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Abstract
Nowadays, the classical pulmonary artery catheter (PAC) has an almost 50-year-old history of its clinical use for hemody-
namic monitoring. In recent years, the PAC evolved from a device that enabled intermittent cardiac output measurements 
in combination with static pressures to a monitoring tool that provides continuous data on cardiac output, oxygen supply 
and-demand balance, as well as right ventricular performance. In this review, which consists of two parts, we will introduce 
the difference between intermittent pulmonary artery thermodilution using bolus injections, and the contemporary PAC 
enabling continuous measurements by using a thermal filament which heats up the blood. In this second part, we will discuss 
in detail the measurements of the contemporary PAC, including continuous cardiac output measurement, right ventricular 
ejection fraction, end-diastolic volume index, and mixed venous oxygen saturation. Limitations of all of these measurements 
are highlighted as well. We conclude that thorough understanding of measurements obtained from the PAC is the first step 
in successful application of the PAC in daily clinical practice.

Keywords  Hemodynamic monitoring · Pulmonary artery catheter · Thermodilution · Continuous cardiac output · Right 
ventricular ejection fraction · Right ventricular end-diastolic volume · Mixed venous oxygen saturation · Oxygen supply 
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CO	� Cardiac output
CCO	� Continuous cardiac output
CCI	� Continuous cardiac index
CVP	� Central venous pressure
EDV	� End-diastolic volume
EDVi	� End-diastolic volume index
Hb	� Hemoglobin
HFpEF	� Heart failure with preserved ejection fraction
ICU	� Intensive care unit
LV	� Left ventricle
LVEDP	� Left ventricular end-diastolic pressure
LVEDV	� Left ventricular end-diastolic volume
MAP	� Mean arterial pressure

MPAP	� Mean pulmonary artery pressure
MRI	� Magnetic resonance imaging
PA	� Pulmonary artery
PAC	� Pulmonary artery catheter
PAP	� Pulmonary artery pressure
PAPi	� Pulmonary artery pulsatility index
PAWP	� Pulmonary artery wedge pressure
PEEP	� Positive end-expiratory pressure
PH	� Pulmonary hypertension
RV	� Right ventricle
RVEDV	� Right ventricular end-diastolic volume
RVEF	� Right ventricular ejection fraction
ScvO2	� Central venous oxygen saturation
SvO2	� Mixed venous oxygen saturation
SV	� Stroke volume
SVi	� Stroke volume index
TR	� Tricuspid regurgitation
VO2	� Systemic oxygen consumption
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1  Introduction

Since the introduction of the original floating pulmonary 
artery catheter (PAC) by Swan and Ganz in 1970 the device 
has changed considerably. The classical PAC evolved from 
a catheter that enabled intermittent cardiac output (CO) 
measurements in combination with static pressures to a 
monitoring tool which provides continuous data on CO, the 
oxygen delivery and consumption balance, as well as right 
ventricular (RV) performance. Detailed understanding of the 
technology and its potential pitfalls are eminent in adequate 
interpretation of PAC-derived data. However, a large propor-
tion of ICU physicians and critical care nurses in Europe 
and the United States failed to answer even the most basic 
questions concerning the PAC and its measurements [1, 2]. 
The aim of this narrative review is to provide an overview of 
the existing knowledge on the use of the contemporary PAC 
in critically ill and perioperative patients. This CCO-PAC, 
further mentioned as PAC, is a 7.5 F continuous cardiac 

output (CCO)/mixed venous oxygen saturation (SvO2)/ end 
diastolic volume (EDV)-pulmonary artery catheter (model 
774F75; Edwards Lifesciences, Irvine, CA, USA). In the 
first part of this review we discussed adequate placement, 
interpretation of waveforms, as well as pitfalls of this PAC. 
In this second part of the review, we highlight measurements 
of the additional information that comes from the techno-
logical innovations of the contemporary PAC, including the 
measurement of CCO, RV ejection fraction (RVEF), end-
diastolic volume index (EDVi), and SvO2. Limitations and 
clinical applications of these measurements are addressed 
in detail.

2 � Measurements

Measurements obtained from the PAC can be found in 
Table 1. It is of note that for accurate measurements the 
PAC should be placed in the correct position within the 

Table 1   Hemodynamic variables obtained from the pulmonary artery catheter

BSA body suface area; CI cardiac index; EDV end diastolic volume; EF ejection fraction; HR heart rate; LV left ventricle; MAP mean arterial 
pressure; MPAP mean pulmonary arterial pressure; n.a. not applicable; PAWP pulmonary artery wedge pressure; PH pulmonary hypertension; 
RV right ventricle
Adapted from: Edwards Clinicical Education Quick Guide to Cardiopulmonary Care [4]

Variable Abbreviation Equation Normal range

Mixed venous oxygen saturation SvO2 n.a 60–80%
Cardiac output CO HR × SV/1000 4.0–8.0 L min–1

Cardiac index CI CO/BSA 2.5–4.0 L min–1 m−2

Cardiac power index CPI (MAP-CVP) × CI/451 0.5–0.7 W m−2, population specific
Central venous Pressure CVP n.a 2–6 mmHg
Stroke volume SV CO/HR × 1000 60–100 mL
Stroke volume Index SVi CI/HR × 1000 33–47 mL m−2

Stroke volume variation SVV (SVmax-SVmin)/SVmean × 100 10–15%
Systemic vascular resistance SVR 80 × (MAP − CVP)/CO 800–1200 dynes sec cm–5

