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Hepatocellular carcinoma (HCC) is the fourth cause of cancer-related mortality worldwide.
While many targeted therapies have been developed, the majority of HCC tumors do not
harbor clinically actionable mutations. Protein-level aberrations, especially those not
evident at the genomic level, present therapeutic opportunities but have rarely been
systematically characterized in HCC. In this study, we performed proteogenomic analyses
of 260 primary tumors from two HBV-related HCC patient cohorts with global mass-
spectrometry (MS) proteomics data. Combining tumor-normal and inter-tumor analyses,
we identified overexpressed targets including PDGFRB, FGFR4, ERBB2/3, CDK6 kinases
and MFAP5, HMCN1, and Hsp proteins in HCC, many of which showed low frequencies
of genomic and/or transcriptomic aberrations. Protein expression of FGFR4 kinase and
Hsp proteins were significantly associated with response to their corresponding inhibitors.
Our results provide a catalog of protein targets in HCC and demonstrate the potential of
proteomics approaches in advancing precision medicine in cancer types lacking
druggable mutations.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth cause of cancer-
related mortality worldwide (1). The currently FDA-approved available therapies include the
multikinase inhibitors sorafenib (2), regorafenib (3), lenvatinib (4), and cabozantinib (5); the
VEGFR2 antagonist ramucirumab (6), the immune checkpoint inhibitors pembrolizumab (7) and
nivolumab (8) [alone or in combination with ipilimumab (9)], and the combination of atezolizumab
and bevacizumab (10). Unfortunately, the survival benefits conferred by these treatments are
typically limited to a few months. One grand challenge for identifying personalized and effective
treatment options in HCC is the limited number of druggable mutations found in an average HCC
patient (1). A compelling and underexplored strategy to identify novel drug targets and implement
precision medicine for HCC patient is the discovery of aberrant protein targets not readily detected
by genomic analyses that could serve as effective and selective drug targets.
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Recent advancements in mass spectrometry (MS) technology
have enabled the rapid expansion of global proteomic datasets
that quantify almost the entirety of expressed proteins in primary
tumor cohorts (11–18). The resulting proteomes of primary
tumor cohorts provide ample opportunities for investigating
protein-level aberrations that may be of clinical utility as
prognostic biomarkers or therapeutic targets, including PAK1/
PTK2/RIPK2 in breast cancer (19) and Rb phosphoprotein in
colorectal cancer (13). However, protein aberrations have
historically remained less characterized than genomic
aberrations and systematic analyses to identify such targets are
urgently needed (20–23). Further, upon the computational
prioritization of protein targets, validation of their therapeutic
viability requires a wide array of functional models representing
inter-tumor heterogeneity observed across human tumors (24).

Herein, we identify and validate protein expression-driven
therapeutic targets in HCC by utilizing recently generated global
MS proteomic data from two human cohorts. Multiple kinases
and other proteins showed up-regulated tumor expression and/
or overexpression in primary tumors, and many of these targets
show little evidence of DNA or RNA level alterations. Several
targets including FGFR4 kinase and Hsp proteins further showed
expression-driven dependency where the HCC cell lines with
high protein expression were vulnerable to their respective
targeting inhibitors. Overall, these results suggest that
proteomic-based approaches could identify precision targets in
HCC and cancer cases lacking actionable mutations.
RESULTS

HCC Proteomics Cohorts
To test whether or not proteomics data could provide interesting
drug targets for HCC we compiled genomic and global MS
proteomic data from two cohorts of hepatitis B virus (HBV)-
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related hepatocellular carcinoma patients (Figure 1A). (1) The
HCC-Gao cohort: the Gao et al., 2019 study of 159 cases with
matched-normal samples (25), and (2) The HCC-Jiang cohort:
the Jiang et al., 2019 study of 101 cases and 98 matched-normal
samples (16). We applied standardized normalization procedure
and quality-control criteria (Methods) and retained 6,452
quantified proteins in the HCC-Gao dataset and 4,500 proteins
in the HCC-Jiang dataset. We also obtained a list of genes with
corresponding drug compounds from the Drug-Gene
Interaction database (DGIdb) (26); overlapping quantified
proteins with this DGIdb druggable gene list, we identified
1,143 and 900 currently-druggable proteins in these HCC
datasets, respectively. Given the higher coverage and larger
sample size of the HCC-Gao cohort dataset, we present the
HCC-Gao cohort’s findings as primary results and present the
HCC-Jiang cohort’s findings second and confirmatory.

