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Abstract Correlations between ten-channel EEGs

obtained from thirteen healthy adult participants were

investigated. Signals were obtained in two behavioral

states: eyes open no task and eyes closed no task. Four time

domain measures were compared: Pearson product moment

correlation, Spearman rank order correlation, Kendall rank

order correlation and mutual information. The psycho-

physiological utility of each measure was assessed by

determining its ability to discriminate between conditions.

The sensitivity to epoch length was assessed by repeating

calculations with 1, 2, 3, …, 8 s epochs. The robustness to

noise was assessed by performing calculations with noise

corrupted versions of the original signals (SNRs of 0, 5 and

10 dB). Three results were obtained in these calculations.

First, mutual information effectively discriminated

between states with less data. Pearson, Spearman and

Kendall failed to discriminate between states with a 1 s

epoch, while a statistically significant separation was

obtained with mutual information. Second, at all epoch

durations tested, the measure of between-state discrimina-

tion was greater for mutual information. Third, discrimi-

nation based on mutual information was more robust to

noise. The limitations of this study are discussed. Further

comparisons should be made with frequency domain

measures, with measures constructed with embedded data

and with the maximal information coefficient.

Keywords EEG � Quantitative EEG � Pearson

product moment correlation � Spearman rank order

correlation � Kendall rank order correlation � Mutual

information

Introduction

The connectivity of the human central nervous system is its

most distinctive feature. Classically connectivity was

investigated anatomically. An alternative view emerged in

the twentieth Century which emphasized the movement of

information. Like many concepts, the seemingly straight-

forward idea of connectivity was found to be far more

complicated than originally anticipated when it was

examined with sufficient care. This can be seen in the

report of the 2002 Functional Connectivity Workshop (Lee

et al. 2003). Three distinct conceptualizations of connec-

tivity have emerged: anatomical, functional and effective.

Anatomical complexity might seem to be the least prob-

lematical, and arguably it is, but nonetheless complications

present themselves. A complete anatomical description

requires not merely knowledge of geometrical proximity
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but an understanding of receptor subtypes and the avail-

ability of neurotransmitters (Lee et al. 2003). Functional

connectivity is defined as the ‘‘temporal correlations

between spatially remote neurophysiological events’’

(Friston et al. 1993a), and effective complexity is defined

as ‘‘the influences that one neural system exerts over

another either directly or indirectly’’ (Friston et al. 1993b).

Horowitz (2003), using the word ‘‘elusive,’’ found that all

three conceptualizations of connectivity present subtleties

of definition and that these problems were compounded

when an attempt was made to integrate results obtained

from different observational technologies. His analysis led

to three conclusions. First, ‘‘we should think of functional

(and effective) connectivity not as a single concept or

quantity, but rather as forming a class of concepts with

multiple members.’’ Second, ‘‘functional and effective

connectivity must be operationally defined by each inves-

tigator who evaluates these quantities.’’ Third, ‘‘it is crucial

to relate each of the macroscopic definitions to an under-

lying neural substrate.’’

Fingelkurts et al. (2005) concurred in recognizing that

theoretical and methodological clarifications are needed to

bring precision to the analysis of CNS connectivity. They

argue that the time scale of neuroanatomical change is such

that an examination of anatomical connectivity cannot

provide a basis for a dynamical investigation of perceptual

and cognitive processes. They further argue that effective

connectivity is identified by first establishing functional

connectivity and combining it with a model specifying the

causal links between participating units. They therefore

conclude that ‘‘functional connectivity is the most central

and challenging of the three conceptions of brain connec-

tivity for theories about neural interactions.’’ Given the

millisecond time scale of dynamical behavior in the central

nervous system, Fingelkurts et al. argue for an essential

role of EEG and MEG in investigations of functional

connectivity. We concur, and the analysis of temporal

correlations of EEG signals is the focus of this contribu-

tion. Four time domain procedures for quantifying corre-

lations are compared. A physiological criterion, the ability

to discriminate between behavioral states, is used as an

adjudicating criterion. Additional measures that should be

incorporated in an expanded study are considered in the

‘‘Discussion’’ section of this paper.

