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Abstract
Although many diseases and traits show large heritability, few genetic variants have been

found to strongly separate phenotype groups by genotype. Complex regulatory networks of

variants and expression of multiple genes lead to small individual-variant effects and diffi-

culty replicating the effect of any single variant in an affected pathway. Interaction network

modeling of GWAS identifies effects ignored by univariate models, but population differ-

ences may still cause specific genes to not replicate. Integrative network models may help

detect indirect effects of variants in the underlying biological pathway. In this study, we used

gene-level functional interaction information from the Integrative Multi-species Prediction

(IMP) tool to reveal important genes associated with a complex phenotype through evi-

dence from epistasis networks and pathway enrichment. We test this method for augment-

ing variant-based network analyses with functional interactions by applying it to a smallpox

vaccine immune response GWAS. The integrative analysis spotlights the role of genes

related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epista-

sis network analysis of smallpox vaccine.

Introduction
In a functional gene network approach, Franke et al. [1] demonstrated that genes for multi-
genic disorders tend to be in similar functional pathways and these genes tend to have more
functional interactions. In their biofilter approach for prioritizing genes for GWAS analysis,
Bush et al. [2] point out that epistasis may lead to a failure of replication of single-SNP effects.
Specifically, the effect of one allele may depend on the presence of a second unknown allele,
and if the unknown allele is not present in a new population, the candidate effect will not repli-
cate. Thus, specific associations may not replicate in a new population due to epistasis, but
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associations and interactions among other SNPs are likely to be observed in genes from com-
mon pathways. We hypothesize that looking for evidence of coordinated activity of a pathway
from a set of variants prioritized by epistatic effects, as well as main effects, may permit one to
predict the role of genes that might otherwise be false negatives.

Recently, Greene et al. [3] combined weak main effects with functional interaction networks
from the Integrated Multi-species Prediction (IMP) database and showed that the top variants
participate in functional genesets. This result suggests that complex genetics of multigenic phe-
notypes may be inferred by pairing weak main effects with a priori functional information. In
the current study, instead of using main effects only, we prioritize by main effect and epistasis
network centrality. In addition, we use pathway enrichment and IMP to further characterize
the functional network of complex phenotypes.

The integrative component of the current approach builds upon our previous feature-selec-
tion algorithms that incorporate main and interaction effects: simulated evaporative cooling
(SEC) [4], regression model-based genetic association interaction networks (reGAIN) [5], and
an epistasis network centrality (SNPrank) [6]. We have applied these filtering methods in the
context of pathway analysis by replicating enriched pathways in GWAS of bipolar disorder [7].
Another related approach used an L1 pathway regularization to identify important gene-gene
interactions [8]. We further review these filtering algorithms in the Methods section.

The focus of the applied analysis in the current study is a GWAS of the human immune
response to smallpox vaccination. A previous analysis in a different population implicated a
variant (rs1805352) in retinoid X receptor alpha (RXRA) using a gene network centrality algo-
rithm in immune response to smallpox vaccine [6]. In that study, an EC filtered epistasis net-
work (reGAIN) was analyzed by SNPrank to determine that the RXRA variant showed a
strong centrality for smallpox vaccine immune response. This importance of RXRA using an
epistasis network framework has been supported by traditional approaches that implicate vari-
ants in the RXRA gene in immune response to hepatitis B, measles, and rubella vaccines
[9,10,11]. Thus, although this previous study had a smaller sample size, a gene interaction net-
work framework enabled the identification of biologically relevant effects.

In the current study, we expand the machine learning filtering and gene interaction network
analysis to include an integrative framework to fill gaps in GWAS data that may occur due to
allele frequency differences between study populations or, as in the current study, when there
is not a strong tag for a SNP of interest. After filtering, we used pathway enrichment to priori-
tize genes from the epistasis network that are likely involved in the same functional pathway,
and hence share involvement in response to smallpox vaccination. We used the genes that
were prioritized by filtering and that were in the most significant pathway as input to IMP to
predict a functional interaction network. The functional interaction network showed a physical
interaction between one of the input genes (THRB) and RXRA, and the functional network
showed an enrichment of RXR and retinoic acid pathways. The integration of multiple levels of
information provides a more comprehensive view of genes and pathways likely to be involved
in the vaccine immune response phenotype.

