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The 8-item Decisional Balance for sun protection inventory (SunDB) assesses the relative importance of the perceived advantages
(Pros) and disadvantages (Cons) of sun protective behaviors. This study examined the psychometric properties of the SunDB
measure, including invariance of the measurement model, in a population-based sample of𝑁 = 1336 adults. Confirmatory factor
analyses supported the theoretically based 2-factor (Pros, Cons) model, with high internal consistencies for each subscale (𝛼 ≥ .70).
Multiple-sample CFA established that this factor pattern was invariant across multiple population subgroups, including gender,
racial identity, age, education level, and stage of change subgroups. Multivariate analysis by stage of change replicated expected
patterns for SunDB (Pros 𝜂2 = .15, Cons 𝜂2 = .02). These results demonstrate the internal and external validity and measurement
stability of the SunDB instrument in adults, supporting its use in research and intervention.

1. Introduction

Skin cancer is a major public health concern. Melanoma
is the most serious form of skin cancer and accounts for
the majority of skin cancer deaths. The American Cancer
Society estimates there will be more than 76,000 new cases
of melanoma diagnosed in 2014 in the United States. Non-
melanoma skin cancers are typically nonfatal but much more
prevalent; in 2006, approximately 3.5 million people in the
United States were diagnosed with these malignancies, and
more than 2 million were treated [1]. The incidence rates
for both types of skin cancers have been increasing [1, 2].
Skin cancers lead to substantial direct medical care costs and
significant indirect costs associated with premature mortality
and morbidity [3, 4]. Preventing all skin cancers is both
important and possible by adopting habitual sun protective
behaviors such as reducing sun exposure and using sunscreen
[5].

Interventions for increasing sun protection behaviors
using tailored health communications based on the trans-
theoretical model of behavior change have been developed
and implemented and have demonstrated significant impacts

in numerous applications [6–9]. The transtheoretical model
(TTM) [10–13] is an integrativemodel of intentional behavior
change underlying numerous effective interventions. Empiri-
cally based tailoring is especially relevant in population-based
interventions when not everyone is prepared to immediately
change their risk behavior(s). Decisional Balance is one of
the core constructs integrated within the TTM framework.
Based initially on the work of Janis andMann [14], Decisional
Balance reflects the cognitive and motivational shifts in deci-
sion making as an individual weighs the relative importance
of the Pros and Cons of changing the behavior in question
[15].The theoretical relationship between Decisional Balance
and transitions across the stages of change (i.e., readiness
to change the problem behavior) has been well documented
across a variety of health behaviors [16, 17], and there-
fore incorporated into intervention programs. Appropriately
operationalizing theoretical constructs into psychometrically
sound measures is critical for testing and implementing a
theoretical model. The Decisional Balance for sun protection
inventory has been used in a number of applications [7–9];
however, no published study has evaluated the psychometric
properties of this measure.
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Figure 1: Measurement model for uncorrelated Pros and Cons of sun protection with standardized parameter estimates for full sample
(𝑁 = 1336).

The aim of this study was to assess the psychometric
properties of the Decisional Balance for sun protection
instrument, including confirming the factorial invariance of
the measure across population subgroups. Factorial invari-
ance is central to establishing the validity of a measure,
as it indicates whether a set of items measures the same
theoretical constructs across subgroups, allowing legitimate
comparisons between groups on the measure of interest
[18]. Three levels of factorial invariance were assessed in
sequential order, with increasing levels of restrictiveness or
equality constraints on parameters in the model. Configural
invariance is an unconstrained model, in which the number
of factors and the specific items associated with each factor
are assumed to be the same across comparison groups.
Pattern identity invariance is the next level of invariance and
requires factor loadings for the same items to be equal across
groups. Strong factorial invariance is the most restrictive
of these three levels and requires factor loadings and error
variances to be the same across groups [18, 19]. Meaningful
group comparisons can be assumed when a measure has
demonstrated strong factorial invariance.