When using scalp EEG signals in the analysis of func-

tional connectivity an additional question should be con-

sidered. Can the analysis be conducted with the original

scalp signals, or is it essential to transform these signals to

provide an estimate of the current source density? It is not

our present purpose to participate in this debate. Conclu-

sions about the comparative effectiveness of different

measures for identifying correlations in scalp signals,

which is our objective, will be applicable to calculations

with current source density estimates. Two additional

observations in this regard can be made. First, in practice,

calculations should be performed with both original volt-

age signals and with transformed signals, and the results

should be compared. Second, we should bear in mind

Horwitz’s very valuable observation that each investigator

should define the operational definition of connectivity

being implemented.

The earliest example of interregional EEG correlation

measurement that has come to our attention is Imahori and

Suhara (1949 cited by Gevins 1987) where hand calculated

autocorrelations of short EEG segments were presented.

The use of autocorrelation and cross-correlations to study

electroencephalograms is reported to have been suggested

by Norbert Wiener in 1949 to a group of researchers at the

Massachusetts General Hospital (Barlow 1997). Among

this group were Mary Brazier and James Casby who in

1950 started their pioneering work on correlation analysis

of the EEG using an electronic digital correlator at the

Massachusetts Institute of Technology (Brazier and Casby

1952). An important continuing application of cross-cor-

relation calculations is the correlation of EEGs with tem-

plates of averaged event related potentials where the

procedure is used to locate single trial event related

potentials, ERPs, in background EEG signals (McGillem

and Aunou 1987 reviewed by Spencer 2005). This proce-

dure was introduced by Woody (1967) to detect epileptic

spikes. It was first applied to ERP signals by Kutas et al.

(1977). This method continues to be applied in the analysis

of epileptic seizures (Filligoi et al. 2011) and in the con-

struction of brain computer interfaces (Cabestang et al.

2007).

The study of CNS correlations evolved to include more

sophisticated measures. An important step in this evolu-

tionary process was the introduction of mutual information,

a nonlinear measure of correlation, to the analysis of EEGs.

The earliest application of mutual information in electro-

encephalography that we have seen is Callaway and Harris

(1974) where it was called the coefficient of information

transmission. In this application, mutual information was

not calculated directly from voltage time series. Digitizing

at 250 Hz, each entry was coded for polarity (positive or

negative) and derivative (increasing or decreasing). Call-

away and Harris showed that a reading task increased

occipital to left hemisphere coupling while a visual pro-

cessing task increased occipital to right hemisphere cou-

pling. In a subsequent publication (Yagi et al. 1976),

Callaway and his colleagues investigated the sensitivity of

this measure to epoch length and sampling frequency. Mars

and Lopes da Silva (1987) showed that mutual information

can identify significant correlations that are not detected by

linear measures. Other applications of this measure in

electroencephalography were published by Xu et al.
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(1997), Albano et al. (2000) and Chen et al. (2000). A

limiting factor in use of mutual information has been data

requirements for the estimation, computational times and

uncertainty about the accuracy of the estimate. This point is

addressed presently.

While being a problem of general interest in CNS physi-

ology, the quantitative characterization of interregional

correlations are of particular importance in the study of

traumatic brain injury. The development of current thought

about functional connectivity following TBI has many

contributors, but two individuals who must appear in any

account of this historical process are John Hughlings-Jack-

son (1835–1911) and Kurt Goldstein (1878–1965). Hugh-

lings-Jackson and Goldstein both concluded that the

recovery of function, typically partial recovery, following

brain injury argued against a strong localization model of

CNS organization (Hughlings-Jackson 1874, 1882; Gold-

stein 1934). In addition to rejecting strong localization,

Goldstein’s work with CNS injured soldiers following World

War I led him to conclude that recovery did not result from

repair but rather from adaptation (Zeitlinger 2001). Hugh-

lings-Jackson’s and Goldstein views concerning nonlocal-

ization of deficit are consistent with recent research

identifying failures of distributed synchronous networks in

the etiology of neuropsychiatric disorders (Herrmann and

Demiralp 2005; Schnitzler and Gross 2005; Stam 2005;

