
Research Article
LDPCD: A Novel Method for Locally Differentially Private
Community Detection

Zhejian Zhang

College of Computer Science, Chongqing University, Chongqing 400044, China

Correspondence should be addressed to Zhejian Zhang; zzhejian@cqu.edu.cn

Received 4 November 2021; Revised 1 December 2021; Accepted 3 December 2021; Published 10 January 2022

Academic Editor: Bai Yuan Ding

Copyright © 2022 Zhejian Zhang. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As one of the cores of data analysis in large social networks, community detection has become a hot research topic in recent years.
However, user’s real social relationship may be at risk of privacy leakage and threatened by inference attacks because of the
semitrusted server. As a result, community detection in social graphs under local differential privacy has gradually aroused the
interest of industry and academia. On the one hand, the distortion of user’s real data caused by existing privacy-preserving
mechanisms can have a serious impact on the mining process of densely connected local graph structure, resulting in low utility of
the final community division. On the other hand, private community detection requires to use the results of multiple user-server
interactions to adjust user’s partition, which inevitably leads to excessive allocation of privacy budget and large error of perturbed
data. For these reasons, a new community detection method based on the local differential privacy model (named LDPCD) is
proposed in this paper. Due to the introduction of truncated Laplace mechanism, the accuracy of user perturbation data is
improved. In addition, the community divisive algorithm based on extremal optimization (EO) is also refined to reduce the
number of interactions between users and the server. *us, the total privacy overhead is reduced and strong privacy protection is
guaranteed. Finally, LDPCD is applied in two commonly used real-world datasets, and its advantage is experimentally validated
compared with two state-of-the-art methods.

1. Introduction

Due to the rapid development of Internet technology, APPs
with various functions have brought great convenience to
the daily interaction among users. After integration, these
relationship data of users can be exploited to build social
graphs, from which service providers can mine valuable
information such as frequent subgraphs [1, 2], average path
length among users [3], and the community structure of
users [4–6]. In particular, community structure is an im-
portant feature of social graphs. On the one hand, based on
network topology architecture and user attributes, various
user communities and interest groups will be mined for the
futural personalized recommendations [7, 8]. On the other
hand, as an important manifestation of topological features,
community structure has a significant guiding role in cre-
ating synthetic social graphs [9]. *erefore, the exploration
of community information from social networks has

attracted extensive attention in the field of academy and
industry.

Community detection on the social graph requires the
collection of users’ social relationships. However, most social
links among users are sensitive and private information. If
the user uploads such data without reservation or the server
does not take any privacy protection measures in the cen-
tralized data analysis, the user’s local information may be
exposed to the risk of leakage and inference attack. For
example, in 2018, Facebook was accused of leaking tens of
millions of user personal information to the UK-based third-
party firm Cambridge Analytica [10]. *is privacy scandal
indicates that one of the main problems to be solved in the
community mining of social networks is the privacy pro-
tection during the collection of user relationship data.

As far as we know, a promising model which can be
utilized to resolve the privacy issue posed by the untrusted
service provider is local differential privacy (LDP) [11]. LDP
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is a privacy protection framework inherited from centralized
differential privacy (DP or CDP) for privacy protection
during data collection. *e real data are perturbed by the
user on the local terminal and then uploaded to the data
curator. Both in industrial production areas and academic
research studies [12–18], this model has been widely utilized
because of its strong resistance to attack based on any
background knowledge and its exclusion of the assumption
of a fully trusted server.

At present, community detection based on LDP has
become a research hotspot in privacy protection of big data
[8, 19, 20]. In this context, the protective measures of social
relationship data are transferred from centralized overall
processing to distributed processing by each user. *is data
collection pattern poses a key problem for the community
detection task of social graphs. Since most of the community
detection algorithms of graph data require that the real and
specific structure of the entire network be known, under the
local privacy protection, it is difficult for the server to directly
conduct community detection algorithm with false infor-
mation uploaded by users instead of a true social graph.
Moreover, serious damage to the network topology will be
posed when the users independently add noise to their local
relationship data. *is will eventually cause excessive loss of
graph structure information and seriously affect the utility of
community detection results [19–21]. *erefore, it is spec-
ulated that studying the community detection problem of
the social graph under LDP is difficult.

*is paper intends to respectively modify existing
community detection method of graph data and perturba-
tion method of users’ local data under LDP. *us, a novel
privacy protection community detection method is
designed, which is named LDPCD. In its framework, a
community divisive algorithm based on extremal optimi-
zation (EO) is used as the basis of the community detection
method. When executing the EO algorithm, the total
number of queries on the user’s degree vector and the times
of grouping adjustment will increase sharply with the net-
work scale. *erefore, under a limited total privacy budget,
there exists a problem of extremely large errors in the results
of a single query. In this regard, the truncated Laplace
mechanism is used to limit the disturbance range of the
user’s degree, thereby reducing the calculation error of the
user’s fitness value. Appropriate refinements are also made
to the existing EO algorithm under the protection of LDP to
significantly reduce the total interaction times between users
and the server. Finally, LDPCD is adopted to conduct
community detection on two social network datasets to
prove its effectiveness. In summary, the following contri-
butions of this paper are made:

(1 )A novel community detection method LDPCD
under local differential privacy protection is pro-
posed, which can obtain better community detection
results under higher local privacy protection
requirements.

(2) In order to solve the problem of large error caused by
Laplace mechanism, the truncated Laplace mecha-
nism is introduced to optimize the local perturbation

of user’s degree vector. Moreover, we provide rig-
orous theoretical proof that the new noise addition
method satisfies ε-LDP.

(3) By refining the community divisive algorithm based
on extremal optimization, the interaction times
between users and the server as well as the total
privacy cost are reduced, and the utility of com-
munity division is also guaranteed.

(4) *rough experimental evaluation on two commonly
used social network datasets, the community de-
tection results of LDPCD are compared with those of
two state-of-the-art methods of graph data analysis
under LDP [19, 20] to demonstrate the accuracy and
effectiveness of our proposed method.

*e rest of the paper is structured as follows. Section 2
introduces the research status of LDP in graph data analysis.
Section 3 elaborates the preliminary knowledge of com-
munity detection and LDP protection on graph data and
gives the definition of the problem in this paper. Section 4
describes the framework of LDPCD and its implementation
details. Section 5 presents and analyzes the experimental
results. Finally, Section 6 draws the conclusion.

2. Related Works

In recent years, research studies on protecting the topo-
logical characters and user relationships in social graph data
under LDP have attracted widespread attention of scholars
[8, 19, 20, 22–28]. According to different analysis objects of
social graph data, the existing work can be summarized in
two aspects, which are statistical graph metrics estimation
and synthetic social graph generation.

2.1.  e Application of LDP in Statistical Graph Metrics
Estimation. *e statistical metrics of the social graph are
important objects of graph data mining. As coarse-grained
information, these statistical metrics highly condense certain
properties of the social graph, which can express complex
topological relationships through simple numerical values.
*erefore, some studies adopted LDP mechanisms to per-
turb user’s social data and analyzed many types of statistical
graph metrics such as degree distribution [8, 29], clustering
coefficient distribution [20, 30], edge weight distribution
[31], and modularity [20].

Jacob et al. [23] proposed a method for estimating the
frequency of subgraphs based on LDP. *e central server
aggregates this local statistical information with calibrated
noise after interacting with the users to estimate the total
number of k-stars and triangles in the entire graph. Sun et al.
[25] formulated a stringent definition of decentralized dif-
ferential privacy to provide adequate protection for the
information of each user and her neighbors. *e total fre-
quency of triangles, three-hop paths, and k-clique in the
social graph is thus precisely estimated using a noise in-
jectionmethod that satisfies this privacy definition.Wei et al.
[8] proposed using LDP in the collection of attribute graph
data. After the random-jump perturbation to the user’s
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degree and the randomized response mechanism to the
user’s binary attribute value, the original degree distribution
and the joint distribution of attribute data are, respectively,
restored by unbiased estimation and EM algorithm. For the
social graph with edge attributes, Liu et al. [24] proposed a
novel privacy definition (attribute-wise LDP) with stronger
protection than edge differential privacy. Accordingly, a
novel perturbation mechanism was designed to protect all
edges with the same attribute for each user. *e corre-
sponding method for the restoration of statistical metrics
was also proposed to estimate the frequency of nodes with
certain attribute edges and the degree-attribute joint dis-
tribution of the social graph. Ye et al. [20, 27] argued that, for
the estimation of most statistical graphmetrics (such as node
clustering coefficient and subgraph modularity) under LDP,
it is sufficient to only query the noisy degree and adjacent bit
vector of each user. Based on this point, they proposed a
general framework LFGDPR, which analyzes the optimal
allocation scheme of privacy budget to separately perturb the
two items and provides the corresponding unbiased esti-
mation algorithm for different graph metrics.

