifi-
cance for all tests was assumed 
for p < 0.05

Fig. 3   Cytotoxity of RSV: 
ovarian cancer cell lines were 
treated with RSV (50 µM and 
100 µM) for 24 h. The cell 
viability was determined with 
MTT assay. a A2780 (*A2780 
control vs. RSV 40 µM 
p = 0.0032; **A2780 control 
vs RSV 60 µM p = 0.002; *** 
A2780 control vs. RSV 80 µM 
p = 0.0004; ****A2780 control 
vs. RSV 100 µM p < 0.0001), b 
cisA2780 (*cisA2780 control 
vs RSV 80 µM/RSV 100 µM 
p < 0.0001) and c UWB1.289 
(*UWB1.289 control vs. 
RSV 20 µM p = 0.0326; 
**UWB1.289 control vs. 
RSV 40 µM p = 0.0013; 
****UWB1.289 control 
vs. RSV 50/60/80/100 µM 
p < 0.0001). The data are 
presented as the means ± SEM. 
N = 3. *p < 0.05
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cancer is associated with poor prognosis [31]. In our panel, 
the expression of RXRα seem to neutralize this effect. It 
has to be examined, if this effect can be even improved by 
stimulation of RXRα with retinoids.

RSV seems to be an excellent candidate for potentiation 
of platinum treatment and to induce apoptosis in ovarian 
cancer. Nevertheless, these findings have to be confirmed in 
a larger number of specimens. Therefore, further investiga-
tions focusing on RSV and its role in anticancer effect in 
combination with platinum is warranted.

Conclusion

In conclusion, we observed that the combination of nucleus 
RXRα and Sirt1 expression was correlated with increased 
overall survival in late-stage ovarian cancer. RSV, which 
induces apoptosis and decreases proliferation in human ovar-
ian cancer cell lines, was associated with decreased expres-
sion of Sirt1 in mucinous ovarian cancer and increased 
expression of RXRα in mucinous, carboplatin resistant 
ovarian cancer cells. Novel strategies should be developed 
in order to improve the understanding of drug resistance 
mechanisms and to improve medical treatment. Undoubt-
edly, new studies of ovarian cancer for efficient, rapid and 
effective treatments are required.

Fig. 4   Cells were treated with 
RSV (50 µM and 100 µM) for 
24 h and BrdU (final concentra-
tion is 10 µM) was added. BrdU 
in corporation was determined 
by measuring the absorbance 
at 450 nm. A A2780 (**A2780 
control vs. RSV 50 µM 
p = 0.0019; ***A2780 control 
vs. RSV 100 µM p = 0.003); B 
cisA2780 (**cisA2780 control 
vs. RSV 50/100 µM p < 0.0001); 
C UWB1.289 (***UWB1.289 
control vs. RSV 50 µM 
p = 0.0007; ***UWB1.289 
control vs. RSV 100 µM 
p = 0.0003). Representative 
results are presented as the 
means ± SEM. (N = 3) *p < 0.05
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Fig. 5   The effects of RSV-treatment and M30 identification on 
A2780 (A–C), cisA2780 (D–F) and UWB1.289 (G–I) cells with 
50 µM and 100 µM resveratrol for 24 h. (N = 5). Apoptosis rates in 

dependent of RSV concentration are shown in a boxplot (J). The data 
are presented as means ± SEM. *p < 0.05
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Fig. 6   The apoptosis of A2780 (A–C), cisA2780 (D–F) and 
UWB1.289 (G–I) were determined by TUNEL assay. All images are 
at 2.5 × magnification with an insert at 10 × magnification. Apoptosis 

rates in dependence of RSV concentration are shown in a boxplot (J). 
The data are presented as means ± SEM. (N = 5) *p = 0.043
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