Uhlhaas and Singer 2006). While Goldstein’s views on the

failure of repair and his emphasis on adaptation following

traumatic brain injury must be reconsidered in the light of the

discovery of neurogenesis in the adult mammal, evidence

indicates that at least for the immediate present they are still

essentially correct. This process of adaptation would, one

predicts, result in altered patterns of correlations in the post-

injury central nervous system. This expectation has been

realized in the recent literature (see Table 1 below, these are

representative examples drawn from a large literature). In

summary, studies of altered functional connectivity follow-

ing traumatic brain injury utilize three kinds of data, EEG

signals, MEG signals and fractional anisotropy measures of

axonal tracts characterized by diffusion tensor imaging. This

contribution is directed to EEG-based assessments. Three

classes of analysis measures are used in these EEG studies,

time domain measures, frequency domain measures and

measures constructed with embedded data. The focus here is

on time domain measures. We explicitly recognize that

further comparative studies should include the additional

measures described in the ‘‘Discussion’’ section of this

paper.

Correlation measures assessed

Four time domain measures for quantifying relationships

between time series are compared in this investigation:

Pearson product moment correlation, Spearman rank order

correlation, Kendall rank order correlation and mutual

information. These measures will be used to quantify

between-channel correlations in EEGs recorded from

healthy participants in two behavioral conditions: eyes

open, no task and eyes closed, no task. The psychophysi-

ological utility of each measure is assessed by determining

its ability to discriminate between these conditions.

A brief presentation of the mathematical properties of

these measures is given in the ‘‘Appendix’’. Qualitative

descriptions are given here. The Pearson product moment

correlation quantifies linear correlations between variables.

The Spearman rank order correlation is the product

moment correlation of ranks, and the Kendall rank order

Table 1 Pathological

conditions associated with

altered functional connectivity

(representative examples)

Alzheimer’s disease Georgopoulos et al. (2007), Güntekin et al. (2008), Locatelli et al. (1998),

Rosenbaum et al. (2008), Stam et al. (2006, 2007a, b 2009), Zhou et al.

(2008)

Epileptic seizures Ponten et al. (2007)

Intra-arterial amobarbital

injection

Douw et al. (2010)

Autism spectrum

disorder

Belmonte et al. (2004), Just et al. (2004), Kana et al. (2007), Murias et al.

(2007), Rippon et al. (2006), Vidal et al. (2006)

Brain tumors Bartolomei et al. (2006), Bosma et al. (2008)

Multiple sclerosis Georgopoulos et al. (2007), Lenne et al. (2012)

Preterm birth Mullen et al. (2011)

PTSD Lanius et al. (2004), Shaw 2002

Schizophrenia Breakspear et al. (2003), Georgopoulos et al. (2007), Lawrie et al. (2002),

Lynall et al. (2010), Michelyannis et al. (2006), Symond et al. (2005)

Stroke Grefkes and Fink (2012)

Traumatic brain injury Cao and Slobounov 2010), Castellanos et al. (2010, 2011a, b), Ham and Sharp

2012), Kasahara et al. (2010), Kumar et al. (2009), Nakamura et al. (2009),

Sponheim et al. (2011), Tsirka et al. (2011)
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correlation uses the relative ordering of ranks. The mutual

information of two time series is the average number of bits

of each that can be predicted by measuring the other. The

numerical estimation of mutual information can be com-

putationally demanding, and the accuracy of the estimate

can be sensitive to the algorithm used. This was demon-

strated by the comparison studies conducted by Quian

Quiroga et al. (2002) and by Duckrow and Albano (2003).