2.2.  e Application of LDP in Synthetic Social Graph
Generation. In the various applications of differential pri-
vacy on social graph data, it is a popular but challenging
research task to use appropriate graph generation models to
generate a synthetic and privacy-guaranteed social graph for
its publishing to third parties [22, 32]. With the rise of social
graph analysis based on LDP, the research on the synthesis of
a private graph based on the user’s decentralized perturbed
information is also gradually unfolding [8, 19, 28].

Qin et al. [19] conducted pioneering research on this
field and proposed a graph data collection and synthetic
graph generation method under LDP, which is named
LDPGen. In more detail, each time LDPGen partitions all
users into disjoint groups and queries each user for her
perturbed degrees under the grouping, users with similar
degree vectors are clustered together to form a new user
partition. *is process of grouping-inquiry-grouping iter-
ates until the privacy budget is depleted. Based on the final
partition, a synthetic social graph is generated by using the
graph-generating model of Chung-Lu [33] for further
analysis. With the same research object as in [19], Zhang
et al. [28] proposed to collect users’ noisy degrees by means
of secure multiparty computation to form several user
groups. *en, each user adopts an optimized randomized
response scheme to perturb its adjacency vectors in different
groups. Finally, the synthetic social graph is generated
through the synthesized adjacency matrix after aggregating
the perturbed bit vectors of all users. Based on the collected
noisy data from all users, Wei et al. [8] used the attribute
graph model (AGM) [34] and takes the estimated distri-
bution of degrees and attribute values as input parameters to
generate the initial seed graph. In order to preserve the
structure and community information of the original graph,
the community detection algorithm of CESNA [6] is
adopted. *rough continuous iterative community detec-
tion of the seed graph and the modification of the edges and

attribute values in it, the convergent synthetic attribute
graph with high utility is finally generated. In addition, Ye
et al. [20] proposed the LFGDPR framework that can be
applied to the unbiased estimation of the modularity of any
subgraph. On this basis, the Louvain community detection
algorithm [4] is used to divide users into communities, and a
new synthetic social graph is generated based on the
community detection results.

In general, the existing work can analyze some com-
monly used statistical metrics of graph data and generate
synthetic social graphs under LDP. However, in some of it,
the problem of community detection is mostly presented as a
part of the whole research content and closely connected
with the final synthetic graphs, which means that the quality
of the graphs will have a significant impact on the utility of
the community division result. In this paper, we attempt to
design amore straightforwardmethod without private graph
generation and gradually restore the community structure
through multiple user-server interactions.

3. Problem Definition

In this section, we briefly introduce the prerequisite
knowledge of community detection and local differential
privacy for graph data; then, we give a detailed definition of
the considered problem. Table 1 describes the meaning of
some notations used in this study.

3.1. Nonprivate Community Detection in Social Graphs.
Many research studies have been conducted on the com-
munity detection of social graphs. Most classical methods of
community detection are dedicated to optimizing the
modularity of the community division of the entire graph.
Among them, the EO-based heuristic algorithm has been
widely used owing to its high computational efficiency and
fast convergence speed [5].

In the method of EO-based community detection, the
global variable is the modularity Q of a community division
of all users, whereas the local variables are the contribution
of each node to the total modularity. *e contribution qi of
node i is as follows:

qi � δc(i) − δiac(i), (1)

where δc(i) represents the number of edges connected be-
tween a node i belonging to community c and the other
nodes in the same community, δi represents the total degree
of node i, and ac(i) represents the proportion of the degree
sum of all nodes in community c to the degree sum of all
nodes in the entire network. *e relationship between the
modularity Q as a global variable and the local variable qi is
as follows:

Q �
1
2L

􏽘
i

qi � 􏽘
c

Lc

L
−

􏽐i∈cδi

2L
􏼠 􏼡

2
⎡⎣ ⎤⎦, (2)

where Lc and L represent the number of edges in community
c and the total edges in the entire network, respectively.
Since the value range of Q is [− 1/2, 1], to maintain the
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consistency, the local variable is normalized as λi with the
same range, which is defined as the fitness of user i:

λi �
δc(i)

δi

− ac(i). (3)

*erefore, the greater the fitness value of a node, the
greater its contribution to the modularity of the community
structure.

After defining the fitness of each user, the heuristic
divisive algorithm of EO can be described as follows:

(1) Initialization: the entire network is randomly divided
into two groups, each of which has the same number
of nodes. *is is regarded as the initial community
structure of the network.

(2) Iteration: in each iteration, after the fitness values of
all users have been calculated and sorted, the node
with the lowest fitness is considered to contribute the
least to the modularity of current bipartition of users
and is moved to the other group. After each move,
calculating the new two-dimensional degree vector
of all users based on the original graph and updating
their fitness accordingly is necessary.

By repeating step (2), an optimal bipartition state will be
finally obtained. In addition, its modularity Qb (also defined
as bipartition modularity) reaches a locally optimal value
and no longer increases. Afterward, all edges between the
two resulting groups are removed, and the abovementioned
initialization grouping and iteration process is indepen-
dently continued in each subgraph formed by the final
groups (each with their own Qb when divided into two
parts), thereby further splitting the users’ community.

3.2.  reat Model. *e community detection algorithm
described in this paper involves multiple rounds of inter-
action between two participants, i.e., the user and the server.
*e user is considered to be trusted because she only keeps
her social relationship data locally. However, the server is
considered semitrusted. On the one hand, the central server
collects true relationship data uploaded by users and re-
constructs the real social graph to provide users with

personalized services based on the mining results of it. On
the other hand, the users’ real data may be disclosed to other
untrusted third parties. In addition, even if a user only
uploads the true statistical values of some coarse-grained
information (such as user’s degree), the central server will
infer whether there is a social link between this user and
another targeted user based on his existing background
knowledge or true information provided from other users in
collusion.

3.3. Privacy Definition. Based on the threat model described
in Section 3.2, to collect user’s private social relationships
without relying on a trusted server, we should resort to LDP
mechanisms for the protection of each user’s local and
limited information.

In the graph data analysis of LDP, privacy definitions are
generally divided into the node LDP and edge LDP [19]. In
our scenario, whether two targeted users have a friendly
relationship is considered private information to be pro-
tected, which coincides with the definition of edge LDP.
Considering that any edge in a social graph can affect at most
one bit of each user’s neighbor list, edge LDP is defined as
follows:

Definition 1 (edge LDP, see [19]). For a social network with
N user nodes, a randomized mechanism M defined on
0, 1{ }N satisfies ε-edge LDP if any user i and her two
neighbor lists li, li′ differ only in one bit, as well as any
possible output subset S ∈ Range(M). *e following
probability inequality holds:

Pr M li( 􏼁 ∈ S􏼂 􏼃≤ e
εPr M li′( 􏼁 ∈ S􏼂 􏼃. (4)

Regarding the EO-based community detection algo-
rithm adopted in this paper, the calculation of user fitness
mainly involves the user’s degree vector for a certain
grouping situation. *us, we adopt the degree perturbation
mechanism proposed in [19]. In particular, the central server
divides all users into k groups, denoted as ξ � U1, . . . , Uk􏼈 􏼉.
After the grouping information is distributed to all users,
each user tallies her degree in each group and obtains the
corresponding degree vector δi � δ1i , . . . , δk

i􏽮 􏽯. Because the

Table 1: *e description of the main notations used in this article.