Oncogenic kinases are established therapeutic targets in
multiple cancer types, and we further retained kinase proteins
for subsequent analyses. Based on a previously curated list of 683
human kinase proteins (19, 27), the HCC-Gao and HCC-Jiang
datasets included 298 and 197 well-quantified kinase proteins,
respectively. Additionally, we annotated the proteins using ten
oncogenic signaling pathways curated by TCGA PanCanAtlas,
including the Cell Cycle, HIPPO signaling, MYC signaling,
NOTCH signaling, oxidative stress response/NRF2, PI3K
signaling, TGFb signaling, receptor-tyrosine kinase (RTK)/
RAS/MAP-Kinase signaling, TP53, and b-catenin/WNT
signaling pathways (28).

Differentially Expressed Proteins
For each cancer cohort, we performed a tumor-vs-normal paired
analysis to identify differentially-expressed proteins (tumor-
DEPs) by adjusting for potential confounding variables
including age and gender using limma implementation in R
(v3.42.2). DEP results from the HCC-Gao and HCC-Jiang
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C

FIGURE 1 | Study overview and differentially-expressed proteins in primary HCC tumors. (A) Overview of the proteogenomic datasets of human liver cancer cohorts
and human liver cell lines analyzed in this study. (B) Volcano plots showing differentially-expressed kinase proteins between HCC tumor and normal liver samples in
both the HCC-Gao and HCC-Jiang cohorts. The top differentially-expressed kinases from onco-signaling pathways are further labeled with text. (C) Volcano plots
showing differentially-expressed non-kinase proteins between HCC tumor and normal liver samples in both the HCC-Gao and HCC-Jiang cohorts. The top
differentially-expressed non-kinases from onco-signaling pathways are further labeled with text.
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cohorts showed concordance (Figure S1). In the HCC-Gao
cohort, we identified 265 significant kinase DEPs (limma
differential expression test based on the empirical Bayes
moderation of the t-statistics, false discovery rate [FDR] <
0.05), of which 31 were annotated within an oncogenic
signaling pathway. Among the kinase DEPs in the HCC-Gao
cohort, 9 showed over 2-fold of up-regulation in tumors, namely,
MAPK1 (log2-fold-change [FC] = 1.9, FDR = 7.3e-44), GSK3B
(FC = 1.6, FDR = 1.5e-44), RPS6KA3 (FC = 2.1, FDR = 2.3e-32),
STK3 (FC = 1.4, FDR = 1. 4e-22), CSNK1D (FC = 1, FDR = 2.9e-28),
CDK2 (FC = 1.2, FDR = 2.5e-14), CDK4 (FC = 1.2, FDR = 2e-11),
ERBB3 (FC = 1.1, FDR = 6e-12), and FGFR4 (FC = 1.1, FDR = 3.5e-
9) (Figure 1B). Many of these kinases also showed significant up-
regulation in tumors of the HCC-Jiang cohort, where for example
FGFR4 kinase was also among the top-significant DEPs (FC = 2,
FDR = 0.03) (Figure 1B).

Among the non-kinase proteins, we found 5,426 DEPs
(FDR < 0.05) in HCC-Gao, of which 69 were annotated within
an oncogenic signaling pathway. Among these, 18 showed over
2-fold of up-regulation, including THBS2 (FC = 6.1, FDR = 1.7e-33),
APH1A (FC = 3.1, FDR = 3.6e-59), RHEB (FC = 2.7, FDR = 3e-52),
SHC1 (FC = 2.8, FDR = 1.3e-48), and CHD4 (FC = 1.7, FDR = 6.8e-
55) (Figure 1C). Notably, THBS2 protein was also significantly
differentially-expressed (FC = 1.2, FDR = 1.3e-4) in the HCC-Jiang
cohort (Figure 1C). HDAC1 and HDAC2 proteins showed up-
regulation in tumors of both cohorts. The differential expression
analyses discovered multiple proteins up-regulated in tumors
compared to normal samples, and additional approaches are
required to pinpoint therapeutic candidates.