Methods

Subjects and Data
Subjects from a previously described smallpox vaccine cohort (18–40 years old) were utilized
for this study [1,12]. Study subjects had been vaccinated with a single dose of smallpox vaccine
(Dryvax, Wyeth Laboratories) between 2002 and 2006. All subjects had a documented vaccine
“take” at the vaccination site. Smallpox antibody response GWAS data collected at Mayo Clinic
(Rochester, MN) [12,13] included genotype and phenotype information for 1,000 individuals
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of varying race and gender (732 males, 268 females) and 455,986 SNPs. To reduce confound-
ing, individuals were filtered by race to European Ancestry (EA). After filtering, there were 523
individuals remaining (383 males, 140 females). The Institutional Review Board of Mayo Clinic
approved the study, and written informed consent was obtained from each subject.

Neutralizing Antibody Measurement
Vaccinia-specific neutralizing antibody (NA) titers were quantified for each subject using a
method that has been previously published by us [14]. Measurements were reported as the
serum dilution that inhibits 50% of virus activity (ID50). The coefficient of variation for NA
assay was 6.9%.

Integrative Epistasis Network Approach
Our bioinformatics strategy (Fig 1) integrates empirical epistasis network calculations with
predicted network information to identify biologically relevant pathways in the GWAS of
smallpox immune response. While previous epistasis gene network approaches often utilize
only phenotype-specific information (steps 1–4), we sought to determine pathways from a full
source of prior biological knowledge utilizing the phenotype-specific genes as “seeds.”Details
of the analysis strategy are as follows.

Step 1. Machine-learning variant filtering protocol. Simulated Evaporative Cooling
(EC) is a machine-learning algorithm that incorporates main effect contributions with interac-
tion effects to prioritize variants [4,15]. The algorithm removes the least important SNPs in an
iterative process analogous to physical cooling of a gas by evaporation of atoms. Part of the EC
simulation process involves balancing the main effect and interaction contribution to each pre-
dictor’s score. Whereas standard linear regression for variant prioritization ignores interaction
effects, EC uses ReliefF to calculate the interaction component for each SNP, providing a more
robust indication of a variant’s utility in a posterior epistatic network. The other half of EC is
Random Jungle, an implementation of Random Forest, which is used to calculate the main
effect contribution of the SNP importance scores. By filtering variants before the construction
of an epistasis network, we significantly reduce the computational burden of computing pair-
wise interactions in Step 2 without sacrificing variants likely to be integral in an epistasis net-
work. One could use a univariate filter instead, but as mentioned in the introduction, we
hypothesize that including interactions will be important for characterizing the full pathway
for a phenotype.

Step 2. Computation of epistasis network. Many of the interactions and main effects are
already captured in Step 1, so one could set a threshold for the EC scores and skip to Step 4.
However, Steps 2 and 3 help further filter noise variants and construct an epistasis network
that may be integrated with other network information. From the top 1,000 EC-filtered SNPs,
we used the generalized linear model (GLM) to calculate the pairwise interaction strengths and
main effects. We use these regression model coefficients to construct a regression GAIN
(reGAIN) matrix [5], which is a form of epistasis network. We restricted the number of vari-
ants used in this step to 1,000 in order minimize the computational burden associated with
computing the pairwise interactions. Using the antibody titers as the outcome (phenotype),
individual variants and multiplicative interaction terms were used as predictors. Covariates
included sex, age, quartile of years from immunization to blood draw, season, and a binary var-
iable to indicate ambient versus frozen shipping temperature. The standardized coefficients
from the regression models encode a reGAIN matrix with each SNP’s main effect coefficient
along the diagonal and SNP-SNP interaction coefficients on the off-diagonals. The resulting
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symmetric matrix encodes a network of variants (nodes) and their statistical interactions
(edges) based on the GLM.