The present study involved secondary analysis of baseline
data for a large population-based sample of adults enrolled in
a randomized TTM-tailored intervention study targeting sun
protection and exercise behaviors. The theoretical structural
model of the Decisional Balance for sun protection measure
was assessed. The factorial invariance of the measurement
model was then tested across population subgroups defined
by gender, racial identity, age, education, untanned skin color
(a proxy for sun reactivity), and stage of change for sun
protection.Mean differences for Decisional Balance by stages
of change were also examined to see if expected patterns
based on TTM predictions would replicate. Confirming
measurement structure and stability, and the functional
relationship between the Decisional Balance constructs and
stages of change, provides a necessary empirical foundation
for TTM-tailored interventions.

2. Method

2.1. Sample. Participants were population-based adults (age
range 18–75 years, 88% white, and 63% female) from across
the United States enrolled in a recent intervention study
for exercise and sun protection based on the TTM [20].
Participants in the sample were all “at risk” for both behaviors

at baseline based on public health criteria. Participants were
identified to be “at risk” for sun exposure if they reported
not consistently (i) using sunscreens with a sun protection
factor (SPF) of 15 or more, (ii) wearing protective clothing,
and (iii) avoiding or limiting exposure to the sun during
the midday hours. All procedures were approved by the
Institutional Review Board at the University of Rhode Island,
and participants understood and consented to their voluntary
involvement in the study. Data for these analyses were drawn
from the baseline assessment collected from April 2009
through September 2011.

2.2. Sun ProtectionDecisional Balance Instrument. The8-item
Decisional Balance instrument assessed the perceived advan-
tages (Pros) and disadvantages (Cons) of sun protection.This
measure consists of two subscales: a four-item Pros scale and
a four-item Cons scale and was developed and successfully
employed in a number of previous randomized intervention
trials [7–9, 21].The instrument asked respondents to rate how
important each itemwas in decidingwhether or not to protect
themselves from too much sun exposure on a 5-point Likert
scale from 1 (not important) to 5 (extremely important). The
theoretical measurement model for Decisional Balance with
two latent Pros and Cons factors (see Figure 1) was assessed
for the invariance analyses with this sample.

2.3. Data Analyses. Three sets of analyses were conducted
sequentially on the Decisional Balance for sun protection
inventory. The first step tested and confirmed the best-fitting
structural model for the Decisional Balance measure. Next,
the factorial invariance (stability) of the measurement model
was evaluated across multiple population subgroups. All
structural equation modeling (SEM) procedures for the first
two steps were based on maximum likelihood estimation
and performed using EQS 6.1 [22]. The final step determined
if the hypothesized functional relationships between each
Decisional Balance construct and stages of change would
replicate, supporting the known groups and external validity
of the measure in this sample [23].

2.3.1. Measurement Structure. Confirmatory factor analysis
(CFA) was conducted to establish the best-fitting structural
model for the Decisional Balance measure. Two measure-
ment models were compared, including the correlated and
uncorrelated two factor models. Model fit was assessed based
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Table 1: Sample size by category for each subgroup.

Subgroup Category 𝑁

Gender Female 842
Male 492

Racial identitya White 1143
Black/African American 84

Ethnicityb Hispanic 56
Non-Hispanic 1279

Age

18–29 years old 186
30–39 years old 198
40–49 years old 346
50–59 years old 358
60–75 years old 246

Education level
High school or less (≤12 years) 307
Some tertiary education (13–15 years) 459
College graduate or beyond (≥16 years) 569

Untanned skin color
Fair white 291
Medium white 590
Dark white/light brown 395

Stage of change for sun protection
Precontemplation 818
Contemplation 151
Preparation 367

aNot including participants who selected more than one race.
bInvariance model could not be assessed across ethnic identity groups due to the low number of participants identified as Hispanic.

on several macrofit indices, including the Comparative Fit
Index (CFI), Tucker-Lewis Index (TLI), and Root Mean
Square Error of Approximation (RMSEA). For the incremen-
tal fit indices, CFI and TLI, values of at least .90 indicate an
adequate fit, and values above .95 indicate an excellent fit
[24–26]. For RMSEA, smaller values indicate a better fit of
the model to the data, with values less than .08 considered
acceptable and values below .05 indicating a very good fit
[25, 26].