Protein Overexpression of Currently-
Druggable Proteins
Many established protein targets in cancer (ex. HER2, EGFR,
BRAF) are overexpressed in a fraction of tumor samples where
their inhibition may show efficacy. To identify such
Frontiers in Oncology | www.frontiersin.org 3
overexpressed proteins in global MS proteomics data, we
applied our recently-developed OverexPressed Protein and
Transcript target Identifier (OPPTI) algorithm (29) (Methods),
which is tailored to detect overexpressed proteins from global MS
proteomic cohorts that may show varied quantitative
distributions due to different technical platforms.

Applying OPPTI to the HCC-Gao cohort, we identified 46
kinases that showed significant enrichment of marker
overexpression (OPPTI permutation test for overexpressed
markers , FDR < 0 .05) , inc lud ing CDK6 (Prote in
overexpression rate [PRO] = 18.9%, FDR = 1.6e-07), EGFR
(PRO = 11.9%, FDR = 0.006), and ERBB2 (PRO = 11.3%,
FDR = 0.013) (Figure 2A). In the HCC-Jiang cohort, we
identified 33 kinases that showed significant enrichment of
protein overexpression (FDR < 0.05), including CDK6 (PRO =
19.2%, FDR = 5.4e-05) and PDGFRB (PRO = 24.4%, FDR = 9.5e-
07) (Figure 2A and Figure S2). To ensure the robustness of the
identified targets, we calculated the concordance of overexpression
frequency observed in the HCC-Gao and HCC-Jiang cohorts. The
kinase overexpression rates identified by OPPTI showed a high
correlation between the two cohorts (Pearson correlation test, R =
0.44, p = 5e-10), where CDK6 and PDGFRB displayed the largest
overexpression rates among the potential HCC drug targets
(Figure S3). Despite the intrinsic and technical MS differences
between the two HCC cohorts, the coherency provided cross-
validating evidence for the identified targets. Among the non-
kinase proteins, 1,329 markers were significantly overexpressed
(OPPTI permutation test, FDR < 0.05) in the HCC-Gao cohort,
and among them 359 were DGIdb druggable genes. In HCC-Jiang
cohort, 641 markers were significantly overexpressed (FDR <
0.05), and among them 161 were DGIdb druggable genes.
Overall, we identified 100 non-kinase DGIdb druggable proteins
that were significantly overexpressed (FDR < 0.05) in both HCC
cohorts, including POSTN, CYP3A5, ANXA3, ENO2, and
VCAM1 (Figure 2C and Figure S3).
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FIGURE 2 | Overexpressed kinase and non-kinase proteins detected in human HCC tumors. (A) Protein kinases showing significant enrichment of overexpression
as identified by OPPTI in either primary tumor cohort. (B) Sample-level kinase overexpression in HCC-Gao cohort of the markers shown in panel A, as identified by
OPPTI through the deviation of observed protein expressions (y-axis) from the background inference (x-axis) and a cutoff value (not shown). (C) Ten non-kinase
proteins showing the most significant enrichment of overexpression as identified by OPPTI in either primary tumor cohort. (D) Sample-level overexpression plots of
the markers shown in panel C, as identified by OPPTI.
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While both DEP and overexpressed proteins present plausible
methods to identify expression-based therapeutic targets, it
remains unclear whether targets discovered by the two
approaches overlap. We intersected the significant DEPs and
the significant overexpressed markers to enhance confidence of
identifying therapeutic targets (Figure 3C). In the HCC-Gao
cohort, 187 kinases were quantified among the DGIdb druggable
genes and 75 of them showed positive values in both differential
expression and protein overexpression (Figure 3A). Among
these, 3 kinases showed significant DE (limma differential
expression test based on the empirical Bayes moderation of the
t-statistics, FC ≥ 1, FDR < 0.05) and overexpression (OPPTI
permutation test, FDR < 0.05), namely, NME1 (FC = 1.4, FDR
= 5.0e-16; PRO = 18.2%, FDR = 1.6e-07), FGFR4 (FC = 1.1,
FDR = 3.5e-09; PRO = 12.6%, FDR = 0.0026), ERBB3 (FC = 1.1,
FDR = 6.0e-12; PRO = 10.7%, FDR = 0.027), as the RAS pathway
(with FGFR4 and ERBB3 kinases) showed the most significant
dysregulation. Other notable kinases were CDK6 from Cell Cycle
pathway (FC = 0.8, FDR = 2.1e-4; PRO = 18.9%, FDR = 1.6e-07),
and PDK1 from PI3K pathway (FC = 0.8, FDR = 1.5e-05; PRO =
12.6%, FDR = 0.0026).