Systemic to pulmonary pressure ratio MAP/MPAP MAP / MPAP 4.0 ± 1.4 in uncomplicated cardiac surgey
Pulmonary artery systolic pressure PASP n.a 15–30 mmHg
Pulmonary artery diastolic pressure PADP n.a 8–15 mmHg
Pulmonary artery wedge pressue PAWP n.a 6–12 mmHg
Pulmonary vascular resistance PVR 80 × (MPAP − PAWP)/CO  < 250 dynes sec cm−5

Pulmonary artery pulsatility index PAPI (PASP − PADP)/CVP population specific
LV stroke work index LVSWi SVi × (MAP − PAWP) × 0.0136 50–62 mmHg ml m−2

RV stroke work index RVSWi SVi × (MPAP − CVP) × 0.0136 5–10 mmHg ml m−2

RV function index RFI PASP/CI 31.7 ± 16.7 in ICU survivors with PH
RV end-diastolic volume RVEDV SV/EF 100–160 mL
RV end-diastolic volume index RVEDVi RVEDV/BSA 60–100 mL m−2

RV end-systolic volume RVESV EDV-SV 50–100 mL
RV ejection fraction RVEF (SV/EDV) × 100 40–60%
RV systolic pressure RVSP n.a 15–30 mmHg
RV diastolic pressure RVDP n.a 2–8 mmHg
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pulmonary artery. This procedure is described in detail in 
the first part of this review [3].

3 � Cardiac output

3.1 � Intermittent cardiac output measurements

The Fick method is the gold standard for indirect CO deter-
minations. This method determines the cardiac output as the 
quotient of systemic oxygen consumption (VO2) and the dif-
ference between arterial and mixed venous oxygen content.

The oxygen concentration in arterial blood is a function 
of the hemoglobin concentration (Hb) and the percent satu-
ration of hemoglobin with oxygen (SaO2). The CO can then 
be calculated using the following formula:

In this formula, VO2 (in mL min−1) = oxygen consump-
tion as directly measured by respirometry [5], SvO2 (in %) 
is the mixed venous oxygen saturation. Since this direct Fick 
technique is technically demanding at the bedside, it is rarely 
used in clinical practice. 

Intermittent pulmonary artery thermodilution is the clini-
cal reference method for CO measurement [6]. To meas-
ure CO using pulmonary thermodilution, a bolus of cold 
crystalloid solution is injected in the central venous circula-
tion. The cold indicator bolus injection causes a decrease 
in blood temperature that is detected downstream using a 
thermistor near the catheter tip. From the thermodilution 
curve, which represents the changes in blood temperature 
over time, CO can be calculated using a modified Stewart-
Hamilton formula: 

In this formula, CO = cardiac output, V = volume of 
injectate, A = area of thermodilution curve in square mm 
divided by paper speed (mm/sec), K = calibration constant 
in mm/˚C, Tb = temperature of blood, Ti = temperature of 
injectate, SB = specific gravity of blood, SI = specific grav-
ity of injectate, CB = specific heat of blood, CI specific heat 
of injectate, 

when 5% dextrose is used, CT is correction factor for injec-
tate warming.

Intermittent pulmonary artery thermodilution with cold-
saline bolus injections has multiple limitations. The modi-
fied Steward-Hamilton equation shows that the bolus-derived 

−CO (mLmin)−1 =
VO2

1.34xHbx
(

SaO2 − SvO2

)

CO =
Vx(Tb − Ti)

A
x

SIxCI

(SBxCB)
x
60xCTxK

1

SIxCI

(SBxCB)
= 1.08

information depends on injected volume, rate, and tempera-
ture. Overestimation of CO can occur in the presence of left-
to-right or right-to-left intracardiac shunts, the use of a small 
injection volume, or a higher injectate temperature as com-
pared to the reference temperature. All of these causes result 
in a smaller area under the thermodilution curve, resulting 
in an overestimated CO. Tricuspid regurgitation (TR) might 
both under- and overestimate CO due to increased transit 
time and modified blood temperature in the right atrium. 
Pulmonary valve insufficiency changes the appearance of 
the thermodilution curve, but CO measurement generally 
remains accurate since the area under the thermodilution 
curve is not affected, unless the CO is very low [7]. Under-
estimation of CO is mainly seen in high-flow states due to 
rapid temperature changes in the pulmonary artery [8–11]. 
In addition, inadequate timing during the respiratory cycle 
and variability in injection technique may further influence 
the accuracy of bolus thermodilution CO measurements 
[12]. Bolus CO measurements are therefore highly user-
dependent [13]. Over the years a continuous measurement 
system has been developed in order to overcome these disad-
vantages. In the early days, placement of a heating filament 
was severely compromised due to background thermal noise 
in the pulmonary artery or because of limitations either in 
maximum peak heat flux or in temperatures [14, 15]. To 
overcome these limitations, a combination of thermal indica-
tor dilution and a stochastic system is now used in the mod-
ern PAC. To this end, the contemporary PAC is equipped 
with a 10 cm long thermal filament, positioned 15–25 cm 
from the tip of the catheter. This filament heats up the blood 
in a random on–off pattern. The change in blood temperature 
is measured downstream by the thermistor throughout the 
entire respiratory cycle. Based on a repeating on–off signal, 
a relaxation waveform can be generated. This technique ena-
bles measurement of true volumetric flow and is independent 
of the physical geometry of the system. Detailed information 
about the used algorithm and the stochastic system has been 
described previously [16].

3.2 � Continuous cardiac output measurement

Using the area under the relaxation thermodilution wave-
form, near-continuous and almost real-time measurement 
of CCO can be obtained. CCO measurement with PAC is 
well-validated in experimental settings nowadays, as well as 
in different patient categories [17–20]. CCO was shown to 
be more accurate when compared to various other measure-
ment methods for CO, including electromagnetic measure-
ment of aortic blood flow, bolus thermodilution, the Fick 
method, and aortic transit-time ultrasound [18, 21–25]. In 
addition, CCO showed to be more accurate and less vari-
able when compared to the intermittent bolus thermodilution 
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technique. The CCO method is independent of the clinician, 
injection technique, and injection volume. Furthermore, the 
CCO method is not influenced by ventilator settings due to 
a high sampling rate at random time points in the ventilatory 
cycle (Fig. 1). This allows for detection of smaller variations 
in CO, as well as good performance over a wide range of CO 
and blood temperatures [24, 26].