In a valuable study, Quian Quiroga et al. compared five

measures of interhemispheric correlations (nonlinear

dependencies, phase synchronization, mutual information,

cross correlation and coherence). Except for mutual

information, the measures showed qualitatively similar

results, and, importantly the computations identified inter-

hemispheric dependencies that were not apparent on con-

ventional visual examination performed by a Board

certified electroencephalographer. Quian Quiroga et al.

used a fixed bin-width histogram method for estimating the

joint probability distributions. Estimating the joint proba-

bility distribution is a critical element in the estimation of

mutual information (see the ‘‘Appendix’’ for the mathe-

matical details). Using the same data, Duckrow and Albano

used the Fraser–Swinney (1986) adaptive partition when

estimating joint probability distributions. This computation

of mutual information produced results consistent with the

other measures. Several methods for estimating mutual

information are reviewed in Khan et al. (2007). In the

calculations presented here, we used the algorithm con-

structed in Cellucci et al. (2005). This is a computationally

efficient procedure. In test calculations it requires 0.5 % of

the computation time required by the Fraser–Swinney

algorithm (comparison calculations reported in Cellucci

et al. 2005). Also, in contrast with other algorithms, the

Cellucci algorithm incorporates an explicit calculation of

the probability of the null hypothesis of no predictive

relationship between the two variables. This statistical

validation is particularly important in calculations with

noisy psychophysiological data.

An important property of mutual information is identi-

fied by examining the computational results presented in

Fig. 1 and in Table 2 (modified from Cellucci et al. 2005

following an example in Mars and Lopes da Silva 1987).

The first test signal consists of normally distributed random

numbers. With each measure, the probability of the null

hypothesis is significantly greater than zero. That is, each

measure correctly failed to detect a nonrandom relationship

between variables X and Y. In the case of linearly corre-

lated signals each measure reports a PNULL that is numer-

ically indistinguishable from zero. Again, this is as it

should be. An important distinction between measures is

seen when the third signal, which is parabolically corre-

lated, is examined. The Pearson product moment correla-

tion failed to detect a linear correlation, PNULL = 0.9912.

The Spearman and Kendall measures which can identify

monotonic nonlinear relationships also failed to reject the

null hypothesis; PNULL = 0.9928 and PNULL = 0.9989

respectively. In contrast, mutual information identified a

nonrandom relationship in parabolic data. The reported

probability is of null hypothesis is indistinguishable from

zero.

An additional lesson can be learned by considering the

example shown in Fig. 2. In this system of paired signals

X = 0–6 in steps of 0.0006 and

Y ¼ 2Xþ 0:1� e 0�X� 3

12� 2Xþ 0:1� e 3\X� 6

�

where, as before, e is normally distributed with zero mean

and unit variance. If the signals are examined over the first

half of the diagram, X [ [0, 3], all four measures detect a

significant relationship. PNULL is numerically indistin-

guishable from zero in all four cases. If one considers

X [ [0, 6], then the Pearson product moment correlation,

Spearman rank order correlation and Kendall rank order
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Fig. 1 Three test signals used in the calculations reported in Table 2.

In all cases x = -3 to ?3 in steps of 0.0006. a Normally distributed

random numbers with zero mean and unit variance.

b y = x ? 0.2 9 e, where e is the first test signal.

c y = x2 ? 0.2 9 e. Ten thousand points were used in the calcula-

tions. Every tenth point is plotted on the diagram (modified from

Cellucci et al. 2005)
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correlation fail to reject the null hypothesis. For these

measures, PNULL is 0.959, 0.964 and 0.944 respectively.

Mutual information, however, continues to identify a

nonrandom relationship and PNULL remains zero. Thus in

the case of the three classical measures of correlation we

have the seemingly paradoxical result that evidence for a

relationship is lost as more data are available.

Two conclusions follow from the examples considered

here. (1) Nonlinear measures should be used in combina-

tion with linear and nonparametric measures. (2) Evidence

for time domain correlation should be examined as a

function of epoch duration.

Electroencephalographic data

The University’s Institutional Review Board reviewed and

approved all procedures involving human subjects.

Informed consents were obtained from each participant.