Step 3. Variant prioritization using a network framework. Using the reGAIN matrix
from Step 2, we employed an eigenvector centrality algorithm called SNPrank [5] to prioritize
the variants whose aggregate interactions and main effects contributed most to the variance in
the antibody titer. This additional interaction and main-effect filtering step removes more irrel-
evant SNPs while adjusting for covariates. To assess the possible biological activity of the vari-
ants implicated in our epistasis network, variants with the strongest centrality were mapped to
their corresponding genes and used for enrichment analysis.

Fig 1. Integrative epistasis network analysis strategy. Simulated evaporative cooling (EC) feature selection is used to filter the top SNPs (1), which are
used to compute a regression genetic association interaction network (reGAIN) of epistatic and main effects (2). The most important (hub) SNPs from the
reGAIN are identified by their centrality with SNPrank (3). The top SNPs are mapped to genes and used to determine the most enriched Reactome pathways
(4). The genes from the top pathway are used to query IMP for known functional interactions. Filled circles represent query genes and open circles represent
predicted genes based on prior functional connectivity (5). The output is a posterior functional interaction network with enriched pathways (6).

doi:10.1371/journal.pone.0158016.g001
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Step 4. Pathway Enrichment from empirical epistasis network. To characterize the path-
ways and processes associated with the most central genes in our epistasis network, we used
the Reactome Functional Interaction (FI) database to identify enriched biological pathways in
the top genes [16]. As we previously restricted the number of variants used to construct our
epistasis network, we used the top 200 genes based on the epistasis network SNPrank centrality
analysis of the GWAS as input to Reactome pathway enrichment. The choice of 200 genes is
data dependent, but is generally a reasonable number for enrichment [17]. In the Methods sec-
tion, we further discuss this choice of number of genes.

Step 5. Functional interaction prediction from data-driven analysis. The epistasis net-
work centrality reflects main effects and statistical interactions from the GWAS data, and the
prioritization of genes by pathway enrichment reflects their coordinated effect on the pheno-
type. To identify additional potential interaction partners and relevant genes, we queried IMP,
which integrates multiple sources of evidence for functional interactions [18]. We used the
data-driven prioritized genes in the most significantly enriched pathway as seeds for predicting
functional interactions. We queried IMP with the pathway-enriched genes, as opposed to a
larger list, because the enrichment suggests coordinated activity of the genes and, hence, good
candidates for finding interactions that might have been missed in the data-driven analysis.

Step 6. Functional interaction network enrichment. After integrating our GWAS-driven
genes from the statistical epistasis network with prior functional interactions from IMP (Step
5), we next identified pathway enrichment present in the posterior functional interaction net-
work. The posterior functional interaction network from IMP includes additional predicted
genes and interactions. Unlike the enrichment in Step 4, which reflected biological pathways
strictly from factors present in the phenotype-specific results, the resulting biological pathways
from Step 6 represent biological pathways enriched when integrating prior biological knowl-
edge with the enriched processes responding to smallpox vaccine response.

Results
After EC filtering (Fig 1, Step 1 of integrative strategy) and regression epistasis network analysis
adjusted for covariates (Fig 1, Step 2), we reprioritized the genes in the reGAIN using SNPrank
centrality to remove additional noise variants (Fig 1, Step 3). For pathway enrichment (Fig 1,
Step 4), we selected the top 200 SNPrank genes. The elbow plot of the SNPrank scores (Fig 2)
shows that above 200 SNPs, the scores appear consistent with a null centrality. Based on the
separation of the elbow from the null line, one could make an argument for using a smaller
number of genes in the pathway enrichment, but another motivation for selecting the threshold
number of genes for enrichment is to obtain a large enough collection of genes to detect rele-
vant pathways. The choice of number of genes is data dependent, but generally, 200 is reason-
able for enrichment [17]. For example, the immunologic genesets (C7) in MSigDB were
constructed from the 200 top or bottom genes (or FDR< 0.25) for comparisons between con-
ditions in immunologic gene expression experiments [19].