Among the non-kinase targets we found 951 DGIdb druggable
proteins quantified in the HCC-Gao cohort tumors, and 336 of them
showed positive values in both differential expression and protein
overexpression (Figure 3B). Among these, 68 kinases showed
significant DE (FC ≥ 1, FDR < 0.05) and overexpression (FDR <
0.05), including, TXN (FC = 5.6, FDR = 2.7e-32; PRO = 22%, FDR =
< 1e-100), POSTN (FC = 5, FDR = 4.6e-17; PRO = 22%, FDR = <
1e-100), and F5 (FC = 1.9, FDR = 8.5e-26; PRO = 13.8%, FDR =
4.1e-4). In HCC-Jiang cohort we found 774 quantified DGIdb
druggable proteins, and 366 of them showed positive values in
both differential expression and protein overexpression (Figure S4).
Notably, 6 proteins showed significant DE (FC ≥ 1, FDR < 0.05) and
overexpression (FDR < 0.05), including, POSTN and F5 (FC = 1.2,
Frontiers in Oncology | www.frontiersin.org 4
FDR = 1.5e-08; PRO = 34.2%, FDR = < 1e-100; and FC = 1.1, FDR =
2.3e-14; PRO = 16.5%, FDR = 7.8e-4, respectively), which were also
identified in the HCC-Gao cohort. Several of the kinases have
corresponding inhibitor drugs in clinical trials, and it remains to be
validated whether the inhibitions of other DEP- and OPPTI-
identified targets could serve as treatment strategies.

Comparison Between DNA, RNA, and
Protein-Level Alterations
Protein-level overexpression can arise from genomic alterations
(i.e., copy-number amplification) but they may also arise post-
transcriptionally and thus not readily observed at DNA or RNA
levels. To examine these two competing hypotheses, we
systematically compared the frequency of patients showing
protein overexpression versus those carrying genomic
mutations or transcriptomic aberrations. In the HCC-Gao
cohort, we identified the fraction of cases having one or more
recurrent missense or truncating mutations in the same genes.
We then compared the fraction of HCC cases carrying these
somatic mutations with those showing protein overexpression
detected by OPPTI (Figure 4A). There were 127 genes with
genomic alterations in the oncogenic signaling pathways with
available protein quantification. HCC is known for the lack of
actionable mutations, and as expected, no overexpressed kinases
showed a genomic alteration rate greater than 5%. We thus
investigated protein-level events that may arise independent of
mutations. Five kinases from RAS pathway showed substantial
protein up-regulation (PRO > 10%) with limited genomic
alterations (likely driver), namely, ERBB2 (PRO = 11.3%,
DNA = 0%), ERBB3 (PRO = 10.7%, DNA = 0%), PDGFRB
(PRO = 10.1%, DNA = 0%), EGFR (PRO = 11.9%, DNA = 0%),
and FGFR4 (PRO = 12.6%, DNA = 0%). (Figures 4A, B). Other
proteins showing higher protein overexpression vs. driver genomic
alteration rates include MFAP5 (PRO = 27.7%, DNA = 0%), HMCN1
A
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FIGURE 3 | Candidate HCC protein targets showing protein overexpression, differential expression in tumor vs. normal tissues, and drug compounds as indicated
by DGIdb. (A) Druggable kinases with corresponding drug compounds based on DGIdb that showed significantly higher tumor vs. normal expression and protein
overexpression in the HCC-Gao cohort. (B) Druggable non-kinase proteins with corresponding drug compounds based on DGIdb that showed significantly higher
tumor vs. normal expression and protein overexpression in the HCC-Gao cohort. (C) Flowchart showing the steps in the pipeline that generated the candidate HCC
protein targets from two HCC cohorts.
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(PRO = 22.6%, DNA = 4.4%), FHL1 (PRO = 15.7%, DNA = 0%), and
EGFL7 (PRO = 15.7%, DNA = 0%). (Figure 4B).