There were thirteen participants. Participants were healthy

adults without a history of head injury or serious psychiatric

illness. Multichannel monopolar recordings, referenced to

linked earlobes, were obtained from FZ, CZ, PZ, OZ, F3, F4,

C3, C4, P3, and P4 using an Electrocap and Sensorium EPA-6

amplifiers. Vertical and horizontal eye movements were

recorded from electrode sites above and below the right eye

and from near the outer canthi of each eye. Artifact corrupted

records were removed from the analyses. Artifact corruption

was defined as an amplitude difference greater than 120 lV

peak-to-peak within 500 msec or a blink in the EOG channel.

All EEG impedances were less than 5 KOhm. Signals were

amplified, Gain = 18,000, and amplifier frequency cutoff

settings of 0.03 and 200 Hz were used. Signals were digi-

tized at 1,024 Hz using a twelve-bit digitizer. Multichannel

records were obtained in two conditions: eyes closed, resting

and eyes open, resting. Continuous artifact-free records were

obtained from each subject in the two conditions (eyes open

and eyes closed). Given the results shown in Fig. 2, mea-

sures were calculated as a function of epoch duration (1–8 s).

Comparing measures in between-state discriminations

The psychophysiological utility of each measure was assessed

by determining its ability to discriminate between eyes open,

no task and eyes closed, no task conditions. For concreteness of

presentation, the experiment is described by considering the

first measure, the product moment correlation which is denoted

by r. The EEGs are ten-channel recordings. Thus for a single

participant there are 45 distinct channel pairs. The correlation

between channel i and channel j, rij, is measured in each con-

dition to give 45 values of (rij)closed and 45 values of (rij)open.

The operational question becomes can we discriminate

between states by comparing (rij)closed against (rij)open? As

noted above, there were thirteen participants in the study. This

gives 585 (number of participants 9 number of channel pairs)

(rij)closed versus (rij)open pairs. They are compared in a paired

t test. The test produces a value of t and the corresponding

Table 2 Correlation calculations (modified from Cellucci et al. 2005)

Normally distributed random Linearly correlated Parabolically correlated

Pearson r r = -0.0037 r = 0.9934 r = 0.0001

Pearson PNULL PNULL = 0.7112 PNULL & 0 PNULL = 0.9912

Spearman qS qS = -0.0040 qS = 0.9936 qS B 10-4

Spearman PNULL PNULL = 0.6854 PNULL & 0 PNULL = 0.9928

Kendall s s = 0.0027 s = 0.9270 s B 10-5

Kendall PNULL PNULL = 0.6845 PNULL & 0 PNULL & 0.9989

Mutual information (bits) I = 0.1356 I = 2.9186 I = 3.0304

Mutual information PNULL PNULL = 0.7851 PNULL & 0 PNULL & 0

0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

7

Y

X

Fig. 2 Non-monotonically correlated test signals. X = 0 to 6 in steps

of 0.0006. Y = 2X ? 0.1e for X [ [0, 3] and Y = 12 - 2X ? 0.1e
for X [ [3, 6]. All four measures detect a correlation for X [ [0, 3].

Only mutual information detects a nonrandom relationship when the

paired signals are analyzed for X [ [0, 6]. Ten thousand points were

used in the calculations. Every tenth point is plotted on the diagram
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probability of the null hypothesis. In this application the null

hypothesis supposes that there is no difference in between-

channel correlations in the eyes open and eyes closed corre-

lation. A high value of t, and hence a low value of PNULL,

indicates a successful discrimination.

This process is performed for all four measures. As

operationalized in this study, the comparative assessment

of these measures of correlation can now be stated in a

single question. Which measure gives the largest value of t

and lowest values of PNULL? Concerns have been expressed

(Gevins 1987) about the amount of data required to esti-

mate mutual information. The calculations have, therefore,

been repeated for 1, 2, …, 8 s epochs.

The values of these four measures are shown in Fig. 3.

The results are consistent with expectations. There is a

greater between-channel correlation (Pearson, Spearman,

Kendall) in the eyes closed condition. Similarly, there is a

greater between-channel predictability (mutual informa-

tion) in the eyes closed condition.