Symbols Descriptions
U0 *e set of all users
U A user subset of U0
G A bipartition of U
λi/􏽥λi *e true/noisy fitness of user i in terms of G
δi/􏽥δi i’s true/noisy degree in G
δi/􏽥δi i’s true/noisy degree vector in G
􏽥Q *e estimated modularity of a community division of all users
􏽥Qb *e estimated bipartition modularity of G
Gf *e final bipartite grouping of U with converged 􏽥Qb
Cr *e community division result of all users of the rth round bipartition
Ur A certain user subset (community) of Cr

Δ􏽥Q *e gain of 􏽥Q caused by the substitution of Gf for U{ } in user community division
ε *e privacy budget used for each query on user’s degree vector based on G
εf *e privacy budget used for the query on user’s degree vector based on Gf to estimate Δ􏽥Q
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presence or absence of an edge in the social graph will affect
at most one degree value in the degree vector of each user by
1, the user adds independent Laplace noise with a mean
value of 0 and a scaling parameter of 1/ε to each dimension
of the degree vector, i.e.,

􏽥δi � 􏽥δ
1
i , . . . , 􏽥δ

k

i􏼚 􏼛 � δ1i + Lap
1
ε

􏼒 􏼓, . . . , δk
i + Lap

1
ε

􏼒 􏼓􏼚 􏼛. (5)

*erefore, if the neighboring degree vectors δi and δj

satisfy δr
i � δr

j for r ∈ [1, k] and r≠m, as well as
|δm

i − δm
j | � 1, then, for any possible output result

s � (s1, . . . , sk) ∈ Range(M), there is

Pr M δi( 􏼁 � s􏼂 􏼃

Pr M δj􏼐 􏼑 � s􏽨 􏽩
�
Pr 􏽥δ

1
i � s1􏼔 􏼕, . . . ,Pr 􏽥δ

k

i � sk􏼔 􏼕

Pr 􏽥δ
1
j � s1􏼔 􏼕, . . . ,Pr 􏽥δ

k

j � sk􏼔 􏼕

�
Pr 􏽥δ

m

i � sm􏽨 􏽩

Pr 􏽥δ
m

j � sm􏽨 􏽩
≤ e

ε
.

(6)

*is shows that the degree vector perturbation mecha-
nism satisfies ε-edge LDP.

In addition, considering our community detection
scenario, the user and the server interact several times in the
iterative process of fitness calculation and grouping ad-
justment. Since any relationship edge of one user affects the
degree results for each query of the server to the greatest
extent, according to the sequential composition property of
DP [35], in the entire process of community detection, the
total privacy cost for each user is equal to the sum of all the
privacy budget consumed by her interactions with the
server.

3.4. AccuracyDefinition. *e community detection on a real
social network can get the community division of users close
to the facts. In this study, we use the community detection
result of a real social network based on the EO algorithm as
the ground truth, denoted by Ct. *e result of community
detection under LDP is expressed as Cp. For a certain de-
viation between Cp and Ct, the accuracy of privacy-pre-
serving community detection is measured using three
metrics: modularity, ARI, and AMI. *ese three metrics are
described in detail in Section 5.1.3.

3.5. Problem Statement. In this study, we aim to find a
tradeoff between the privacy protection of user social re-
lationship data and the utility of community detection re-
sults. Based on the definitions of privacy and accuracy given
in Sections 3.3 and 3.4, as well as the EO-based community
detection method, in this section, we formally describe the
problem of the community detection for social networks
under LDP guarantees.

Definition 2 (community detection for social networks under
LDP). In this study, LDPCD, a novel framework, is designed
for community detection on social networks under LDP.

(1) *e framework guarantees that any relationship data
of each user satisfies ε-differential privacy for the
other users and the server

(2) Based on the EO algorithm, the framework exploits
the degree vector information uploaded by users and
uses a community divisive algorithm to divide users
into several communities

(3) *e framework improves the existing classical data
perturbation mechanism to ensure that the results of
community detection can achieve reasonable utility
under strong privacy protection

Studying community detection under LDP protection
is challenging because of two main reasons. First, the
central server cannot use agglomerative algorithms to
cluster users into communities, which is because these
algorithms cannot be implemented by correctly inferring
the truthfulness of the perturbed links in the local region
with high probability, thereby affecting the fusion process
of nodes and communities based on the greedy algorithm.
Second, in the context of LDP, each user interacts with the
server several times to continuously optimize the com-
munity division results. For a moderate total privacy
budget, overly small distributed budget may result in the
utility of community division to not significantly improve
with the increase in the number of interactions. *erefore,
in response to the first one, the community divisive al-
gorithm is used as our basic method, and user statistics
such as the degree vector are exploited to guide the di-
vision and adjustment of user communities. To mitigate
the large perturbation error caused by excessive inter-
actions, the conventional data perturbation mechanism is
improved to enhance the accuracy of community detec-
tion under reasonable privacy protection strength.

4. Methods

In this section, we propose LDPCD, a novel framework, for
community detection of social graphs under LDP protec-
tion. First, this framework is described in detail. *en, the
drawbacks of directly applying the existing noise injection
method of LDP to the EO-based community detection al-
gorithm are analyzed. Finally, a modified data perturbation
satisfying LDP and a refined EO-based community detection
algorithm are proposed.

4.1. Framework. As shown in Figure 1, LDPCD mainly
comprises two building blocks: the multiple interactions
between users and the server and the server-side iterative
processes of the generation of user communities. *e user-
side operation mainly comprises the calculation and local
perturbation of the degree vector. *e iterative processes
comprise the multiple degree queries and iterative adjust-
ment of user’s bipartition until the bipartition modularity
converges, and the iterative optimal bipartition of user’s
community until the user partition is stable.

At the user side, user i receives the bipartite grouping G
from the server, generates her true degree vector δi, and
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perturbs it according to the assigned privacy budget ε and
then uploads the perturbed degree vector 􏽥δi (step ②).

At the server side, the overall data operation process is
shown in steps① and③ to⑥ in Figure 1. In the input step,
the server gets the ID information of all surveyed users and
forms a user set U0. Meanwhile, a community division C0 is
initialized, where C0 � U0􏼈 􏼉. Next, the server performs
multiple rounds of bipartition to divide all users into several
communities. In particular, when the bipartition process
reaches the rth round, the server starts from the user
community division result of the previous round and ini-
tializes the rth round’s community as Cr � ∅, then sets each
subset in Cr− 1 as an independent user community U, and
performs the bipartition operation separately.

In the initial case of the bipartition operation, the server
side randomly bisects U and obtains the initial bipartite
grouping G � U1,U2􏼈 􏼉 (step ①). After querying the per-
turbed degree vectors of all users (step②), the server collects
them and computes the corresponding fitness for each user
in the EO-based algorithm and the bipartition modularity
value of the current grouping (step③). Afterward, the server
iteratively sorts the users’ fitness to obtain the sequence 􏽥λ,
adjusts the bipartite grouping according to 􏽥λ, and recalcu-
lates the fitness of each user until the grouping situation
stabilizes (step④). *e stabilizedG and privacy budget ε are
distributed by the server to each user in U for the next query
regarding degree vectors (step ②). After collecting all
perturbed data, the server repeats the computation of fitness
as well as bipartitionmodularity and the iterative adjustment
of the user’s grouping. *e adjustment-query-adjustment
process for the final bipartition result will last until the
bipartition modularities obtained by two neighboring
queries have a subtle gap, which indicates that the optimal
bipartition of U is finally obtained and its final grouping Gf
is thus formed (step ③).

During the rth round of user community division, after
judging that the optimal bipartition of each subset
Ur− 1 ∈ Cr− 1 is completed (step③), checking whether its Gf

can cause an increase in the total modularity 􏽥Q compared
to itself without bipartition (step ⑤) is necessary. If the
gain is greater than a certain expected error, Cr� Cr ∪Gf is
computed to update the rth round’s community division.
Otherwise, Cr� Cr ∪ Ur− 1􏼈 􏼉 is executed, indicating that
any bipartition cannot pose an obvious gain in 􏽥Q.
Whether to perform a new round of community bipar-
tition is decided based on the comparison result of Cr− 1
with Cr (step ⑥). *us, in the entire process of the
community divisive algorithm based on EO, the server
side iteratively performs the optimal bipartition of user
subsets (also as communities) for several rounds, which
start from the first round of community bipartition on all
users and finally ends when the user community divisions
of two neighboring rounds are identical, and the total
modularity stabilizes to get the final community detection
result of all surveyed users.

4.2. A Naive Method. Since Laplace mechanism is com-
monly used for differential privacy protection of numerical
data, an intuitive approach is to inject Laplace noise in
user’s true degree vector (as mentioned in Section 3.3).
After making minor adjustments to user groups based on
user perturbation data, the server needs to inform all users
within the bipartite grouping about the migrated users,
thus making all users update their degree vectors according
to the new grouping situation. On this basis, we refer to the
classical EO algorithm [5] in our naive method and only
move the user with the lowest fitness to the other group in
each grouping adjustment and continue the query for the
user’s updated perturbed degree vectors. As we can
imagine, the migration of one user only results in a slight
change in the degree vectors of some users. However,
determining whether and to what extent the degree vector
of the other nodes that have not been moved have changed
is impossible for the server because he has no access to the
true social graph of the surveyed users under LDP.

Client Side

User i

Data
perturbation
2

The interaction
is performed
several times.