We next compared protein overexpression to their respective
mRNA overexpression by applying OPPTI with the same
parameters to the RNA-Seq data available for the HCC-Gao
cohort (Methods). We found two proteins with substantial rates
of mRNA overexpression and protein overexpression, MFAP5
(mRNA overexpression rate [RNA] = 40%, PRO = 28%) and
HMCN1 (RNA = 20%, PRO = 22.6%). We also found 4 proteins
that showed significant protein up-regulation (PRO ≥ 10%) and
higher (≥ 2-fold) protein overexpression rate than
transcriptomic alteration rate, including CDK6 (RNA = 8.8%,
PRO = 18.9%), FHL1 (RNA = 3.2%, PRO = 15.7%), FGFR4
(RNA = 6.1%, PRO = 12.6%), ERBB3 (RNA = 4.7%, PRO =
10.7%). (Figure 4C). Our results confirm the paucity of targets
with genomic alteration in HCC and further demonstrate that a
proteomic approach can uniquely identify a considerable
fraction of overexpressed targets showing apparent aberrations
at the protein level but not readily identified at the mRNA level.

Validation of Therapeutic Efficacy Using
Drug Screen Data
To validate the therapeutic potential of the protein targets that we
identified in the primary tumor cohorts, we integrated the in vitro
drug screen data of 31 anticancer agents on 34 human HCC cell
lines available from Caruso et al. (30). For each drug, we analyzed
the association between baseline protein expression levels
(measured by Reverse Phase Protein Assay [RPPA]) and cell
viability after treatment to identify expression-driven
dependencies (Methods), where a negative association suggested
HCC cells with high protein expression showed lower viability and
were more vulnerable to the targeting drug. We first analyzed
expression-driven dependencies of 40 genes encoding kinases that
were known targets (antibodies) of the 31 screened compounds
(30). We found several drug-protein associations (Figure 5A).
Frontiers in Oncology | www.frontiersin.org 5
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FIGURE 5 | Evaluating the therapeutic efficacy of overexpressed protein
targets found in primary tumors using drug screen data of human HCC
cell lines. (A) Expression-driven dependency analyses highlight protein
targets showing association between high protein expression and low cell
viability upon treatment using drug compounds in a cohort of human
HCC cell lines. (B) Scatter plots of the associations between cell viability
and protein expressions of each compound’s respective target genes
shown in panel (A) (C) IHC staining from the Human Pathology Atlas
supporting the expression of the targeted kinase that showed significant
expression-driven dependency. (D) The lack of correlation between
BLU.9931 cell viability and FGF19 protein expression. (E) The lack of
correlation between the protein expressions of FGFR4 and FGF19 genes
in the HCC lines.
A B C