The uncertainties shown in Fig. 3 are standard deviations

of group means. When comparing correlation results obtained

in the eyes-closed condition against those in the eyes open

condition the appropriate comparison is not based on group

means and standard deviations. Rather, the comparison is by

matched channel pairs. For example, the C3–C4 correlation

observed in the eyes-closed condition is compared against the

C3–C4 correlation obtained in the eyes-open condition. The

collective statistical result of this paired test is shown in

Fig. 4. The upper panel shows the t values obtained in the eyes

open versus eyes closed paired t test for epoch durations of 1,

2, …, 8 s. In the case of 1 s durations, Pearson, Spearman

and Kendall correlations do not discriminate between the two

behavioral conditions. They fail to reject the null hypothesis.

The respective values of PNULL are 0.807, 0.854 and 0.699.

The null hypothesis is, however, rejected for 1 s durations by

mutual information where PNULL\10-5. All four measures

reject the null hypothesis at epoch durations greater than or

equal to 2 s. In all cases, the value of t obtained with mutual

information is greater than the value obtained with the other

measures. A further understanding of the between state dis-

crimination can be obtained by examining the restatement of

the results that is given in the second panel of the diagram

where -log10 (PNULL) is plotted as a function of epoch

duration. A value of ?5, for example, on this graph corre-

sponds to PNULL = 10-5 The values of -log10 (PNULL)

obtained with mutual information are consistently greater

than those obtained with the other measures.

Robustness to noise

Gevins (1987) raised questions concerning the sensitivity

of mutual information calculations to noise. Notably, he

did so in the context of the Callaway and Harris (1974)

study where the voltage time series were encoded by

polarity and sign of the derivative. We have investigated

noise sensitivity in the case of direct voltage time series

calculations by testing the robustness of these measures to

additive noise. All four measures were found to be robust

to noise, but as in the previous calculations, mutual infor-

mation outperformed the other three measures. In this

experiment, normally distributed random numbers with

zero mean were added to each of the original EEG signals.

The random number generator was based on Park and

Miller (1988) and incorporated a Bays–Durham shuffle

(Knuth 1981) followed by a Box–Muller transformation

(Press et al. 1992). The variance of the additive noise was

progressively increased to give signal to noise ratios of 10,

1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

Correlation Measures as a Function of Epoch Duration

P
ea

rs
on

 R

1 2 3 4 5 6 7 8
0.3

0.4

0.5

0.6

0.7

S
pe

ar
m

an
 R

ho

1 2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

K
en

da
ll 

T
au

1 2 3 4 5 6 7 8
0.4

0.6

0.8

1

M
ut

ua
l I

nf
or

m
at

io
n

Epoch Duration (seconds)

Fig. 3 Correlation measures as a function of epoch length. The mean

values of Pearson r, Spearman rho, Kendall tau and mutual

information are calculated for the indicated epoch duration. Values

in red are group means and standard deviations for the eyes-closed

condition. Values in black were obtained with eyes-open data
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5 and 0 dB. A qualitative understanding of each signal to

noise ratio is given in Panels F, G and H of Fig. 5. The

signal presented in black is the noise corrupted signal. This

is the input signal used in the calculations. The red signal is

the original signal. For reference, it is superimposed on the

corrupted signal.

At SNR = 10 dB all four measures failed to discrimi-

nate between conditions when 1 s epochs were examined.

All four measures successfully made the discrimination for

greater epoch lengths, but as in the case of uncorrupted

signals, a greater statistical separation was obtained with

mutual information.

At higher noise levels (lower SNR) the degree of

between state discrimination as quantified by PNULL is

reduced, but the pattern observed with SNR = 10 dB is

preserved. Specifically, all four measures fail to discrimi-

nate between eyes closed and eyes open with 1 s epochs.

All four measures successfully discriminate at longer

epochs, and the degree of discrimination obtained with

mutual information is greater than that observed with the

other three measures.