4 � Limitations of cardiac output 
measurements

4.1 � Delayed response in CCO measurement results

It is important to distinguish two different ways of depict-
ing CCO measurement results: trend CCO and STAT 
CCO. The trend CCO reflects the average CCO over the 
previous 4–12 min (depending on the monitor setting) 

[27, 28]. During rapid alterations of hemodynamic state 
there is a clinically important time lag in the response 
of the trend CCO [28]. The STAT CCO was designed to 
improve the response time. Using a faster algorithm, STAT 
CCO is updated every 30–60 s and has shown good accu-
racy and precision compared to intermittent pulmonary 
artery thermodilution [28]. Pacing-induced hemodynamic 
changes, for instance, were detected in mean arterial pres-
sure (MAP) recordings after 30 s, and an increase in SvO2 
reached significance after 90  s. A significant increase 
in CCO using the STAT algorithm was reached after a 
minimum of 270 s [28]. Physicians should be aware of a 
delayed response, even when using the STAT mode [29, 
30], limiting the use of this method in dynamic hemody-
namic assessments (e.g. of fluid responsiveness).

Fig. 1   Relaxation waveform for continuous cardiac output and con-
comitant calculations of right ventricular ejection fraction and right 
ventricular end-diastolic volume calculations. Shown are the thermal 
signal sent out by the proximal part of the PAC, how this is received 
in the more distal part of the PAC, and how this is transformed 
to derive the specific variables. PRBS Pseudo-Random Binary 

Sequence; RVEF right ventricular ejection fraction. CEDV continu-
ous right ventricular end-diastolic volume. CCO continuous cardiac 
output. τ = exponential decay time constant. * This step is skipped 
when using STAT-CCO over trend CCO monitoring.  Adapted from: 
Wiesenack C et al. [46]
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4.2 � Intracardiac shunts

In vitro experiments have shown that shunting 50% of 
total blood flow results in mean systematic errors of − 26.8 
(± 8.2%) for CCO measurements during an intracardiac 
left-to-right shunt, overestimating true values as a result of 
altered waveform configuration [24]. Although the CO is 
falsely high in the setting of intracardiac shunts, the PAC 
may be useful in both detecting the presence and assess-
ing the magnitude of the intracardiac left-to-right shunt.

4.3 � Tricuspid regurgitation and tachycardia

TR has been associated with an underestimation or overes-
timation of CO, and even with no influence on CO measure-
ments [31, 32]. In general, a high degree of TR is associ-
ated with an underestimation of true CO [33]. In patients 
with pulmonary hypertension, the agreement between the 
Fick method and thermodilution CO was not affected by the 
severity of TR [34]. However, despite possible under- or 
overestimation of CCO in the presence of TR, CCO meas-
urements remain clinically relevant when using this method 
for trend monitoring, as well as to assess the response to 
hemodynamic interventions [35]. Furthermore, when using 
the CCO method, it might be expected that the influence of 
TR is less pronounced when compared with the intermit-
tent bolus CO technique, because CCO represents an aver-
age value over time and is less dependent on interindividual 
variations in infusion. However, firm data on this remain 
scarce [26].

4.4 � Fluid administration

The infusion of fluid through the side-ports of the sheath, or 
through the venous port of the PAC, influences the thermodi-
lution washout curve. During bolus thermodilution measure-
ments this leads to an artefactual increase in the area under 
the curve, and thus to an underestimation of CO [36, 37]. 
Although it is suggested that the continuous measurement 
system is less accurate during fluid infusion [38], various 
infusion rates of lactated Ringer’s solution (100, 200, 500, 
1000 ml h−1) only influenced the CCO values at a low-flow 
rate equal to or below 2 L min−1. In contrast, intermittent 
bolus CO measurements were affected at all flow rates. Thus, 
CCO measurements seem to have a better resistance to the 
thermal noise produced by high rates of infusions as com-
pared to the bolus method [24].

4.5 � Extreme temperature variations

Extreme temperature variations can cause a poor corre-
lation between intermittent bolus CO measurements and 

CCO measurements. In patients treated with therapeutic 
hypothermia after cardiac arrest, for instance, a low corre-
lation coefficient was observed with broad limits of agree-
ment when comparing thermodilution CCO with indirect 
Fick CO measurements [39]. Conflicting results were 
found in small, non-randomized trials in the setting of post 
cardiopulmonary bypass [40, 41]. In patients undergoing 
orthotopic liver transplantation, both CCO and bolus CO 
methods showed decreased accuracy and precision after 
caval clamping and reperfusion [20]. However, since the 
accuracy of bolus CO among hypothermic patients is a 
topic of debate, this method may not necessarily be con-
sidered the standard for comparison in this specific setting. 
It is of note that in vitro measurements indicate that the 
CCO technique has a greater resistance to thermal noise 
compared to bolus CO measurements providing a higher 
accuracy [24].