Perturbed degree
vector

G, ε
User

bipartition
G

3 Data
aggregation

and judgment
of bipartition
completion

4 Bipartite
grouping

adjustment

5 Test the
effectiveness of
final bipartition

6 Determine
whether to

continue next-
round

bipartition

1 Initial
random

bipartition

Output

Input

The Semi-trusted
Server

Figure 1: *e framework of LDPCD.
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*erefore, each time of user grouping adjustment has to be
allocated some privacy budget for querying about the
updated degree vectors.

4.2.1. Problems of the Naive Method. In the abovementioned
naive method, the conventional Laplace mechanism is used
for data perturbation. *e server executes the iterative
process of the classical EO algorithm by multiple interac-
tions with users and using the perturbed data for fitness
calculation and node migration. Two main problems are
encountered in this process. On the one hand, with ex-
cessively small privacy budget distributed for each query, the
addition of Laplace noise can considerably distort the true
degree vector when there is no limitation of output range for
the noisy degree. *e perturbed data with large error will
considerably affect the grouping adjustment process,
resulting in low modularity and poor utility of the subse-
quent community division results. On the other hand, the
classical EO algorithm requires that every time a single user
node changes its group, the information of each user is re-
queried, which significantly increases communication cost
between users and the server. *erefore, applying this naive
approach to practical community detection under LDP
protection is nearly impossible.

4.3. Data Perturbation. Considering the limitations of
Laplace mechanism when applied to the EO-based com-
munity detection algorithm, the truncated Laplace mecha-
nism [36] which restricts the perturbation range of user’s
degree is used as our data noising scheme, thereby resolving
the problem of the poor utility of the community division
result caused by the large error under low privacy budget.

In the Laplace distribution f(x) � e− |x− μ|/σ/2σ, the
output range is the real domain. However, to ensure that the
result of user degree is meaningful after perturbation, the
output range of the LDP-based mechanism should be
limited from 0 to the total number of users or to an even
shorter interval of the degree value, which can prevent a
small degree from being perturbed under the conventional
Laplace mechanism and resulting in a negative one with
large absolute value and seriously affecting the estimation
accuracy of user fitness. In this regard, the truncated Laplace
mechanism [36], as an improved method of Laplace
mechanism, truncates the infinite range of perturbation
results. Moreover, to ensure that the integral of the output
probability density of all values in the truncated range is
equal to 1, the probability density function f(x) is multi-
plied by a normalization parameter, which guarantees that
the true degree results are always output with the maximum
probability and meanwhile increases the output probability
of all values within the output interval. *e integral of
probability density function in this interval is 1, whereas the
output probability of all values outside this truncated range
is 0, thus improving data accuracy after perturbation.

As shown in Figure 2, when the users use the truncated
Laplace mechanism to perform degree perturbation locally,
the limit output range should be determined according to
the true value of the user, and it is expressed by (L, R), where

L, R ∈ N (here, the symbols L and R, respectively, denote the
left and right boundary of the output range, and the true
degree δ satisfies L< δ <R). Because the information that
users need to protect is the existence or absence of an edge in
the true social graph, the sensitivity of each dimension of the
local degree vector is Δδ � 1. Given the privacy budget ε of
each time of query, the scaling parameter σ in the truncated
Laplace distribution function is obtained, i.e.,

σ �
2Δδ
ε

�
2
ε
. (7)

(In Section 4.5.1, we give detailed proof of the value of σ ).
*en, the integral on the intervals (− ∞, L) and (R, +∞) is
calculated according to the probability density function of
the Laplace distribution, i.e.,

IL � 􏽚
L

− ∞

1
2σ

e
− |x− δ|/σdx �

1
2
e

− |δ− L|/σ
, (8)

IR � 􏽚
+∞

R

1
2σ

e
− |x− δ|/σdx �

1
2
e

− |δ− R|/σ
. (9)

To make the integral of the probability density function
on the truncated range equal to 1, the output probability
density f(x) of any real number x ∈ [L, R] is multiplied by
the normalization coefficient nδ, which is calculated
according to nδ � 1/(1 − IL − IR), and a normalized prob-
ability density p(x) is obtained, i.e.,

p(x|x ∈ [L, R]) �
nδ

2σ
e

− |x− δ|/σ
. (10)

Correspondingly, the red/blue curve in Figure 2 repre-
sents the probability density function of the Laplace/trun-
cated and normalized Laplace distribution, respectively. In
the latter one, the output range of the perturbation result is
considerably narrowed, and the probability of the output
result near the true value remains the maximum. *e
truncated Laplace distribution curve is not symmetrical like
the conventional Laplace distribution under certain pa-
rameter conditions, which leads to the deviation between the

σ=2.0, L=2, R=5, δ=3
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Figure 2: Laplace distribution and truncated Laplace distribution.
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expected value and the true degree. Nevertheless, because
of the limitation of the output range, truncated Laplace
has a smaller mean square error than the conventional
mechanism under a low privacy budget.*us, we can infer
that the limitation of the length of output interval for
user’s degree perturbation will greatly affect the utility of
the noisy degree vector and the accuracy of the com-
munity detection results.

Algorithm 1 describes the local perturbation process in
detail. In particular, during each round of user community
bipartition, user i will receive a bipartite grouping G of the
user subset U including herself from the server for multiple
times. Each time, she keeps her personal social data locally
and calculates the corresponding true degree vector
according to the grouping situation (Line 1). When deliv-
eringG to the users, the server will notify user i of the length
of the truncated range, which is denoted as l. Based on this,
user i generates two sequences of output intervals with the
same length of truncation corresponding toU1 andU2 (Line
2) and obtains the output interval for each dimension
according to her true degree vector (Line 3). Afterward, user
i spends privacy budget ε to perturb each dimension.
*rough the true degree δ, the left boundary L and the right
boundary R of the output interval, the scaling parameter σ,
and the normalization coefficient nδ, as well as the proba-
bility density function p(x|x ∈ [L, R]), can be calculated
(Line 7). To ensure that the perturbation result is mean-
ingful, the output probability of any integer in the output
interval is calculated according to the data perturbation steps
shown in lines 8–11 to make that any real result obtained by
the truncated Laplace mechanism are rounded, which still
satisfies ε-LDP for each query.

4.4. Refined EO Algorithm. As mentioned in Section 4.2.1,
directly performing the grouping adjustment of the clas-
sical EO algorithm and the recalculation of user fitness in
the application scenario of LDP will not only cause the
excessive allocation of the privacy budget but also lead to a
catastrophic increase in the cost of user-server commu-
nication. For solving this problem, we attempt to make full
use of the uploaded data and propose to form an iterative
process inside the server based on the perturbed degree
vectors and the corresponding user grouping, thereby
greatly reducing the total number of interactions between
users and the server during the process of optimal bipar-
tition for each community. Specifically, we assume that the
degree vector of all users remains unchanged after any
number of users are migrated to the other group; then, the
change in fitness is only related to the calculable ac(i). After
the move of user i, the sum of user degrees in the original
group, where user i is located, needs to be subtracted by i’s
perturbed degree, and the sum of degrees in i’s current
group needs to be added with i’s degree value accordingly.
*erefore, the changes of 􏽥a1 and 􏽥a2 of the two groups can be
calculated correspondingly, and the fitness of all users can
also be updated according to (3).

In Algorithm 2, we describe the whole process consisting
of the server-side migration of users in bipartite grouping

and several interactions of degree query to finally obtain an
optimal grouping with converged bipartite modularity.

Initially, after setting the length of the truncated range
and the privacy budget of a single query, the server bisects
the user subset U randomly into two groups (line 1),
followed by sending all this information to the users. Each
user substitutes the above privacy protection parameters
into Algorithm 1 to obtain her perturbed degree vector
and uploads it to the center (line 4). After that, the server
aggregates these noisy data to directly calculate the total
number of edges, 􏽥a1 and 􏽥a2, the fitness of each user, and
the bipartition modularity of the initial grouping (lines
5–10).

*en, the server performs the grouping adjustment step
shown in lines 12–21 of Algorithm 2. *e user m′ with the
lowest fitness is migrated to the other group. Based on the
noisy degree vector uploaded by users and the fine-tuned 􏽥a1
and 􏽥a2 after the migration of m′ (lines 16–19), the fitness of
all users is updated, and the user with the lowest fitness is
found out and migrated again. *is process will continue to
iterate, during which the server only uses the perturbed
degree vectors uploaded by users according to the initial
random grouping and does not consume any additional
privacy budget. From the classical EO algorithm, it can be
inferred that the ultimate goal of the iteration is to make the
fitness of all users in the final convergent grouping situation
greater than 0, which means that the bipartition modularity
no longer increases. Considering that this situation may not
be reached in the end, the convergence conditions are re-
laxed. When the last two search results are the same user
with the minimum fitness (line 14), the migration iteration
of users can be stopped for this time.