The epistasis network effects and main effects of the top SNPrank genes can be visualized in
the “Positive/Negative Epistasis Degree Plot” (Fig 3), which we previously developed for differ-
ential co-expression network visualization [20]. Positive (negative) epistasis degree is the sum
of all positive (negative) epistasic interaction coefficients for the given variant in the epistasis
network. Positive (negative) epistasis in this context means an interaction that leads to higher
(lower) vaccine immune response. The vertical (horizontal) coordinate of each point is the
sum of the positive (negative) interactions. Variants with a greater number of interactions that
lead to lower immune response fall below the diagonal line. The points are also labeled by their
main effect (blue gradient for association with higher immune response and red gradient for
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association with lower immune response). Variants with negative epistatic effects (below diago-
nal) also tend to have negative main effects (red). In the gray box, THRB, for example, has a
large number of negative epistatic effects (below diagonal) and a weak negative main effect.
IL15 (large red point) is the largest negative main effect (susceptibility to low response) in the
filtered data. We note that interactions are essential for finding the important genes THRB and
SOS1; they are not in the top 1000 by a univariate analysis.

The top 200 variants from the SNPrank centrality analysis were mapped to corresponding
genes based on variant proximity to the gene body and analyzed to infer pathway enrichment
from the Reactome database. The top pathway “Map kinase inactivation of SMRT corepressor
(B)” (p = 0.0002, fdr = 1.42e-01) contains epistasis network genes ZBTB16, SOS1, and THRB.
Phosphorylation causes SMRT (silencing mediator of retinoic acid and thyroid hormone
receptor) to unbind from transcription factor complexes like RXR and RAR. In this top path-
way, the gene ZBTB16 (zinc finger and BTB domain containing 16), which also goes by the
name PLZF (promyelocytic leukemia zinc finger), has been shown to regulate the transcrip-
tional activity of Retinoic Acid Receptor (RARs) transcriptional activity [21]. The involvement
of ZBTB16 with retinoid receptors is also suggested by the association of a chromosomal trans-
location to a rare variant of acute promyelocytic leukemia (APL), which fuses the ZBTB16
(PLZF) protein to retinoic acid receptor (RARA) [22]. The gene THRB (thyroid hormone
receptor, beta) in the pathway has a physical interaction with RXRA [23].

In the epistasis network analysis, genes such as ZBTB16 and THRB in the top pathway sug-
gest the involvement of RXR pathways; however, as mentioned previously, the particular

Fig 2. SNPrank centrality score elbow plot. The SNPrank scores are plotted for the top 500 variants. The red dashed line represents the null centrality line.

doi:10.1371/journal.pone.0158016.g002
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Fig 3. Positive/negative epistasis degree plot shows the overall epistatic network effect andmain effect of the top variants for smallpox vaccine
immune response. For each variant (mapped to gene symbol), the sum of positive interaction coefficients (positive epistasis degree) versus negative
epistasis degree is plotted. The diagonal is the line of zero sum of epistasis degree. Plot symbols (size and color) are labeled by their main effect (magnitude
and direction of effect on vaccine immune response). The gray box highlights the THBR variant.

doi:10.1371/journal.pone.0158016.g003
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RXRA SNP variant was not genotyped in the current GWAS. In order to further characterize
the involvement of RXR genes and other genes involved in smallpox vaccine immune response,
we used the genes in the most enriched epistasis network pathways as seeds for predicting an
interaction network from integrated prior knowledge (Step 5, Fig 1). For this purpose, we que-
ried the IMP portal [18], which integrates multiple sources of evidence to predict new network
interaction partners (Fig 4).