5 � Right ventricular ejection fraction 
and end‑diastolic volume

At the end of the 1980′s, a PAC enabling measurement 
of both RVEF and right ventricular end-diastolic volume 
(RVEDV) was introduced. This PAC was validated against 
various other RVEF measurements methods, including 
angiography, contrast ventriculography, and echocardi-
ography [42–44]. Nowadays, the PAC enables continu-
ous measurement of the RVEF and RVEDV by using the 
exponential decay time constant (τ) of the thermodilution 
relaxation waveform, combined with the heart rate (HR) 
(Fig. 1). RVEF is calculated as follows:

where Tb0 = blood temperature before heat application, 
Tb1 = blood temperature during the first subsequent systole, 
and Tb2 = blood temperature during the successive systole 
[45]. Once RVEF is obtained, calculations of RVEDV are 
based on CCO, HR, and RVEF using the following calcula-
tion [46]: 

 
Because RVEDV is derived from RVEF and CO, errors 

in RVEDV are a combination of errors in both CO and 
RVEF measurements. Nevertheless, RVEDV has been 
proven to be highly predictive for volumes in a pulsatile 
flow model [47]. Measurements of RVEF and RVEDV are 
neither dependent on bolus volume nor on the temperature 

RVEF = 1 − exp
−60

�xHr
or RVEF = 1 −

Tb2 − Tb0

Tb1 − Tb0

RVEDV =
(CCO∕HR)

RVEF
.
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of the injected fluid. Moreover, in CCO, the PAC filaments 
heat up the blood directly in the RV, bypassing the influ-
ential effects of the right atrium, leaving the conserva-
tion of energy and RV dynamics and RV afterload as the 
primary determinants of the thermal washout curve [48]. 
As a result, previous studies using the bolus thermodilu-
tion technique may not directly be comparable with the 
CCO approach using the heating filament. Although the 
continuous thermodilution technique is currently validated 
for CCO measurements, there is lack of data concerning 
validation of RVEF and RVEDV. Overall, both reproduc-
ibility and accuracy of the continuous method are supe-
rior compared to the intermittent bolus technique [24, 26]. 
Since the RVEF uses the washout thermodilution curve, all 
factors that confound CO measurements will also interfere 
with an accurate determination of RVEF.

5.1 � Limitations of the continuous RVEF 
measurements: Underestimation

In general, every measurement method has its own unique 
reference values. Thermodilution-derived RVEF seems to 
underestimate RVEF when compared to other measurement 
methods such as ultrasound, magnetic resonance imaging 
(MRI), and radionuclide angiography [42, 43, 45, 49–51]. 
Animal research revealed that this underestimation was most 
likely explained by the fact that the blood in the right atrium 
did not return to baseline temperature within a single heart-
beat after the cold fluid injection [48]. Although thermodilu-
tion with the continuous measurement technique takes place 
in the RV instead of the right atrium, the continuous RVEF 
still seems to be underestimated by the PAC [45]. New 4D 
MRI technology has revealed that the blood temperature did 
not return to baseline within a single heartbeat as a result of 
the phasic contraction pattern of the RV. For every systolic 
beat, only 44% of the EDV contributed directly to the pul-
monary artery flow [52]. Recirculation of blood in the RV 
might result in it taking more time for the heat mass to reach 
the thermistor. As a consequence of the prolonged relaxa-
tion, waveform RVEF will be underestimated and RVEDV 
will be overestimated. Whether or not the absolute volume 
data is completely correct does not influence whether these 
measurements are precise, and the fact remains that they can 
be of great value for trend monitoring. In general, an abso-
lute correction factor of + 11% will result in a more realistic 
absolute value of RVEF [48].

5.2 � Mathematical coupling

Since the formula of RVEDV contains the CO by divid-
ing stroke volume (SV) by RVEF, the correlation between 
those two variables may be explained by mathematical cou-
pling. However, various studies examining the relationship 

between RVEDV and CCO showed that this relationship 
remained significant even after statistical correction for 
potential mathematical coupling or by including an inde-
pendent technique for CO measurements. Therefore, math-
ematical coupling alone does not explain the correlation 
between RVEDV and CO [53–55].

6 � Mixed venous oxygen saturation

Mixed venous oxygen saturation (SvO2) can be measured 
periodically in blood samples drawn from the distal lumen 
of the PAC in order to validate the measured values. Adding 
reflective fibreoptic oximetry at the distal end of the PAC 
enabled the clinician to accurately measure the SvO2 on a 
continuous base [56]. Oximetry is based on the technique 
known as spectrophotometry. The absorption of specific 
wavelengths of light, as it passes through a medium, is pro-
portional to the concentration of the substance that absorbs 
both the light waves and the travel length. Oxygenated Hb 
does not absorb red light waves (wavelength 660 nm) as well 
as deoxygenated Hb does. On the contrary, infrared light 
waves (wavelength 940 nm) are better absorbed by oxygen-
ated Hb. The determinants of SvO2 are identified in the fol-
lowing equation: 

where SaO2 is arterial oxygen saturation and VO2 is systemic 
oxygen consumption. As such, SvO2 reflects the balance 
between oxygen delivery (DO2) and oxygen consumption 
(VO2). A change in SvO2 indicates an imbalance between 
oxygen delivery and consumption. However, further infor-
mation is needed to assess the cause of this change. There-
fore, SvO2 is not a simplified index of inadequate CO, since 
there are more determinants in the formula. Alterations in 
SvO2 might be due to changes in oxygen transport (arterial 
SaO2, Hb, CO) or a change in body VO2 [5].