Considering the degree vector of each user is in fact
changing implicitly in the continuous adjustment of user
grouping, the iterative migration of users based on the
degree vectors of the initial grouping cannot derive the
expected near-optimal bipartition of U. For this problem,
another iterative process of degree query between users and
the server is constructed. After the server performs the steps
in lines 12–21 based on the initial grouping and the cor-
responding degree vector, the formed convergent grouping
will continue to be delivered to all users as the baseline
grouping of a new query to obtain the next new perturbed
degree vectors (line 22), and from it, the server will perform
the user migration iterative process of the next time (in
Algorithm 2, we take s to denote the number of degree
queries). *erefore, a small iterative migration process is
nested in a larger iterative process of degree query. In this
way, the number of user interactions with the server and the
consumption of the privacy budget can ultimately be greatly
reduced. When the algorithm is executed until the bipar-
tition modularity of user convergent grouping G does not
increase (line 23), the ideal division result of the user subset
U is obtained.

According to the description of the framework in Section
4.1, when each user subset Ur− 1 in the initial community
division Cr− 1 of the rth round does not increase the total
modularity after completing the optimal bipartition, the
iteratively splitting process of user subset gets terminated.
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*erefore, it is necessary to estimate the modularity gain Δ􏽥Q

after each execution of Algorithm 2. To obtain unbiased
estimation results, each user is required to consume addi-
tional privacy budget εf and utilize Laplace mechanism to
add calibrated noise on her true degree vector, which is
based on the optimal bipartition result of the user subset
including her (also as Gf ). According to this, the user
degree in the subset U and the total number of edges 􏽥L of
the user subset can be derived by referring to lines 4 and 5
in Algorithm 2. *e total number of edges 􏽥L1 and 􏽥L2

within each one of the final groups can also be directly
calculated, i.e.,

􏽥L1 �
1
2

􏽘

j∈U1
f

􏽥δ
1
j , 􏽥L2 �

1
2

􏽘

k∈U2
f

􏽥δ
2
k. (11)

We also use the noisy degree vectors with Laplace noise
from the first round’s optimal bipartition for all users to
calculate the total degree of each user and the total number
of edges in the entire network. Here, we slightly abuse the

Input: user i’s adjacent bit vector Bi ∈ 0, 1{ }N, the division of the group U where user i is located G � U1,U2􏼈 􏼉, the truncated
interval length given by the server l, privacy budget ε
Output: perturbed degree vector 􏽥δi of user i under the grouping G

(1) Calculate the true degree vector δi � δ1i , δ2i􏽮 􏽯 based on Bi and G;
(2) Generate I1 and I2 corresponding toU1 andU2, respectively, according to l, which is I1 � [0, l), [l, 2l), . . . , [⌊|U1|/l⌋ · l, |U1|􏼈 􏼉 and

I2 � [0, l), [l, 2l), . . . , [⌊|U2|/l⌋ · l, |U2|􏼈 􏼉;
(3) Find [L1, R1) and [L2, R2) in I1 and I2, respectively, to satisfy that δ1i ∈ [L1, R1) and δ2i ∈ [L2, R2);
(4) Set δ � δ1i or δ2i , L � L1 or L2, R � R1 or R2, respectively;
(5) if δ � L and δ > 0 then
(6) Randomly chose a truncated range between [L, R] and [L − l, L] (let L � L − l R � L) with equal probability, then perturb δ

within it;
(7) With ε, calculate σ and p(x|x ∈ [L, R]) according to equations (7)–(10);
(8) Calculate Pr(L) � 􏽒

L+0.5
L

p(x|x ∈ [L, R])dx, Pr(R) � 􏽒
R

R− 0.5 p(x|x ∈ [L, R])dx;
(9) for d ∈ [L + 1, R − 1](d ∈ N) do
(10) Calculate Pr(d) � 􏽒

d+0.5
d− 0.5 p(x|x ∈ [L, R])dx;

(11) Sample a value according to the output probability of each integer in [L, R] and assign it to the perturbed degree 􏽥δ;
(12) Obtain the final perturbed degree vector 􏽥δi.

ALGORITHM 1: *e implementation of truncated Laplace mechanism on the user side

Input: user subset U, Bi ∈ 0, 1{ }N (∀i ∈ U), truncated interval length l, single query privacy budget ε
Output: U’s final bipartition result Gf � U1

f ,U
2
f􏼈 􏼉, privacy cost εcos t

(1) Initialize random bisection of the server G0 � U1
0,U

2
0􏼈 􏼉, and set s � 0;

(2) *e server delivers grouping Gs to users in U;
(3) for i ∈ U do
(4) User i executes Algorithm 1 (with input parameters Bi,Gs, l, and ε) and obtains 􏽥δi as well as 􏽥δi � 􏽥δ

1
i + 􏽥δ

2
i to upload to the server;

(5) *e server calculates the total number of edges 􏽥L � 􏽐i
􏽥δi/2, as well as 􏽥a1 � 􏽐j∈U1

s

􏽥δj/2􏽥L and 􏽥a2 � 􏽐k∈U2
s

􏽥δk/2􏽥L;
(6) for j ∈ U1

s do
(7) Calculate the fitness 􏽥λj � 􏽥δ

1
j/􏽥δj − 􏽥a1;

(8) for k ∈ U2
s do

(9) Calculate the fitness 􏽥λk � 􏽥δ
2
k/􏽥δk − 􏽥a2;

(10) Calculate the bipartition modularity of Gs, i.e., 􏽥Qb(s) � 􏽐i
􏽥δi

􏽥λi/2􏽥L;
(11) do
(12) Find the user with the lowest fitness value as m′(∈ U);
(13) Set m � − 1, U1 � U1

s , U
2 � U2

s ;
(14) while m≠m′ do
(15) m � m′;
(16) if m ∈ U1, then
(17) U1 � U1\ m{ }, 􏽥a1 � 􏽥a1 − 􏽥δm/2􏽥L; U2 � U2 ∪ m{ }, 􏽥a2 � 􏽥a2 + 􏽥δm/2􏽥L;
(18) else
(19) U1 � U1 ∪ m{ }, 􏽥a1 � 􏽥a1 + 􏽥δm/2􏽥L; U2 � U2\ m{ }, 􏽥a2 � 􏽥a2 − 􏽥δm/2􏽥L;
(20) Recalculate according to lines 6–9, and repeat the step in line 12;
(21) Get the stable grouping G � U1,U2􏼈 􏼉, let s � s + 1 and set Gs� G;
(22) Repeat the steps in lines 2–10;
(23) while 􏽥Qb(s− 1) ≤ 􏽥Qb(s)

(24) *e final group Gf� Gs, privacy cost εcos t � sε.

ALGORITHM 2: User’s group bipartition by refined EO.
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notations by using 􏽥δ
t
i and 􏽥Lt to denote them, respectively,

and

􏽥Lt �
1
2

􏽘

j∈U1
f

􏽥δ
t
j + 􏽘

k∈U2
f

􏽥δ
t
k + 􏽘

i∈U0\U

􏽥δ
t
i

⎛⎜⎜⎝ ⎞⎟⎟⎠, (12)

in which the three items on the right side are mutually
independently perturbed with Laplace mechanism.
According to the definition of modularity, the estimated gain
of 􏽥Q after the optimal bipartition of user subset U can be
calculated, i.e.,

Δ􏽥Q �
􏽥L1
􏽥Lt

−
􏽐j∈U1

f
􏽥δ
t
j

2􏽥Lt

⎛⎝ ⎞⎠

2

+
􏽥L2
􏽥Lt

−
􏽐k∈U2

f
􏽥δ
t
k

2􏽥Lt

⎛⎝ ⎞⎠

2

−
􏽥L

􏽥Lt
−

􏽐j∈U1
f
􏽥δ
t
j + 􏽐k∈U2

f
􏽥δ
t
k

2􏽥Lt

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦,

�
􏽐j∈U1

f
􏽥δ
t
j􏽐k∈U2

f
􏽥δ
t
k − 􏽥Lt 􏽐j∈U1

f
􏽥δ
2
j + 􏽐k∈U2

f
􏽥δ
1
k􏼒 􏼓

2 􏽥Lt( 􏼁
2 .