FIGURE 4 | Comparison between fractions of cases carrying DNA, RNA, and Protein-level alterations in kinase and non-kinase targets in HCC. (A) Fractions
of HCC cases carrying truncating or recurrent missense somatic mutations in the oncogenic signaling pathways compared to those showing protein
overexpression in the HCC-Gao cohort. Top markers with high genomic and/or proteomic alterations are labeled. For better visualization of other data points,
the outlying values of HMCN1 (original values: DNA = 4.4%, PRO = 22.6%), MFAP5 (DNA = 0%, PRO = 27.7%), RB1 (DNA = 5.7%, PRO = 6.3%), and
CTNNB1 (original values: DNA = 18.4%, PRO = 1.3%), are truncated. (B) Proteins in panel A that show significant enrichment of protein overexpression (FDR
< 0.15) tend to have low fractions of somatic mutations. (C) Fractions of HCC cases showing mRNA and protein overexpression frequencies of the genes in
oncogenic signaling pathways in HCC-Gao cohort. The outlying values of HMCN1 (original values: RNA = 20%, PRO = 22.6%) and MFAP5 (RNA = 40%, PRO
= 27.7%) are truncated.
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FGFR4 expression was negatively associated with viability of cells
treated with BLU.9931 compound (FC = -5.15, p-value [p] = 0.02,
Figure 5B), validating the FGFR4 inhibitor’s efficacy in HCCs
with up-regulated FGF19-FGFR4 signaling (31). FGFR4
protein expression was also orthogonally detected by
immunohistochemistry (IHC) of HCC patient tumor samples in
the human pathology atlas project (Figure 5C). MTOR expression
(P.mTOR.Ser2448) was suggestively associated with the drug
responses of Rapamycin (FC = -1.5, p = 0.12) and PF.04691502
(FC = -1.7, p = 0.19) (Figure S5A). Among the non-kinase targets,
we found two associations between the expression of HSP90AB1
(Hsp90.beta) and the drug responses to Hsp90 protein inhibitors
Tanespimycin (FC = -1.5, p = 0.04) and Alvespimycin (FC = -1.3, p
= 0.07) (Figure 5B and Figure S5B). These results highlight
FGFR4 and Hsp (HSP90AB4P) proteins as candidate therapeutic
targets showing both up-regulation in HCC tumors and
expression-driven dependencies.

FGFR4 is a receptor for the growth factor FGF19, whose up-
regulation is thought to promote proliferation and tumorigenesis.
The FGFR inhibitor BLU.9931 was previously shown to be
effective against HCC xenograft tumors with amplified FGF19
(31). FGF19 protein expression (as evaluated by IHC) was further
used to stratify patients for another selective FGFR4 inhibitor
fisogatinib (BLU-554), where 17% (N=11/66) of the FGF19-
positive patients responded compared to 0% (N=0/32) of the
FGF19-negative patients (32). However, we did not observe a
correlation between FGF19 upregulation and response to
BLU.9931 in the human HCC cell lines (Figure 5D), which
may be explained by the poor correlation between the FGFR4 and
FGF19 protein expressions (Figure 5E). Analyzing data from the
primary HCC tumor cohort, we also observed a lack of
correlation between FGFR4 protein or mRNA expression and
FGF19 gene expression levels (Figure S6). Phosphorylation data
also showed a lack of correlation between FGFR4 (s573)
phosphorylation and FGF19 gene expression levels but a strong
correlation to FGFR4 protein expression (R = 0.57, p = 8.9E-13,
Figure S6). These results imply that response to FGFR4 inhibitors
and patient selection may be improved by using FGFR4
biomarkers in addition to FGF19 alone, and mechanistic
intricacies in FGFR4/FGF19 signaling remain to be
further determined.
DISCUSSION

We report a proteo-genomic evaluation of aberrant protein
targets in 260 primary tumors from two HBV-related HCC
cohorts (Figure 1). Tumor-normal and inter-tumor analyses of
protein expression data highlighted multiple aberrantly-
expressed protein targets in key signaling pathways, including
PDGFRB, CDK6, ERBB2, and EGFR (Figures 2, 3) whose
protein overexpression in HCC tumors are also validated by
IHC data from the Human Pathology Atlas (Figure S7). By
integrating mutation, mRNA expression, and protein expression
data, our proteogenomic analyses determined whether the
overexpressed protein targets were concordant with genomic
Frontiers in Oncology | www.frontiersin.org 6
evidence or arose without genomic or transcriptomic alterations
(Figure 4). Finally, the therapeutic viability of the identified
targets was evaluated by analyzing drug screen data in human
cell lines, implicating proteins whose up-regulation correlate
with treatment response (Figure 5). These series of analyses
have identified a list of prominent targets in HCC-Gao/-Jiang
cohorts and the HCC-Caruso study (Supplementary
Tables 1, 2).