7 � Clinical application of PAC‑derived data

7.1 � Assessing fluid responsiveness

Over the years it has become clear that static filling pressures 
(CVP and PAWP) and cardiac preload should not be used 
interchangeably [57–59]. The pressure–volume relationship 
of the RV has a triangular shape, due to the low pressure 
and high capacitance characteristics of the pulmonary vas-
cular bed. The RV pressure–volume relationship changes 
with different loading conditions, which can result in an 
increased filling pressure associated with a decreased fill-
ing volume [60, 61]. A change in preload does not result in a 

SvO2 = SaO2 − (VO2CO × 1.34 × [HB]),
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proportional change in filling pressures [62]. Although CVP 
and PAWP are not suitable for preload assessment, this does 
not mean that they should not be measured at all. An impor-
tant determinant of organ perfusion pressure is the difference 
between the inflow pressure (MAP) and the outflow pressure 
(CVP). Both lower MAP and elevated CVP can result in 
diminished organ perfusion. Among different patient cat-
egories, an association between elevated CVP and impaired 
microcirculatory blood flow or increased risk of acute kid-
ney and liver injury has been demonstrated [63–65]. Ele-
vated or rapidly rising values of CVP and PAWP may serve 
as a stop rule for fluid resuscitation [66]. An increase in CVP 
in response to a fluid challenge without a change in CO is an 
indicator for poor fluid responsiveness and should alert the 
clinician of a possible RV dysfunction [66, 67]. The work 
of Guyton showed how venous return curves interact with 

cardiac function curves, i.e. right atrial pressure not being 
the primary determinant of CO rather than itself being deter-
mined by CO [68, 69]. When combining this knowledge 
with blood pressure difference (MAP-CVP) and CO, clini-
cians are offered a potential approach regarding the applica-
tion of CVP in the clinical setting (Table 2) [70]. Although 
it has been shown that many intensive care physicians do 
not measure CO, it is highly recommended when trying to 
obtain a better understanding of both the hemodynamic situ-
ation and the effects of goal-directed management [71].

Today, static filling pressures are replaced by the concept 
of fluid responsiveness. The Frank-Starling curve depicts SV 
on the vertical axis and cardiac preload on the horizontal 
axis. On the steep part of the curve, an increase in preload 
will result in a significant increase in SV. At higher values 
of cardiac filling pressures, the curve flattens and an increase 

Table 2   PAC-derived variables in the clinical setting

* The location of the bleeding/hematoma determines the hemodynamic profile of the patient
N normal; CCI continuous cardiac index; CVP central venous pressure; SV stroke volume; RV right ventricle; RVEF right ventricular ejection 
fraction; EDVi end-diastolic volume index; SvO2 mixed venous oxygen saturation; ScvO2 central venous oxygen saturation; PAP pulmonary 
artery pressure; PAWP pulmonary artery wedge pressure; LV left ventricle; HFpEF heart failure with preserved ejection fraction; PH pulmonary 
hypertension; HFpEF heart failure with preserved ejection fraction

Clinical situation PAC derived variables Clinical interpretation

Low arterial blood pressure ↓ CCI + ↑ CVP Decrease in venous return, e.g. reduced cardiac func-
tion or hypovolemia

↑ CCI + ↓ CVP Increase in venous return, e.g. distributive shock
Fluid responsiveness ↑ SV or CCI ≥ 15% after 250 ml or 3 ml kg−1 of 

crystalloid
Patient will probably benefit from fluid administration

RV dysfunction and failure Early stage (moderate RV dysfunction = RVEF 
20–30%):

↓ RVEF, ↑ EDVi, CCI = N,
SvO2 = N
CVP N or ↑
Advanced stage (severe RV dysfunc-

tion = RVEF < 20%):
↓↓ RVEF, ↑ EDVi, ↓ CCI,
↓ SvO2, ↑ CVP

LV failure ↑ PAP, ↑ PAWP, ↓ CCI
Intracardiac shunt ↑↑ SvO2  ≥ 6% step up ScvO2 to SvO2 indicates a L-R shunt
Weaning- from-ventilator ↑ PAWP, ↓ SvO2 during weaning trial Weaning-induced cardiac failure
Pulmonary hypertension Pre-capillary:

PAWP =N
Post-capillary:
↑ PAWP (> 15 mmHg)

Echocardiographic assesment should rule out HFpEF

Tamponade post cardiac surgery* ↓ CCI, ↑/ = CVP, ↓ SvO2,
↓ EDVi, ↓ RVEF, ↑ PAWP

Compression of the RV free wall causes low RVEDV 
despite substantial fluid administration

Distributive shock ↑ CCI, ↑ SvO2, ↓/ = CVP, ↓/ = PAWP Septic, neurogenic, anaphylactic, toxin-induced, or 
endocrine shock

Hypovolemic shock ↓ CCI, ↓ SvO2, ↓CVP,
↓ PAWP

Hemorrhagic, gastrointestinal, skin, renal, or third 
space fluid losses

Cardiogenic shock ↓ CCI, ↓ SvO2, ↑/ = CVP,
↑ PAWP

Cardiomyopathic, arrhythmic, or mechanical causes

Obstructive shock ↓ CCI, ↓ SvO2, ↑ CVP,
↑ PAWP

PH, pulmonary embolism, tension pneumothorax, 
tamponade, pericarditis, restrictive cardiomyopathy
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in preload will not result in an increase in SV [72]. In this 
respect there are three relevant questions in the clinical set-
ting: (1) At which part of the Frank-Starling curve does the 
heart of the patient operate? (2) Is the patient fluid respon-
sive? (3) Are fluids beneficial? Irrespective of the answers 
to question 1 and 2, the clinician does need to determine 
whether fluids are beneficial to the patient, or whether 
another therapeutic approach is needed or better suited to 
the situation, since being fluid responsive is not equiva-
lent to being in need for fluids. Fluid challenges should be 
performed with 250 ml or 3 ml kg−1 crystalloid, which is 
infused over a short period of time (5–10 min). Fluid respon-
siveness is most often defined as an increase ≥ 15% in stroke 
volume index (SVi) or cardiac index (CI) after a fluid chal-
lenge (Table 2) [73]. SVi or CI should be the primary tar-
get, and neither arterial blood pressure nor ventricular filling 
pressures or volumes should be used as a surrogate for fluid 
responsiveness [74]. CI and SVi measured with the PAC are 
highly predictive of actual pulsatile flow [47]. Since the PAC 
is able to measure both fluid responsiveness variables (SVi 
and CI) and target/safety thresholds (CVP and PAWP) in a 
continuous manner, it can be used to manage fluid therapy 
adequately [29, 30]. In addition, a rise in RVEDP during 
fluid administration, in the absence of a change in CO, is 
indicative for RV volume overloading and a reason for the 
clinician to stop the intervention.