(13)

Since each item of equation (13) is an unbiased esti-
mation of its corresponding true value, it can be observed
that if its numerator is larger than 0 by the value of its
standard deviation, the optimal bipartition will cause pos-
itive gain in the total modularity with an adequate

probability. *us, considering that the Laplace noise of 􏽥δ
t
i

and 􏽥Lt is independent of that injected to 􏽥δ
2
j and 􏽥δ

1
k and by

using equation (12), we attempt to derive the specific form of
its variance as follows:

Var 􏽘

j∈U1
f

􏽥δ
t
j 􏽘

k∈U2
f

􏽥δ
t
k − 􏽥Lt 􏽘

j∈U1
f

􏽥δ
2
j + 􏽘

k∈U2
f

􏽥δ
1
k

⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ � E 􏽘

j∈U1
f

􏽥δ
t
j

⎛⎜⎜⎝ ⎞⎟⎟⎠

2
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦E 􏽘

k∈U2
f

􏽥δ
t
k

⎛⎜⎜⎝ ⎞⎟⎟⎠

2
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦ − E 2􏽥Lt 􏽘

j∈U1
f

􏽥δ
t
j 􏽘

k∈U2
f

􏽥δ
t
k

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ 􏽘

j∈U1
f

δ2j + 􏽘

k∈U2
f

δ1k⎛⎜⎜⎝ ⎞⎟⎟⎠

+ E 􏽥Lt( 􏼁
2

􏼔 􏼕E 􏽘

j∈U1
f

􏽥δ
2
j + 􏽘

k∈U2
f

􏽥δ
1
k

⎛⎜⎜⎝ ⎞⎟⎟⎠

2
⎡⎢⎢⎢⎢⎢⎢⎣
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j∈U1
f

δtj 􏽘

k∈U2
f

δtk − Lt 􏽘

j∈U1
f

δ2j + 􏽘
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f

􏽥δ
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t
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· 􏽘

j∈U1
f

δ2j + 􏽘

k∈U2
f
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j∈U1
f

􏽥δ
2
j + 􏽘

k∈U2
f

􏽥δ
1
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j + 􏽘

k∈U2
f

􏽥δ
1
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⎛⎜⎜⎝ ⎞⎟⎟⎠.

(14)

Noticing that the variance of Laplace noise with privacy
budget ε and sensitivity Δf is 2(Δf/ε)2, we can solve all the

variance item in equation (14) and reach the final expression
as

Var 􏽘

j∈U1
f

􏽥δ
t
j 􏽘

k∈U2
f

􏽥δ
t
k − 􏽥Lt 􏽘
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f

􏽥δ
2
j + 􏽘
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􏽥δ
1
k
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+
2N|U|

ε4f
.

(15)
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After the server obtains the optimal bipartition of U and
receives corresponding noisy degree vector from each user
in U, also with their noisy total degrees as well as the total
edges, we can simply calculate the estimation value of
equation (13) numerator. If it is greater than the square root
of the right side of equation (15), the modularity gain caused
by U’s division is considered positive, and the bipartition
U1

f ,U
2
f􏼈 􏼉 will be accepted to replace U{ } in the community

division of the entire graph.

4.5.  eoretical Analysis

4.5.1. Proof of ε-LDP Guarantee. *is section will prove that
the truncated Laplace mechanism proposed in Section 4.3
satisfies ε-LDP.

In the process of degree perturbation by users, it is
assumed that the local relationship data of each user in
two adjacent graphs (differed by any single edge) are D1
and D2, which are either the same or different by one bit.
*e function f(D) is the degree query function. *ere-
fore, the local sensitivity is Δf � max

D1 ,D2

|f(D1)− f(D2)| � 1.
According to the step of truncated interval selection, it is
assumed that both f(D1) and f(D2) are in the
interval [L, R]; thus, any result s ∈ R obtained by the
perturbation also satisfies s ∈ [L, R]. *e truncated Lap-
lace mechanism is set to be M. According to Definition 1,
it is necessary to prove that the following inequality is
always valid:

e
− ε ≤

Pr M f D1( 􏼁( 􏼁 � s􏼂 􏼃

Pr M f D2( 􏼁( 􏼁 � s􏼂 􏼃
≤ e

ε
. (16)

Without loss of generality, as shown in Figure 3, it is
assumed that L≤f(D2)≤f(D1)≤R, and let
ΔL1 � |f(D1) − R|, ΔR1 � |f(D1) − L|, ΔL2 � |f(D2) − R|,
ΔR2 � |f(D2) − L|, and |f(D1) − f(D2)| � iΔf(i � 0, 1).
*e following theorems are given and proved below.

Theorem 1. With the given truncated interval [L, R] and the
privacy budget ε, as well as the user’s local degree f(D1) or
f(D2), if the scaling parameter σ in the Laplace distribution
satisfies σ � 2Δf/ε, the results obtained by perturbing the true
degrees f(D1) or f(D2) according to the probability dis-
tribution of equation (10) must satisfy ε-LDP.

Proof. Replace the probability expression in equation
(16) with equation (10). *en, replace IL2 and IR2 with
IL1 and IR1, and use the triangle inequality, and we can
obtain

nδ1/2σ · e
− s− f D1( )| |/σ

nδ2/2σ · e
− s− f D2( )| |/σ

≤
1 − IL1e

iΔf/σ
+ IR1e

− iΔf/σ
􏼐 􏼑

1 − IL1 − IR1
e

iΔf/σ
.

(17)

To prove that the left side is smaller than eε, it is
attempted to prove that the right side does not exceed eiε

on i ∈ [0, 1]. *us, taking i ∈ [0, 1] as the independent
variable, let

F(i) �
1 − IL1e

iΔf/σ
+ IR1e

− iΔf/σ
􏼐 􏼑

1 − IL1 − IR1
,

R(i) � e
i(ε− Δf/σ)

.

(18)

By careful observation, when i � 0, F(i) � R(i) � 1. If let
F(i)≤R(i), when i≥ 0, we should require that F′(0)≤R′(0).
By solving the inequality, the value range of σ is obtained,
i.e.,

σ ≥
Δf
ε

2IL1 − 1
IL1 + IR1 − 1

. (19)

In order to ensure that F′(i) does not exceed R′(i) when
i> 0, the secondary derivatives of these two functions are
calculated as follows:

F″(i) � −
Δf
σ

􏼠 􏼡

2
IR1e

− iΔf/σ
+ IL1e

iΔf/σ

1 − IL1 − IR1
,

R″(i) � ε −
Δf
σ

􏼠 􏼡

2

e
i(ε− Δf/σ)

.

(20)

According to equation (8) and equation (9), it can be
known that IL1 + IR1 < 1 is always valid. *erefore, when
i> 0, we can infer that F″(i)< 0 and R″(i)≥ 0, which means
that F′(i) is monotonically decreasing and R′(i) is mono-
tonically increasing. Because σ satisfies equation (19) to
ensure that F′(0)≤R′(0), F′(i)≤R′(i) is always true for
i≥ 0.*us, it can be inferred that F(i)≤R(i) always holds on
i ∈ [0, 1], and accordingly,

Pr M f D1( 􏼁( 􏼁 � s􏼂 􏼃

Pr M f D2( 􏼁( 􏼁 � s􏼂 􏼃
�

nδ1/2σ · e
− s− f D1( )| |/σ

nδ2/2σ · e
− s− f D2( )| |/σ

≤ e
iε ≤ e

ε
. (21)

Similarly, the above deducing process can also be used to
prove the validity of the left half of equation (16) under the
following condition:

σ ≥
Δf
ε

2IR2 − 1
IL2 + IR2 − 1

. (22)

*erefore, if truncated Laplace mechanism is to strictly
satisfy ε-LDP, σ must simultaneously satisfy

σ ≥
Δf
ε

2IL1 − 1
IL1 + IR1 − 1

�
2Δf
ε

1
1 + 1 − e

− ΔL1/σ􏼐 􏼑/ 1 − e
− ΔR1/σ􏼐 􏼑

,

σ ≥
Δf
ε

2IR2 − 1
IL2 + IR2 − 1

�
2Δf
ε

1
1 + 1 − e

− ΔR2/σ􏼐 􏼑/ 1 − e
− ΔL2/σ􏼐 􏼑

.

(23)

Finally, extreme cases are used to find the strict lower
bound of σ, which happens when ΔL1 � 0 or ΔR2 � 0, and
accordingly,

σ ≥
2Δf
ε

. (24)

*erefore, if σ satisfies equation (24), it must also satisfy
equation (23). *e conclusion is thus proved. □
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5. Experiments

In this section, the experiments are performed to evaluate
our proposed method.