The edges in the predicted network (Fig 4) are weighted by the posterior probability based
on evidence for the connection. The network in Fig 4 only shows interactions with a confidence
above 0.9, where the maximum is 1.0. THRB is the seed gene from the epistasis network analy-
sis and it is a member of the “RXR and RAR heterodimerization with other nuclear receptor”
process. The predicted connection weight between THRB and RXRA is 0.915. Evidence for this
connection includes the following curated by IMP from other sources:

1. THRB and RXRA are known to participate in the process “RXR and RAR heterodimeriza-
tion with other nuclear receptor.”

Fig 4. RXR network predicted by IMP using THRB (square node) as a seed from the empirical epistasis
network analysis. Empirical seed was chosen from the top enriched pathway from the epistasis network analysis
of the smallpox vaccine GWAS. Variants in RXRA (purple node) have been previously associated with variation in
smallpox vaccination response using an epistasis network centrality approach.

doi:10.1371/journal.pone.0158016.g004
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2. BioGRID: Physical interaction between THRB and RXRA

3. Pfam-A, Shared protein domains

THR and vitamin D are known to form heterodimers with RXR, which uses the chromatin
assembly process to modulate the transcription of target genes that contain hormone response
elements [24]. Using a mammalian two-hybrid assay, Tagami, et al., [23] established binding
between RXRA and THRB and examined binding among THR mutants. Such experimental
data is used in BioGRID. Using the predicted network (Fig 4), a final pathway enrichment anal-
ysis was performed (Step 6 of Fig 1, results in Table 1).

Discussion
This study combined a data-driven gene interaction network centrality algorithm with biologi-
cal pathway knowledge to illuminate the role of RXR in vaccine-induced antibody titer
response. To build the data-driven network, we first employed machine learning filters that
have been used previously to identify main effect and gene interaction hubs of vaccine response
and other phenotypes [5,6]. Simulated evaporative Cooling (EC) aggregates the main and
interaction effects for each SNP, and we previously demonstrated the efficacy of EC as a filter
for building a gene association interaction network. Unlike typical analyses that consider only
the effect of a variant in isolation on a phenotype, SNPrank [6] aggregates the effects of multi-
ple interactions and univariate effects when prioritizing variants. The aggregation of SNP
effects with pathway information to amplify the signals of causal variants has been advocated
in Ref. [8] Following our epistasis network prioritization, we used pathway enrichment and
integration with functional interaction databases to uncover evidence for additional interac-
tions not directly observed in the GWAS.

Previous studies of the retinoid X receptor (RXR) have implicated its role in immunity, par-
ticularly through naïve T helper cell differentiation, innate inflammatory response, and cellular
apoptosis [25,26]. Notably, multiple studies have revealed associations between genes in RXR-
related pathways with variations in differential vaccine immune response [9,11]. Like most
complex phenotypes, inter-individual variance in vaccine response involves a number of inter-
acting genes, and any single variant in these genes is unlikely to explain an appreciable propor-
tion of the heritable variation in response [8]. Other mechanisms, including gene-gene
interactions (epistasis) and pathway effects (e.g., RXR), likely account for additional variation
and may help identify subtle indirect effects missed by univariate models [5]. Consequently,

Table 1. Enriched pathways in the IMP posterior network (Fig 4) with data-driven epistasis network
seed genes.

Biological Process p-value Network Genes

RXR and RAR heterodimerization with other
nuclear receptor

8.48x10-09 RXRA, THRA, NCOR2, THRB, PPARA,
PPARG

Intracellular receptor mediated signaling pathway 5.10x10-08 RXRA, RARA, RARG, PPARA, PPARG,
ESR1

retinoic acid receptor signaling pathway 1.38x10-06 RXRA, RARA, RARG, ESR1

Functional Annotation p-value Network Genes

T helper 2 cell differentiation 3.43x10-11 THRA, RARA, RARG, THRB, RARB, BCL6

Positive regulation of interleukin-5 production 3.57x10-10 THRA, RARA, RARG, THRB, RARB

Negative regulation of receptor biosynthetic
process

3.65x10-10 THRA, RARA, RARG, THRB, RARB,
PPARA, PPARG

RXR and RAR heterodimerization with other
nuclear receptor

3.72x10-10 RXRA, THRA, NCOR2, THRB, PPARA,
PPARG

doi:10.1371/journal.pone.0158016.t001
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methods that aggregate effects from multiple gene interactions can help elucidate the genetic
architecture of complex phenotypes [6].