7.2 � Right ventricular dysfunction and failure

Acute RV dysfunction can occur due to a variety of diseases, 
resulting in an increase in RV afterload, decreased contrac-
tility, or an increase/decrease in RV preload. A decreased 
RV function can induce a vicious circle of RV failure. When 
having a closer look at hemodynamics during RV failure, 
ventricular interdependence is an important concept to keep 
in mind. Due to shared muscle fibers, septal wall, and peri-
cardium, mechanical forces can be transmitted from one ven-
tricle to the other, both in systole and diastole [75]. RV vol-
ume/pressure overload or diminished contractility will result 
in RV dilatation. The intraventricular septum will flatten 
during diastole in case of volume overload and mainly dur-
ing systole in case of pressure overload, creating a D-shaped 
LV [75, 76]. RV diastolic dysfunction and RV dilatation will 
shift the pressure–volume curve of the LV towards higher 
pressures, due to decreased LV diastolic compliance [75]. 
Furthermore, increased LV end-diastolic pressure (LVEDP), 
reduced LV transmural filling pressure, and impaired LV 
diastolic filling as a result of the septal shift will contribute 
to low CO and ultimately to low blood pressure [77]. In 
severe RV failure, low blood pressure in combination with 
high RV filling pressures result in severely reduced organ 
perfusion, due to a reduced difference between MAP and 
CVP, being an important determinant of the driving force 

for venous return [78]. It is of note that a normal CO, or nor-
mal pulmonary artery pressure (PAP), does not exclude RV 
dysfunction [79, 80]. Classically, the diagnosis of RV failure 
is made by combination of clinical assessment (i.e. signs 
of impaired organ perfusion in combination with venous 
congestion) and echocardiographic evaluation. To clas-
sify RV failure, a number of reference values for a variety 
of echocardiographic measures have been suggested [81]. 
Providing RV volume and pressures with the PAC, as well 
as contractility measurements, can be helpful in diagnos-
ing and managing RV failure. In Table 1 reference values 
for RVEF and RVEDV have been provided, as stated by 
the manufacturer. However, it is pivotal to understand that 
reference values for PAC-derived RVEF in the clinical set-
ting may be considerably lower, also in comparison to 2D or 
3D echocardiography. Based on datasets, combining RVEF 
with long-term outcome in cardiac surgery and sepsis, we 
suggest the following classification: RVEF < 20%: severe 
RV dysfunction; RVEF 20–30%: moderate RV dysfunction: 
RVEF > 30%: no RV dysfunction [82, 83]. Under physiologi-
cal conditions, an increase in RVEDV is compensated by 
an (immediate) increase in SV, referred to as heterometric 
autoregulation [84]. However, in the early stage of RV dys-
function, RV dilatation becomes an adaptive mechanism for 
the preservation of adequate preload, reflected by a higher 
EDV and lower RVEF. When RV failure is combined with, 
or secondary to, LV failure, PAWP can be elevated (Table 2). 
In a more progressive disease state, CO will be diminished 
as well. The CVP waveform can reveal a prominent v-wave 
due to TR in response to RV dilatation [85].

Nowadays, new hemodynamic indices, derived from PAC 
measurements, might be helpful in early identification of 
RV dysfunction. The pulmonary artery pulsatility index 
(PAPi) is defined as: (systolic PAP − diastolic PAP) / CVP. 
This index predicts severe RV failure and has additive value 
in the setting of advanced heart failure, cardiogenic shock, 
and left ventricular assist device therapy. However, PAPi 
measurements and thresholds vary significantly between 
studies of different patient populations and thresholds from 
one patient population should not be extrapolated to another 
patient group [86].

Another index is the ratio of pulmonary artery effective 
elastance (Ea) to RV maximal end-systolic elastance (Emax). 
This right ventriculo-arterial coupling index relates to the 
mechanical efficiency of the RV, and is ideally derived from 
RV pressure–volume loops. Nowadays, bedside estimation 
can be obtained by this ratio, using the contemporary PAC. 
Ea and Emax can be defined as Ea = mean PAP 

MPAP − PAWP∕SV,

and Emax = MPAP∕RVEDV − SV.
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The ratio Ea/Emax equals 1 in case of optimal ventricular-
vascular coupling. Hence, Ea/Emax may help in early iden-
tification of RV dysfunction in critically ill patients [87].

Under conditions of impaired RV function, analysis of 
the RV waveform can be useful in early detection and sub-
sequent management of RV dysfunction, especially during 
cardiac surgery [88–90]. Since RV pressure monitoring 
requires a different PAC with a dedicated RV pace-port, 
further details are beyond the scope of this review.

7.3 � Left heart failure

To distinguish isolated RV failure from a combination of RV 
and LV failure, the use of PAC may be helpful. Of note, LV 
filling pressures cannot be reliably estimated by means of 
clinical examination [91]. Classically, in case of combined 
LV and RV failure, CI and SvO2 are low, and PAWP is ele-
vated [92]. In patients with a PAWP ≥ 15 mmHg, LV failure 
is likely [93]. In case of a low or normal PAWP, isolated 
RV failure is more likely. However, a PAWP ≤ 15 mmHg 
does not rule out the presence of LV failure, in particular in 
patients with LV heart failure and preserved ejection fraction 
(HFpEF) [94]. In this case, further echocardiographic evalu-
ation of diastolic LV function is recommended (Table 2).