2.3.2. Factorial Invariance. Stability of the Decisional Bal-
ance measurement structure was assessed across six sub-
groups defined by gender, racial identity, age, education
level, untanned skin color (a proxy for sun reactivity), and
stage of change for sun protection [11, 21]. Three levels of
invariance were tested, proceeding from the least to the
most restrictive: (1) configural invariance with unconstrained
factor loadings; (2) pattern identity invariance with factor
loadings for like items constrained to be equal across groups;
and (3) strong factorial invariance with equal factor loadings
and measurement error variances across groups [19, 27–29].
None of the equality constraints were released to achieve a
better fit in any of the invariancemodels assessed. In addition
to the model fit indices (CFI, TLI, and RMSEA) described,
the difference in CFI (ΔCFI) values between the model and
the previous (less restrictive) invariancemodel was calculated
to test the null hypothesis of noninvariance, with a |ΔCFI|
value within .01 indicating model invariance [30]. The 𝜒2-
difference test was also included to assess change in model

fit for the nested invariance model comparisons, although
this test tends to be overly sensitive to even small differences
in fit between models when sample sizes are large [25–27].
Cronbach’s coefficient alphas [31] were calculated and used
to assess the internal consistency reliability of both Pros and
Cons subscales.

2.3.3. Known Groups Validation. A MANOVA, with follow-
up ANOVA and Tukey tests, was conducted to examine
functional relationships between Decisional Balance (Pros
and Cons subscale means in standardized 𝑇-scores) and the
three stage of change groups.

3. Results

3.1. Analytic Sample. Participants had complete data on the
Decisional Balance for Sun Protectionmeasure. Twenty-eight
participants (2%) with extreme response patterns on the
Decisional Balance measure were deleted, resulting in the
final analytic sample of 1336 participants. Sample sizes by
category for each of the six population subgroups assessed by
invariance testing are presented in Table 1.

3.2. Measurement Structure. CFA was conducted on the
Decisional Balance measure using the full sample. The mea-
surement model with two uncorrelated factors, consisting of
four items each for Pros and Cons (Figure 1), provided a good
fit for the data, 𝜒2(20) = 138.37, 𝑃 < .001; CFI = .956; TLI =
.939; RMSEA = .057 [90% confidence interval = .053, .061].
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Table 2: Goodness-of-fit statistics for three nested invariance models.

Model 𝜒
2 df CFI ΔCFI TLI RMSEA [90% CI]

Gender
Configural invariance 164.489 40 .952 — .933 .068 [.058, .079]
Pattern identity invariance 179.778 48 .949 −.003 .941 .064 [.054, .074]
Strong factorial invariance 195.002 56 .946 −.003 .939 .061 [.052, .070]

Racial identity
Configural invariance 148.451 40 .956 — .939 .067 [.055, .078]
Pattern identity invariance 164.205 48 .953 −.003 .945 .063 [.052, .073]
Strong factorial invariance 192.406 56 .945 −.008 .937 .063 [.053, .073]

Age
Configural invariance 240.234 100 .948 — .927 .073 [.061, .084]
Pattern identity invariance 287.769 132 .942 −.006 .939 .067 [.056, .077]
Strong factorial invariance 339.652 164 .935 −.007 .932 .063 [.054, .073]

Education
Configural invariance 194.881 60 .951 — .931 .071 [.060, .082]
Pattern identity invariance 232.137 76 .943 −.008 .937 .068 [.058, .078]
Strong factorial invariance 255.272 92 .940 −.003 .935 .063 [.054, .072]