A previous study identified an interaction network effect involving a variant in RXRA that
influenced immune response to smallpox vaccine [5,6]. Although the same variant was not
genotyped in the current dataset, the epistasis network analysis uncovered evidence for the
involvement of the RXR pathway in inter-individual variation in smallpox vaccine immune
response through the effect of RXRA interaction partners. We integrated the epistasis network
information with functional pathway information to further characterize genes that may be
involved in the smallpox vaccine immune response phenotype, identifying a functional interac-
tion between THRB and RXRA. While imputation can be effective when a potential causal var-
iant is unknown and not tagged in a genotyping array, our results suggest that network
integration can uncover important indirect effects in GWAS data, which may be especially
important in cases where imputation is less effective. In the current study, we restricted the
population to European ancestry to reduce bias due to stratification and to more closely match
the population from earlier studies. However, incorporating gene and pathway-level informa-
tion with GWAS, along with proper ancestry corrections [27], may smooth the effect of com-
bining heterogeneous populations and increase power.

The data-driven portion of the approach led to the enrichment of the pathway “Map kinase
inactivation of SMRT co-repressor,” which includes THRB and other genes that share biologi-
cal processes and interactions with RXRA. We note that this pathway effect of RXRA is not
found when using univariate variant prioritization. The coordinated variation in this biologi-
cally relevant pathway provides candidate genes or “seeds” to query the IMP database for addi-
tional functional interactions that may be related to the immune response phenotype. The final
posterior network implicated RXR pathways involved in vaccine response and included a high-
confidence functional interaction between RXRA and THRB. This final posterior network and
enriched pathways reflected the phenotype-specific effects associated with vaccine response
while utilizing phenotype-independent biological features.

In addition to RXR pathways, our integrated network analysis implicated “T helper-2 cell
differentiation” and “interleukin-5 production,” each of which has been implicated in immune
response[28,29], but not specifically to smallpox vaccine response. Moreover, the biological
processes uncovered by our pipeline further characterize the role of RXR genes in smallpox
vaccine response, which is consistent with our previous smallpox vaccine genetic analysis [5]
and other vaccine immune response studies [9,11,25,26]. In summary, our analysis identifies
biological pathways previously linked to immune response to the specific (antibody) smallpox
vaccine response by seeding data-driven genes in an integrative biological interaction frame-
work. The framework in this methodology applies to other studies wishing to elucidate addi-
tional mechanisms that contribute to phenotypic variation on a larger network scale. The
filtering steps can be carried out with our command line tools [6], and we plan to simplify inte-
gration with IMP in a future implementation of the command line tool using the Sleipnir C+
+ library [30].

As association studies uncover new genes linked to complex immune responses, such as
antibody response to vaccination, a major challenge is to understand how multiple implicated
genes work in concert to produce a complex phenotype. Understanding the effects on gene
expression–as an intermediate between SNP and phenotype–will lead to more extensive func-
tional models of immune response. For example, in a SNP-SNP interaction analysis of an
expression quantitative trait loci (eQTL) study of stimulated and unstimulated cells with the
smallpox vaccine, we found a set of genes enriched for apoptosis [31]. Furthermore, RXRA has
been implicated in the cellular processes leading to apoptosis [32], and the top data-driven
pathway in the current study involved SMRT, which involves retinoic acid receptors in the
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negative regulation of gene expression. Linking these various levels–SNP, expression, methyla-
tion and phenotype–may improve our ability to predict and improve immune response to vac-
cination [33]. Future studies that extend these data sources and algorithms will allow for
additional characterization of the biological processes that direct variable response to this and
other vaccines. In turn, such information advances the science underlying our understanding
of the immunologic effects of immunization with vaccines–a field we have named “vacci-
nomics” [33,34,35,36,37,38,39,40,41,42]. Such information may be useful in developing novel
“next-generation” vaccine candidates, particularly for hyper-variable and complex pathogens
where the immune response to the pathogen is correspondingly complex.
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