5.1. Experimental Methods

5.1.1. Datasets. Two datasets published in the Stanford
Network Analysis Project (SNAP) are used to conduct the
experiments:

(1) Facebook dataset [37]: this dataset contains 4039
Facebook users and 88234 relationship edges (un-
directed edges) formed among them. In addition,
this dataset is one of the classic datasets employed for
complex network community detection.

(2) Facebook page network dataset about the govern-
ment [38]: this dataset involves 7057 web pages
about government information, and the edges be-
tween the web pages represent their mutual likes
(undirected edges). After removing the self-loop
edges in the original data, the total number of edges
in the network is 89429.

5.1.2. Compared Methods. In order to evaluate the perfor-
mance of LDPCD, the proposed method is compared with
the following two methods.

(1) LDPGen [19]: with this method, a synthetic private
social graph under LDP protection is generated.
Besides, the experiment in our paper still follows the
parameter settings of LDPGen, in which two times of
queries on user degree vectors and user clustering

based on the k-means method in terms of degree
vectors are implemented, and the total privacy
budget is evenly distributed. *en, based on the
generated synthetic social graph, the Louvain com-
munity detection algorithm is finally adopted.

(2) LFGDPR [20]: using this method, a variety of sta-
tistical graph metrics, including clustering coefficient
distribution and subgraph modularity, are estimated
under LDP. In accordance with all its technical
details, the experiment in our paper optimally al-
locates the total privacy budget and then perturbs the
user’s total degree and adjacency bit vector, re-
spectively. Furthermore, according to the proposed
Louvain community detection algorithm based on
LFGDPR, the network community is divided.

5.1.3. Utility Metrics. According to Section 3.4, the specific
meanings of the three utility metrics, namely, modularity,
ARI (adjusted random index), and AMI (adjusted mutual
information), are elaborated.

Modularity: the function of modu(C) is to calculate the
total modularity of a community division result C based on
the original real network. *erefore, modu(Cp) is taken as
the evaluation index for the quality of community detection
results under privacy protection, with the value range of
[− 1/2, 1].

ARI and AMI: given all users u1, . . . , uN􏼈 􏼉 and their two
grouping conditions X � x1, . . . , xu􏼈 􏼉 and Y � y1, . . . , yv􏼈 􏼉,
nij represents the number of users shared by group xi and
group yj, that is, nij � |Xi ∩Yj|, and 1≤ i≤ u and 1≤ j≤ v. In
addition, let ai � 􏽐jnij and bj � 􏽐inij, and define the index
to measure the similarity between groupings X and Y as

ARI(X, Y) �

􏽐ij

nij

2

⎛⎜⎜⎝ ⎞⎟⎟⎠ − 􏽐i

ai

2

⎛⎜⎜⎝ ⎞⎟⎟⎠􏽐j

bj

2

⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦/

N

2

⎛⎜⎜⎝ ⎞⎟⎟⎠

1/2 􏽐i

ai

2

⎛⎜⎜⎝ ⎞⎟⎟⎠ + 􏽐j

bj

2

⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ − 􏽐i

ai

2

⎛⎜⎜⎝ ⎞⎟⎟⎠􏽐j

bj

2

⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦/

N

2

⎛⎜⎜⎝ ⎞⎟⎟⎠

,

AMI(X, Y) � 􏽘
u

i�1
􏽘

v

j�1
􏽘

min ai,bj( 􏼁

nij� ai+bj− N( 􏼁
+

nij

N
log

N · nij

aibj

􏼠 􏼡 ×
ai!bj! N − ai( 􏼁! N − bj􏼐 􏼑!

N!nij! ai − nij􏼐 􏼑! bj − nij􏼐 􏼑! N − ai − bj + nij􏼐 􏼑!
.

(25)
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Figure 3: *e diagram of the truncated range for degree perturbation.

12 Computational Intelligence and Neuroscience



Among them, (ai + bj − N)+ means max(1, ai+ bj − N).
Specifically, ARI represents the frequency of agreements
between the two obtained groupings over all element pairs,
and AMI quantitatively refers to the amount of information
shared by the two groupings X and Y. In the case of the same
grouping, AMI is usually higher than ARI, both with the
value range of [0, 1]. Higher values of ARI and AMI mean
that two groupings of the same user set are more similar.
*erefore, in the experiment, higher ARI(Cp,Ct) or
AMI(Cp,Ct) indicates that the community detection result
under LDP has higher accuracy.

5.1.4. Parameter Settings. In this paper, the parameter set-
tings of the LDP-based community detection algorithm are
as follows.

As shown in Algorithm 2, each time the server queries
user degree, the assigned privacy budget is equal, which is
denoted as ε. Other than that, calculating the total modu-
larity gain also requires to be allocated a certain privacy
budget εf so as to query the degree vector perturbed by
Laplace mechanism under the final bipartition Gf . *us, we
set the value range of εf within 0.02 to 0.1, while in contrast,
that of ε is from 0 to 0.05. If the total number of rounds for
the division of user communities is r and the number of
times that user i uploads data to the server in each round of
bipartite division is listed as si

1, si
2, . . . , si

r􏼈 􏼉, the total privacy
cost is εtotal � max

j∈[0,N− 1]
(ε􏽐

r
n�1 s

j
n + rεf ).

Besides, in the truncated Laplace mechanism, the length
of truncated range l is one of the key parameters that needs
to be explored. On the one hand, the degree distribution of
complex social networks is usually expressed as power-law
distribution [29], in which the total degree of most users is
below the average. *erefore, in this experiment, the
maximum value of l for the Facebook dataset (average
degree of 42) and the Government dataset (average degree of
25) are set to 30 and 20, respectively. On the other hand,
excessively small l will cause the perturbed degree to be too
close to the true one, which can lead to the privacy dis-
closure. Considering that, the minimum value of l is set to 5.

In terms of the total privacy budget/cost, considering
when the value of it is greater than 2.5 in [20], the probability
of each bit in the adjacency vector not to be flipped exceeds
90%, which will expose the privacy concerning most of the
user’s connected edges (for the Facebook dataset, the allo-
cated privacy budget for perturbing user’s bit vector is 2.225.
Since the ratio of bit flipping probability to the unflipping
probability is e− 2.225 according to the definition of LDP, we
can easily understand that the perturbed bit remains un-
changed with a probability of e2.225/(1 + e2.225) � 0.902472).
In this case, in order to ensure an appropriate protection
strength of LDP, the total privacy budget in the contrast
experiments is limited to 0.1–2.5.

5.1.5. Experimental Setting. Based on the given total privacy
budget εtotal, LDPGen and LFGDPR are separately tested 100
times in our experiment. *en, the average values of
modularity, ARI and AMI, from all community detection

results are taken as the final result. While for LDPCD, the
average result of the three measurement metrics obtained by
100 times of experiments with their actual total privacy cost
in the range of εtotal ± 0.05 is considered as the final result of
our method.

5.2. Experimental Results. In this part of the paper, we will
present detailed experimental results and corresponding
analysis to demonstrate the feasibility of our proposed
method. Firstly, some general but necessary data are enu-
merated, which give a brief outline of the comparison be-
tween the classical EO algorithm and LDPCD when they are
separately employed in the datasets. *en, deeper discus-
sions about the influence of parameters and the contrast
result of LDPCD with two state-of-the-art methods will be
elaborated according to the figures.

For the Facebook (Government) dataset, although the
average modularity of the community partition results by
classical EO algorithm reaches up to 0.813 (0.682) (see
Figure 4(b)), the total times of user migration and recal-
culation of degree vectors exceed 20000 (35000). In contrast,
under different parameter settings of LDPCD, the average
modularity is within the range of 0.51–0.79 (0.31–0.63), with
the total times of degree queries from 25 to 50 (from 40 to
70). In terms of the community numbers, the EO algorithm
finally outputs 15 (29) user subsets as the ground truth, while
LDPCD partitions all users into 8–16 (15–32) groups. From
the abovementioned data, it can be obviously observed that
our method simplifies the implementation of EO commu-
nity divisive algorithm to a considerable extent and sig-
nificantly reduce the communication cost of user-server
interactions, which, in the same time, obtains utility-guar-
anteed results similar to the ground truth.

5.2.1. Questions about the Experiment. In the following
sections, the effectiveness of LDPCD is verified based on
experimental results. Besides, through the results, the fol-
lowing two questions are answered:

(1) EQ 1: how do the length of truncated range and the
total privacy cost affect the accuracy of community
detection of LDPCD separately?

(2) EQ 2: what are the advantages of the proposed
method LDPCD compared with the existing
methods under privacy protection of the same
strength?