Untanned skin color
Configural invariance 190.479 60 .948 — .928 .072 [.060, .083]
Pattern identity invariance 212.751 76 .946 −.002 .940 .065 [.055, .075]
Strong factorial invariance 242.077 92 .941 −.005 .936 .062 [.052, .071]

Stage of change for sun protection
Configural invariance 205.704 60 .941 — .917 .074 [.063, .085]
Pattern identity invariance 238.505 76 .934 −.007 .927 .069 [.059, .079]
Strong factorial invariance 309.411 92 .913 −.021 .906 .073 [.064, .082]

An alternative model with correlated latent Pros and Cons
factors was also assessed and provided a good fit for the
data, 𝜒2(19) = 138.14, 𝑃 < .001; CFI = .956; TLI = .935;
RMSEA = .057 [.052, .061]. The correlation of .016 estimated
between the latent Pros and Cons factors was low and not
significant, and a 𝜒2-difference test comparing the nested
correlated and uncorrelated models was also not significant
(𝜒2[1] = .23; 𝑃 = .63), indicating that estimating the extra
parameter in the correlated model did not improve model fit.
The uncorrelatedmodel was therefore retained for parsimony
and used for subsequent invariance testing. Baseline models
were assessed in each subsample before the model was tested
across subsamples. All baselinemodels fit well (median CFI =
.930; median RMSEA = .068).

3.3. Factorial Invariance. Multiple-sample CFA was used to
examine hierarchical factorial invariance for the two Pros and
Cons subscales. The fit indices for the invariance models are
summarized in Table 2.

3.3.1. Gender. Sample sizes were adequate to test the models
across women (𝑛 = 842) and men (𝑛 = 492). Strong factorial
invariance provided a good fit for themodel for gender (CFI =
.946; TLI = .939; RMSEA = .061).

3.3.2. Racial Identity. Sample sizes were adequate for com-
paring subsamples of participants identified as white (𝑛 =
1143) or black/African American (𝑛 = 84). Strong factorial

invariance provided a good fit across the two racial identity
subsamples (CFI = .945; TLI = .937; RMSEA = .063).

3.3.3. Age. Sample sizes were adequate for five age group
subsamples, 18 to 29 years old (𝑛 = 186), 30 to 39 years old
(𝑛 = 198), 40 to 49 years old (𝑛 = 346), 50 to 59 years old
(𝑛 = 358), and 60 to 74 years old (𝑛 = 246). Strong factorial
invariance provided a good fit for age (CFI = .935; TLI = .932;
RMSEA = .063).

3.3.4. Education. Sample sizes were adequate for three sub-
samples based on the highest level of education attained, 12
years or less (𝑛 = 307), 13 to 15 years (𝑛 = 459), and 16 years
or more (𝑛 = 569). Strong factorial invariance provided a
goodmodel fit across education levels (CFI = .940; TLI = .935;
RMSEA = .063).

3.3.5. Untanned Skin Color. Untanned skin color was used
as a proxy indicator of sun reactivity. Sample sizes were
adequate to test the models across subgroups of participants
who described their untanned skin color as fair white (𝑛 =
291), medium white (𝑛 = 590), and dark white/light brown
(𝑛 = 395). Strong factorial invariance provided a good model
fit across skin color (CFI = .941; TLI = .936; RMSEA = .062).

3.3.6. Stage of Change for Sun Protection. Sample sizes were
adequate to test themodels across participants in precontem-
plation (𝑛 = 818), contemplation (𝑛 = 151), and preparation
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Table 3: Summary statistics for Pros and Cons subscales of Decisional Balance (𝑁 = 1336).

Subscale Number of items Meana Standard deviation Coefficient alpha Skewness Kurtosis
Pros 4 3.35 0.96 .77 −0.29 −0.52
Cons 4 2.92 0.98 .70 0.11 −0.74
aSubscale totals divided by number of items before calculating mean and standard deviations.