7.4 � The detection of left‑to‑right shunts

A high SvO2 > 75% may indicate a cardiac left-to-right 
shunt. For oximetric shunt detection, blood sampling from 
the distal channel in the PAC and the proximal channel in the 
vena cava superior or right atrium is needed. Under physi-
ological conditions, oxygen saturation in the pulmonary 
artery is lower than that in a central vein, due to the contri-
bution of desaturated blood flow from the coronary sinus. 
However, when a left-to-right shunt is present, oxygenated 
blood can cause an increase in oxygen saturation at the tip 
of the PAC. A step up of > 6% in oxygen saturation from the 
vena cava superior to the pulmonary artery is suggestive of 
the presence of a left-to-right shunt (Table 2) [95]. Using the 
SvO2 and the central venous saturation (ScvO2) in combina-
tion with the arterial oxygen saturation (SaO2), a shunt frac-
tion can be calculated according to the following equation: 

where Qp = pulmonary blood flow, Qs = systemic blood 
flow, SaO2 = arterial oxygen saturation, SvO2 = central 
venous oxygen saturation, SpvO2 = pulmonary vein oxygen 
saturation (in the absence of a right to left shunt, this is 
identical to SaO2), and SpaO2 = pulmonary artery oxygen 
saturation [95].

Qp/Qs = (SaO2 − (SvO∕SpvO2)∕(SpvO2 − SpaO2),

7.5 � Ventilator weaning‑induced cardiac failure

When switching from positive pressure ventilation (with 
and without positive end-expiratory pressure; PEEP) to 
spontaneous breathing, intrathoracic pressure falls during 
both inspiration and expiration compared to assisted ven-
tilation. In response, right atrial pressure falls and venous 
return increases, resulting in an increase in RV preload, 
an increase in CO (in the fluid responsive patient), and in 
LV preload. In addition, the negative intrathoracic pressure 
results in an increase in LV afterload [96]. Besides these 
pressure changes, hypoxemia, hypercapnia, and an increased 
sympathetic tone can result in an increase of RV or LV after-
load. However, in a specific subgroup of patients, right atrial 
pressure may rise during a spontaneous breathing trial [97]. 
This might be explained by an increase in intrinsic PEEP due 
to expiratory muscle activity or dynamic hyperinflation [98, 
99]. When following this line of thought regarding physiol-
ogy, one can see that an elevated PAWP can be the result 
of an increase in LV preload in patients with an already 
elevated LV end diastolic volume (LVEDV), an increase 
in afterload, for example due to a subsequent increase in 
mitral insufficiency, or a decrease in LV compliance (or a 
combination of these). In a landmark paper [100], elevated 
PAWP (> 18 mmHg) during a spontaneous breathing trial 
was shown to be associated with subsequent weaning failure 
in patients diagnosed with severe chronic obstructive pul-
monary disease. After restarting mechanical ventilation, all 
patients received diuretics, and the PAWP decreased mark-
edly as compared to before treatment (9 vs. 25 mmHg). In 
addition, failure to wean the patient from the ventilator was 
also accompanied by a decrease in PAC-derived SvO2 meas-
urements, whereas SvO2 remained unchanged in the success-
fully weaned patients. The same study revealed no change 
in CI combined with an elevation of PAP and PAWP, indi-
cating an increase in both LV and RV afterload [101]. PAC 
measurements can reveal weaning-induced cardiac failure, 
showing the response of the RV and LV during spontane-
ous breathing, as well as providing information about the 
change in the VO2/DO2 balance during this critical period. 
In daily practice, PAWP should be measured before and after 
a 30 min spontaneous breathing trial [102]. A T-piece wean-
ing trial challenges patients’ efforts and the LV performance 
the most. Other ways of conducting weaning trials, such as 
applying low levels of pressure support ventilation, might 
not reveal an elevation in PAWP (Table 2) [103].

7.6 � Pulmonary hypertension

Right heart catheterization is the diagnostic gold standard 
for assessing pulmonary hypertension (PH), which was clas-
sically defined as a MPAP ≥ 25 mmHg at rest, and recently 
updated to a MPAP > 20 mmHg at rest [104–106]. In patients 
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with high MPAP, PAWP ≤ 15 mmHg is used to distinguish 
pre-capillary PH from high PAP pressures due to LV fail-
ure, since higher wedge pressures are related to left heart 
disease (Table 2) [93]. However, PAWP ≤ 15 mmHg does 
not rule out the presence of left heart failure, in particular 
in patients with HFpEF [94]. Relying on a single measure-
ment can falsely label patients with an inaccurate diagnosis. 
In order to distinguish precapillary PH from HFpEF, addi-
tional echocardiographic assessment in combination with 
the assessment of risk factors associated with HFpEF may 
avoid misclassification [104]. Once the suspicion of PH has 
risen because of high PAP measurements, it is recommended 
to refer patients to an expert PH centre for further diagnosis 
and treatment early in the diagnostic process [107]. In the 
ICU, PH is rarely the primary cause of admission so that 
clinicians should search for underlying disease states that 
cause PH; however, exact data remain scarce [108]. Upon 
hospital admission, high PAP values are mostly seen as sec-
ondary to acute conditions, such as pulmonary embolism, 
acute respiratory distress syndrome, LV failure, or mitral 
valve regurgitation [109]. The classification of chronic PH 
is not always applicable in critical care settings and a dif-
ferent classification according to the underlying cause has 
been suggested [110]. Since the RV is not resistant to acute 
increases in afterload, acute PH can result in RV failure 
[111, 112].