Genome-based precision oncology in HCC poses a challenge
where potentially targetable driver alterations are only identified
in less than 30% of the patients (33). Proteomic analyses enabled
us to identify new potentially targetable overexpressed proteins
that may correspond to limited driver alterations, such as
PDGFRB, ERBB2/3, EGFR and FGFR4 kinases upregulated in
HCC tumors arising from no genomic driver alterations, as well
as the non-kinase proteins such as MFAP5, HMCN1, EGFL7 and
FHL1. Possible therapies for the overexpressed kinases include
CDK4/CDK6 inhibitors, such as Palbociclib, which has been
shown effective in human liver cancer cell lines and mouse
models with intact tumor suppressor Retinoblastoma (Rb1)
(34). ERBB2 could also be explored as a potential target in
HCC, as evidence supports its involvement in liver tumorigenesis
and intravenous injection of HER2-inhibitor Trastuzumab
limited HCC growth in vivo (35). Similarly, ERBB3 is
overexpressed in hepatitis B-associated HCC, which are
sensitive to ERBB3 inhibition (36). Erlotinib, an EGFR
inhibitor, has been shown to be effective in patients treated
with Lenvatinib as they upregulate EGFR, further supporting the
role of EGFR as a biomarker (37).

By using human HCC cell lines that represent the
heterogeneity observed in HCC patients, we evaluated the
potential therapeutic efficacy of targets identified in primary
tumors and showed protein expression of selected targets can
predict treatment response. In particular, we found that the
expression of FGFR4 kinase were significantly associated with
drug response and may be a useful biomarker for FGFR4
inhibitors in addition to the currently-used FGF19 expression
(31, 32). In addition, we observed a trend of improved
recurrence-free survival in the HCC-Gao patients that did not
overexpress FGFR4 protein compared to those overexpressing
FGFR4 (p = 0.087; FGFR4-not-overexpressed median survival
23.2 months; FGFR4-overexpressed median survival 9.5
months) (Figure S8), although the association did not reach
statistical significance and require validation in future larger-
scale cohorts. Given the partial success of FGFR4 inhibitors in
HCC patients, additional FGFR4 inhibitors have been
developed and are under evaluation (38). Furthermore,
tumors with elevated Hsp protein expression and MTOR
phosphorylation may be more vulnerable to Hsp90 inhibitors
and mTOR inhibitors such as rapamycin; other studies have
also suggested that MTOR phosphorylation may be a better
biomarker for mTOR inhibitors than genetic alterations in
PTEN or TSC1/TSC2 (39).

In this study, the profiled primary HCC tumors collected in
human cohorts are all related to HBV infection. This might pose
a limitation as our findings may represent the HBV-specific
March 2022 | Volume 12 | Article 814120
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features underlying the HBV-related HCC. Expanding the
generalizability of the targets identified herein requires further
investigation using the HCC cases related to different primary
causes. The proteomic analyses of patient cohorts herein rely on
global MS data, which can be time- and resource-intensive to
generate in a clinical setting. Once the relevant protein markers
are identified in these discovery studies, development of targeted
assays using antibody-based (ex. IHC) or targeted MS
technologies (ex. selected reaction monitoring) would
be required.

To conclude, by employing a multi-omics approach, we
investigated protein-level aberrations showing limited DNA or
RNA level alterations in two human HCC cohorts and identified
potential therapeutic targets showing expression-driven
dependency upon targeting inhibitory treatment in human
HCC cell lines; FGFR4 kinase and Hsp proteins, lacking
actionable mutations, may be targetable in a fraction of HCC
as supported by the vulnerability exposed by their respective
targeting inhibitors. We believe that integrating proteomics data
represents an unprecedented opportunity for the discovery of
effective drug targets that may not be readily observed by
genomic analyses in HCC and other cancer types.
METHODS