Table 4: Standardized 𝑇-scores (SD) for Decisional Balance by stage of change (𝑁 = 1336).

Factor Stage 𝑁 Mean (SD) 𝐹(2, 1333) 𝜂
2 Post hoc Tukey HSDa

Pros 114.59∗ .147 PC < C, PR
Precontemplation 818 46.99 (9.60)
Contemplation 151 53.27 (8.53)
Preparation 367 55.36 (8.71)

Cons 13.91∗ .020 PC, C > PR
Precontemplation 818 50.87 (10.11)
Contemplation 151 50.92 (9.62)
Preparation 367 47.68 (9.55)

∗
𝑃 < .001.

aPC indicates precontemplation; C: contemplation; PR: preparation.

(𝑛 = 367). This was the only sequence of nested invariance
model comparisons that did not support strong invariance,
with a |ΔCFI| > .01 for the comparison between strong
invariance and pattern identity invariance. Pattern identity
invariance provided an adequate fit across stage (CFI = .934;
TLI = .927; RMSEA = .069).

3.4. Scale Reliabilities. Strong factorial invariance demon-
strated good fit for the cross-sample comparisons across
gender, racial identity, age, education level, and skin color.
Cronbach’s coefficient alphas were therefore calculated for
each subscale based on the total sample (see Table 3). The
coefficient alphas of .77 for the Pros subscale and .70 for the
Cons subscale are consistent with the alphas reported previ-
ously [32] and indicate good internal consistency reliability
of these two subscales.The factor structure for the eight-item
Decisional Balance for sun protection measure is reported
with standardized parameter estimates for the entire sample
in Figure 1.

3.5. Known Groups Validation. A MANOVA was conducted
to determine if the Pros and Cons of sun protection dif-
fered across the three baseline stage-of-change groups. As
predicted [16, 17], there was a significant main effect for
stage of change (Wilks’ Λ = .83; 𝐹[4, 2664] = 67.26;
𝑃 < .001; multivariate 𝜂2 = .17). Follow-up ANOVAs
and Tukey tests revealed that both the Pros (𝐹[2, 1333] =
114.59; 𝑃 < .001; 𝜂2 = .147) and Cons (𝐹[2, 1333] =
13.91; 𝑃 < .001; 𝜂2 = .020) differed significantly by stage.
Individuals in precontemplation reported significantly lower
Pros of sun protection than those in contemplation and
preparation. In addition, participants in precontemplation
and contemplation reported significantly higher Cons of sun
protection than those in preparation. Scalemeans for the Pros
and Cons are shown are Table 4.

4. Discussion

This study replicated an uncorrelated two-factor (Pros and
Cons) measurement structure for the Decisional Balance for
sun protection instrument in a large national sample of adults
at risk for sun exposure, confirming the theoretical model
from previous studies [12, 17, 21, 32]. Both Pros and Cons
subscales showed good internal consistency as seen by alphas
of .70 and .77, and the factor loadings for individual items
were adequate to excellent (.366 to .865).These results suggest
that participants in this sample discriminated between the
positive and negative aspects of adopting sun protective
behaviors.

The eight-itemDecisional Balance for sunprotection inven-
tory with two uncorrelated Pros and Cons subscales demon-
strated strong factorial invariance in a large population-based
sample of adults who did not meet public health criteria for
sun protection behavior. This invariance model required that
factor loadings and error terms for individual items were
constrained to be equal across comparison groups in the
model. Strong factorial invariance provided a good fit across
gender, racial identity, age, education level, and untanned
skin color, based on CFI values around .95 and RMSEA
values below .08. The |ΔCFI| values were consistently within
the suggested .01 range as each invariance level was assessed
hierarchically, demonstrating a high degree of fit for the
strong invariance model across the five subgroups. Results
of these analyses indicate a consistent relationship between
the Pros and Cons factors and the eight items that serve as
measured indicators for these two factors.