7.7 � Restrictive pathophysiology and tamponade

Pericardial constriction, restrictive cardiomyopathy, and RV 
infarction share the same underlying pathophysiologic fea-
ture; reduced RV diastolic compliance due to an increase in 
RV stiffness or impaired RV relaxation [113]. CVP wave-
form analysis can provide additional diagnostic clues for 
these conditions. Cardiac tamponade can be distinguished 
by the attenuation or disappearance of the y-descent in the 
CVP waveform. Obstructive shock due to tamponade results 
in a low CO, low SV, low MAP, and high CVP and RV 
filling pressures. Pulsus paradoxus can be present. In the 
final stage, there will be an equilibration of all cardiac and 
pulmonary artery diastolic pressures, which will result in an 
absence of coronary flow. This will finally lead to a circula-
tory arrest (Table 2) [114].

However, in the setting of postoperative cardiac surgery, 
the above described classical forms of waveforms and hemo-
dynamic patterns may not be present during tamponade. The 
specific location of well-defined hematomas, rather than free 
mobile accumulation of fluid, determines the specific combi-
nation of alterations in waveforms, pressures, and volumes. 
For example, compression of the RV free wall by a localized 
hematoma may cause low RVEDV and low continuous car-
diac index (CCI), despite substantial fluid administration, in 
combination with elevated or normal CVP (Table 2).

7.8 � Determination of shock type

In shock, there is a mismatch between systemic oxygen 
delivery and oxygen demand. There are four types of shock; 
hypovolemic, cardiogenic, obstructive, or distributive. The 
PAC can be useful in identifying the type of shock, and it 
can be beneficial during the assessment of the hemodynamic 
status, as a prerequisite to select the adequate therapeutic 
intervention, and to evaluate the response to therapy. In cur-
rent guidelines, if clinical examination alone does not lead 
to a diagnosis, use of the PAC is recommended in com-
plex patients for the determination of the type of shock, in 
patients with refractory shock, and for shock in combination 
with RV dysfunction or acute respiratory distress syndrome 
[74, 115].

7.9 � An integrative approach

Combining various variables may help to further elucidate 
the underlying mechanisms of RV failure, and strives beyond 
the strict interpretation of references values. For example, 
at first glance PAP values may not seem too far above the 
threshold for PH. But in case systemic blood pressure is 
below normal at the same time, such value may gain addi-
tional importance. The systemic to pulmonary pressure ratio 
(MAP/MPAP) is a tool to quantify such ‘relative’ PH and 
appeared useful in the prediction of hemodynamic complica-
tions during and after cardiac surgery [116]. Adjusting the 
PAP for a specific CI helps to quantify the RV workload, 
which is needed to maintain RV performance in the presence 
of a given afterload. The RV function index (RFI), defined 
as the systolic PAP(SPAP)/CI ratio, may be helpful to assess 
the additional amount of effort for the RV in case the flow 
or the afterload increases, and has predictive value as an 
independent risk factor for mortality in ICU patients with 
PH [117]. Finally, integrating the driving pressure (MAP-
CVP) with the flow (CI), by means of a cardiac power output 
(CPO), elegantly acknowledges the fact that maintenance of 
the CI within the normal range, at the expense of an elevated 
CVP is less energy effective than maintaining an equal CI in 
the presence of a normal CVP [118]. As such, the CPO may 
be helpful to guide hemodynamic therapy into an acceptable 
range of MAP and CI, at the lowest possible level of VO2.

8 � Complications of the PAC

The invasive nature of the PAC implies the risk of complica-
tions. First of all, central venous access can result in acci-
dental arterial puncture, air embolism, and pneumothorax. 
However, using ultrasound guidance during placement has 
been demonstrated to reduce the risk of catheter misplace-
ment [119–121]. Secondly, several complications can arise 



27Journal of Clinical Monitoring and Computing (2022) 36:17–31	

1 3

due to the catheterization itself, such as severe dysrhyth-
mias, right bundle branch block, or complete heart block. 
Minor dysrhythmias occur often during catheter insertion 
or withdrawal but resolve spontaneously after advancing the 
catheter through the RV [120]. Lastly, prolonged catheter 
residence can result in pulmonary artery rupture, pulmonary 
infarction, or venous thrombosis [6]. Catheter-related infec-
tions with the PAC are uncommon and involve the introducer 
sheath rather than the PAC itself [122]. Increased infection 
risks are associated with prolonged PAC use, insertion via 
the internal jugular vein rather than the subclavian vein, 
and unsterile procedures [122, 123]. Right heart catheteri-
zations performed in experienced centres are associated 
with low risk of serious complications, and there is high 
quality evidence that PAC use does not alter mortality [6, 
124]. Absolute contraindications of PAC placement are 
right-heart-sided endocarditis, tumours, or masses. Relative 
contraindications for PAC placement include severe coagu-
lopathy including severe thrombocytopenia, presence of a 
tricuspid or pulmonary valve prosthesis, new pacing lead, 
and large atrial septal defect. PAC insertion in patients with 
a left bundle branch block may induce complete heart block. 
In patients with TR, catheter passage might be more difficult 
[125]. Clearly, contraindications related to central venous 
cannulation, including skin infections and thrombosis of the 
selected vein, apply to PAC insertion as well.

9 � Conclusion

The contemporary PAC provides accurate and continuous 
measurements of CO, RV performance, and of the bal-
ance between DO2 and VO2. It provides a multi-variable 
integration of hemodynamic data in daily clinical practice. 
Thorough understanding of these PAC-derived measure-
ments and its limitations are key to the successful applica-
tion of the PAC in clinical practice.
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