5.2.2. Influence of Experimental Parameters on the Results.
From Figure 4, it can be seen that the length of the truncated
output range has a more significant impact on the community
division result than the total privacy cost. With the same
privacy cost in the Facebook dataset (Government dataset), the
average value concerningmaximal changes ofmodularity, ARI,
and AMI under the influence of l is 0.242, 0.322, and 0.367
(0.272, 0.173, and 0.253); while under the same output interval
length, the average value of maximal changes in modularity,
ARI, and AMI under the influence of total privacy cost εtotal is
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Figure 4: *e experimental results of LDPCD on the Facebook and Government datasets (the bold dashed lines in Figure 4(a) indicate that
the modularity result based on nonprivate EO algorithm in the Facebook/Government dataset is 0.813/0.682, respectively). (a) Modularity.
(b) ARI. (c) AMI.
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0.034, 0.040, and 0.047 (0.039, 0.045, and 0.043), as shown in
Figures 4(a), 4(b), and 4(c), respectively. For these observed
results, there are two main reasons. Firstly, with the intro-
duction of the truncated Laplace mechanism, the variance of
degree and the expected error of fitness 􏽥λ are limited and
closely related to l. Besides, the smaller the l, the smaller the
perturbation noise of the degree vector and the total degree. If
the true degree is large enough when compared with l, the
deviation of fitness 􏽥λ relative to its true value will be signifi-
cantly reduced, and the probability of incorrect migration of
the user during grouping adjustment will also decrease. As a
result, the utility of community division will improve to a great
extent with the decrease of l. Secondly, sincemultiple rounds of
bipartition and several times of degree query in each round will
consume privacy budget; even if the final total privacy cost
experiences obvious increase, the privacy budget allocated for a
single query remains relatively limited. *us, the accuracy of
the perturbation result by truncated Laplace mechanism is
slightly enhanced (as shown in Table 2). In this case, the ac-
curacy of community detection increases steadily with the rise
of total privacy cost.

Moreover, by comparing the graphs in Figures 4(a), 4(b),
and 4(c) separately, it can be seen that, under the same l and
εtotal, the community detection results of the Facebook
dataset are more similar to their ground truth than the
Government dataset. *e main reason is that the average
degree of users in the Facebook dataset is higher. With
similar total number of edges, the user nodes in the Gov-
ernment dataset is 1.75 times that of the Facebook dataset
and its network structure is sparser; thus, the nodes with
small total degree account for a larger proportion in it (for
example, the ratio of nodes with their degree below 5 and 10
in the Facebook/Government dataset are 0.113 and 0.238/
0.232 and 0.398, respectively). *erefore, under the same
setting of l, more nodes in the Government dataset will be
distributed in the output interval very close to [0, l].
Meanwhile, we note that the closer the output interval to
[0, l] is, the greater the deviation of the noisy fitness 􏽥λ from
its true value will be, resulting in a larger probability of
incorrect node migration during the grouping adjustment.
In that case, under the same privacy parameter settings, the
utility of the community division result of the Government
dataset will decrease more than that of the Facebook dataset.

5.2.3. Comparison with the State-of-the-Art Methods. In this
section, the experimental results of our proposed method are
compared with those of the classical methods, namely,
LDPGen [19] and LFGDPR [20]. *e contrast results are
shown in Figure 5.

*rough a comprehensive analysis in Figure 5, it can be
found that the result of LDPCD under all settings of l is
better than that of the LDPGen method under the same
total privacy budget/cost. *e similarity between LDPGen
and our method is that both enquire the user degree vector
in a certain grouping situation, and the processed rela-
tionship data are all coarse-grained statistics, thus inevi-
tably leading to the loss of some local information in the
original social graph. Whereas, the difference is that

LDPGen clusters users from the perspective of the simi-
larity of the degree vector instead of their contribution to
the total modularity, and based on the final grouping, a
synthetic social graph is generated by the Chung-Lu
probability model for further analysis of community
structure. However, the user clustering and graph gener-
ation methods result in low utility of the community di-
vision under LDP, for the Chung-Lu model randomly
connects user node pairs in the same group or different
groups, which weakens the distinctiveness of densely
connected node clusters in the original network and de-
stroys the community features. *is can be observed in
Figures 5(b) and 5(c) that with the increase of the total
privacy budget, even if the accuracy of the degree vector is
gradually improved, the utility of the community detection
result on the synthetic social graph is still in a low state and
not significantly enhanced. In this case, it indicates that
LDPGen cannot well balance the relationship between the
strength of privacy protection and the accuracy of com-
munity mining results. In contrast, by using LDPCD, the
user’s contribution to the total modularity is calculated
with the degree vector, and the community structure of the
original network is gradually restored through multiple
times of degree query and grouping adjustment. Otherwise,
as mentioned in Section 5.2.2 that l plays a leading role in
the experimental results, the utility of the community
division obtained by LDPCD can maintain a relatively high
level under different total privacy costs.

For LFGDPR, the perturbation object is the user’s total
degree and the most fine-grained adjacent bit. Since the
processed data involve sensitive neighboring information,
the privacy budget in the LFGDPR method should be ad-
justed to a small value to satisfy the requirement of sufficient
privacy protection strength. As shown in Figures 5(a), 5(b),
and 5(c), when the total privacy budget/cost of the Facebook
dataset and the Government dataset is below 1.5 and 2.0,
respectively, the accuracy of the community detection results
given by LDPCD is higher than that of the LFGDPR method
under all settings of l. Especially, when εtotal is less than 1.0
and the privacy protection is strong enough, LDPCD has
obvious advantages over LFGDPR.When εtotal � 1, the worst
ARI/AMI value of the community detection result of the
Facebook (Government) dataset of our proposed method is
1.89/2.03 (14.00/11.97) times that of LFGDPR (see
Figures 5(b) and 5(c)), which also reflects that the LFGDPR
method with low privacy budget has unsatisfactory effect on
community detection in sparser social networks. When the
privacy budget/cost is higher (εtotal > 2.0), the utility of the
community detection result by LFGDPR is slightly better
than that of some groups of experiments with larger l.
However, we should note that when LFGDPR is adopted in
the Facebook dataset (the Government dataset) with
εtotal � 2.0, the probability of a single bit remaining
unflipped is 5.81 (5.26) times than that of being flipped,
respectively. *is means LFGDPR is more liable to expose
privacy under such privacy parameter settings. *us, in
contrast, LDPCD is superior to the LFGDPR method in
terms of both the utility of the community detection results
and the strength of privacy protection.
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Table 2:*e standard deviation of the noise of the truncated Laplace mechanism under different parameter settings of the Facebook dataset.

- l � 5 l � 10 l � 15 l � 20 l � 25 l � 30
εtotal � 0.1 ε � 0.0002 2.166 4.160 6.152 8.144 10.136 12.127
εtotal � 0.5 ε � 0.007 2.161 4.144 6.117 8.082 10.038 11.987
εtotal � 1.0 ε � 0.016 2.156 4.122 6.070 7.998 9.909 11.802
εtotal � 1.5 ε � 0.02 2.153 4.113 6.049 7.962 9.852 11.719
εtotal � 2.0 ε � 0.03 2.147 4.082 5.996 7.869 9.708 11.514
εtotal � 2.5 ε � 0.04 2.141 4.065 5.944 7.777 9.565 11.308
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Figure 5: Continued.
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Furthermore, it should be emphasized that although the
community detection accuracy of LDPCD improves slightly
with the increase of the total privacy cost under a fixed
truncated interval length l, in practical applications, appro-
priately increasing l can be considered when εtotal is low while
reducing l can be taken into account when εtotal is high, so as to
achieve a better tradeoff between the strength of privacy
protection and the quality of community division results.

6. Conclusion

In this paper, LDPCD, a novel community detectionmethod, is
proposed based on the local differential privacy model. In the
framework of LDPCD, the truncated Laplace mechanism with
local differential privacy is employed to enhance the accuracy of
user perturbation data. Other than that, by refining the
community divisive algorithm based on extremal optimization,
the number of interactions between users and the server is
reduced, thus reducing the total privacy cost and ensuring
strong privacy protection. Based on the above data pertur-
bation and community detection algorithms, the community
detection results with high utility are finally obtained. Fur-
thermore, according to the experimental results on two real-
world datasets, it can be concluded that LDPCD has the same
or higher accuracy of community detection compared with the
state-of-the-art methods under different settings of privacy
protection parameters. In addition, LDPCD is featured with
obvious superiority under strong privacy protection.
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