The pattern identity invariance model demonstrated a
reasonably good fit across the stages of change for sun pro-
tection, based on fit indices above .90 (CFI > .93; TLI > .92)
andRMSEAbelow .07.This indicates a consistent relationship
between the Pros and Cons factors and equivalent loadings
for the eight items on these factors across the stages. However,
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when the item error terms were restricted to be equal in the
strong invariance model, |ΔCFI| was considerably over the
recommended .01 although the CFI, TLI, and RMSEA values
still indicated adequate fit for themodel (CFI> .91; TLI> .90).
This suggests some slight differences in the measurement
model across stage, specifically excess variability in responses
on individual items that were not consistent across stage
groups. This is perhaps not surprising because it was shown
previously that stage of change contributes significantly to
variation in the Pros and Cons [16, 17].

Decisional Balance varied across baseline stage-of-change
groups, and the overall 𝜂2 of .17 could be interpreted as a
mediummultivariate effect size [33, 34]. As expected, partic-
ipants in the preparation and contemplation stages endorsed
the Pros of sun protection more highly compared to those in
precontemplation, with 𝜂2 of .15 representing a large effect of
stage of change [34]. Similarly, the Cons of sun protection
were rated as less important by participants in preparation
compared to those in precontemplation and contemplation.
Although themagnitude of theCons stage effectwas small (𝜂2
= .02), it should be noted that this baseline sample included
only participants who were in the three earliest (out of five
possible) stages, because they were recruited to be at risk for
sun exposure for the intervention study. It is likely that the
reduced variability in the sample attenuated the Cons stage
effect compared to including the full range of five stages.
Meta-analyses of Decisional Balance suggest that most of
the change in Cons occurs between the preparation and
maintenance stages [16, 17]. The overall patterns for Pros and
Cons across the first three stages of change were consistent
with the expected functional relationships based on previous
studies [16, 17].

This study has several limitations. First, because there
was limited demographic variability in this sample, espe-
cially for racial and ethnic identity categories, invariance
of the Decisional Balance measurement model could not
be assessed across ethnic identity groups. When attempted,
the invariance model failed to converge due to too few
participants identified as Hispanic (𝑛 = 56 with complete
data). A future sample that is more diverse, with adequate
numbers representing additional racial and ethnic groups,
would allow more comprehensive assessment of the invari-
ance of this measure beyond white and black racial groups.
The sample sizes used in analyseswere also unbalanced across
racial identity groups, although the invariance models were
still indicative of good fit. Second, only the first three (out
of five possible) stages of change for sun protection were
represented in the baseline sample, which was recruited for
an intervention study targeting only at-risk individuals. As
described above, this likely restricted the magnitudes of the
observed stage effects, especially for the Cons, although the
expected cross-sectional differences across the three stages
for Decisional Balance were replicated in this sample. Future
research is also needed to examine the stability of this
measure over time.Third, since this study used a nonclinical,
population-based sample, this instrument should undergo
additional validation to be utilized with individuals with
skin cancer. Finally, the generalizability of the measurement

properties of this Decisional Balance instrument is limited to
the adult population from which the validation sample was
drawn.

5. Conclusion

The results of the present study demonstrate that the mea-
surementmodel for the two uncorrelated factors representing
Decisional Balance (Pros and Cons) for sun protection has a
consistent relationship acrossmultiple population subgroups,
while providing empirical support for the internal and
external validity and internal consistency reliability of the
measure. The two subscales have demonstrated invariance in
factor loadings and measurement error variances across the
subgroups assessed and can be used in multiple subgroups,
allowingmeaningful comparisons to bemade across different
samples in the target population for these constructs. The
cross-sectional relationship between Decisional Balance and
the stages of change demonstrated in previous samples was
replicated.These findings add to the evidence supporting the
use of the Decisional Balance for sun protection inventory in
research and intervention.
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