Data Sources, Download, and
Standardized Normalization
The proteomic and genomic datasets of HBV-related
Hepatocel lular Carcinoma (HCC-Gao cohort) were
downloaded from The National Cancer Institute’s Clinical
Proteomic Tumor Analysis Consortium (CPTAC) (25). This
cohort contained 159 tumor samples with matched controls,
and 6,478 unique proteins were quantified (of which 298 were
kinases). The transcriptomic dataset was downloaded from
https://www.biosino.org/node/project/detail/OEP000321.
Proteomic and transcriptomic datasets of the other HBV-related
HCC cohort (HCC-Jiang cohort) were downloaded from related
publication (16). There were 101 tumor samples in the HCC-
Jiang cohort with 98 matched controls. This cohort contained
7,878 unique proteins (of which 369 were kinases). The RNA-seq
data contained gene expression profiles of 35 pairs of tumor and
control samples, quantified by tophat-cufflinks pipeline. 16,457
protein-coding genes were identified with FPKM > 1 in more
than one sample (of which 634 were kinase-encoding). For HCC-
Jiang and HCC-Gao transcriptomics data, we used the quantile
normalization and log2 normalization on the FPKM-normalized
RNA-seq counts and filtered out genes showing no expression in
at least 20% of the samples.

We examined the data distribution of each cancer proteomic
cohort and performed a standardized normalization procedure
for each dataset. Each sample within a cancer cohort is
normalized by its Median Absolute Deviation (MAD), so that
every sample across the datasets are normalized to unit MAD.
We also filtered out protein markers with high fractions (at least
20%) of missing values.
Frontiers in Oncology | www.frontiersin.org 7
Identification of Differentially-
Expressed Proteins
For each cohort, we performed a paired (tumor against matched-
normal) analysis to identify differentially-expressed proteins by
using the limma R package (v3.42.2). We corrected our analyses
for confounding variables arising from batch effects when
available (TMT batch, sequencing center/operator/date) or
from demographics (age, gender), and the resulting p-values
were multi-testing corrected using the BH procedure for FDR.
For the majority of markers, we did not observe any significant
confounding effect between protein expressions and the clinical
variables age and gender (Supplementary Table 3); the only
suggestive association was observed between the HSP09AB4P
protein expression showing negative correlation with patient age
in HCC-Jiang cohort (Figure S9, p=0.038 before multiple-
testing correction).
Detection of Overexpressed
Proteins/Genes
To identify overexpressed markers, we used the OPPTI method
(29). OPPTI is based on comparing expression levels to an
inferred expression level in each tumor sample computed by a
weighted k-nearest neighbor (KNN) algorithm, where the
nearest features are the abundance level of other co-expressed
markers. OPPTI performs a permutation test in order to evaluate
the statistical significance of a marker’s potential enrichment of
overexpression events. For a given cancer cohort, the
dysregulation scores are permuted within every sample
between the proteins, and the null overexpressions are
computed from this data. After iterating this process multiple
times, the null overexpressions accumulated from all iterations
are used to establish the permutation distribution.
Somatic Mutations and Comparison With
Proteomic Overexpression
We reasoned that protein-truncating or recurrent somatic
mutations were more likely to be functional. We thus retained
all truncations (i.e., frameshift/non-frameshift deletion/
insertion/substitution, stop-gain, stop-loss) present in the
HCC-Gao cohort. Given the smaller size of this cohort, we also
considered all missense mutations that have at least three
occurrences in the open-access mutation call set files from the
MC3 project of TCGA PanCanAtlas that applied standardized
variant-calling pipeline and quality control processes (40).
Analyses of Drug Screening Data in HCC
Cell Lines
We downloaded the in vitro drug screen data on human
HCC cell lines from Caruso et al. (30). We calculated the
association of drug response with protein expression by
using limma implementation in R (v3.40.6). For each drug,
we performed the linear regression between the cell
viabilities upon drug treatment and the targeted protein’s
expressions across the drug-treated cell lines and obtained
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the corresponding coefficient of the linear fit. The resulting
p-values were multi-testing corrected using the BH procedure
for FDR.
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