Discussion

Three results were obtained in these calculations. First, a

nonlinear measure, mutual information, effectively
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a Comparison of correlation measures using original data from 13

subjects. As before, squares identify results from the Pearson product

moment correlation. Diamonds identify results from the Spearman

rank order correlation. The letter x identifies results from the Kendall

rank order correlation and circles identify results obtained with

mutual information. b Comparison of correlation measures using data

from 13 subjects following addition of gaussian noise giving signal to

noise ratios of SNR = 10 dB. Symbols identifying different measures

follow the pattern of a. c Comparison of correlation measures using

data from 13 subjects following addition of gaussian noise giving

signal to noise ratios of SNR = 5 dB. Symbols identifying different

measures follow the pattern of a. d. Comparison of correlation

measures using data from 13 subjects following addition of gaussian

noise giving signal to noise ratios of SNR = 0 dB. Symbols

identifying different measures follow the pattern of a. e Example

segment of an EEG signal recorded from a single subject at electrode

site Pz in the eyes closed condition. f. Component of the EEG signal

shown in e after addition of gaussian noise, SNR = 10 dB (shown in

black). The original signal is shown in red for comparison.

g Component of the EEG signal shown in e after addition of gaussian

noise, SNR = 5 dB (shown in black). The original signal is shown in

red for comparison. h Component of the EEG signal shown in e after

addition of gaussian noise, SNR = 0 dB (shown in black). The

original signal is shown in red for comparison
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discriminated between states with less data, specifically a

1 s epoch, when other measures failed to discriminate

between conditions. Second, at all epoch durations tested,

the measure of between-state discrimination was greater

for mutual information. Third, discrimination based on

mutual information was more robust to noise.

The limitations of this study should be recognized.

Three points should be addressed. First, the study is based

on signals obtained from thirteen participants. Because the

method that is best for one database is not necessarily best

in all cases, a different outcome may be obtained with

different data. Second, in this study the test criterion was

the ability to discriminate between the eyes-open and eyes-

closed condition. It is possible that a different measure, a

measure other than mutual information, would be more

effective if a different test criterion was implemented.

Third, this study was limited to a comparison of four time

domain measures of correlation. Several other measures

have been used to quantify correlation and should be

considered. Reshef et al. (2011) have constructed a maxi-

mal information criterion that has some properties in

common with mutual information. Additional methods

include coherence (Nunez et al. 1997, 1999), phase locking

index (Stam et al. 2009; Hurtado et al. 2004; Sazonov et al.

2009), imaginary coherency (Stam et al. 2007a, b; Nolte

et al. 2004) and phase lag index (Stam et al. 2007a, b,

2009). As outlined by several authors (Cao and Slobounov

2010; Schiff 2005; Guevara et al. 2005), care must be

exercised in the application of these procedures. Recently

more sophisticated procedures for assessing correlation

have been investigated. Stam and van Djik (2002) and

Wendling et al. (2009) have used methods based on

embedded data (Takens 1981) to quantify correlation. Cao

and Slobounov (2010) analyzed nineteen channel resting

EEGs in a three step process. First, independent component

analysis (Hyvärinen et al. 2001) was used to identify

independent processes. Second, a source reconstruction

algorithm (standardized low resolution electromagnetic

tomography, sLORETA (Pascual-Marqui et al. 2002;

Pascual-Marqui 2002) was used to identify cortical regions

associated with functional activity. Third, using this

localization, graph theory was used to quantify connec-

tivity in the resting state. These procedures should be

incorporated into an expanded comparison study. The

Wendling et al. (2009) results obtained with computa-

tionally generated data indicated that no single procedure

was best for all cases. This is almost certainly true for

biological data. The importance of using more than one

measure was further indicated by the results of Dauwels

et al. (2010) who found that different measures of syn-

chronization were not well correlated. They concluded that

‘‘therefore they each seem to capture a specific kind of

interdependence.’’ Our best recommendation is to perform

functional connectivity studies with several methods

including both original scalp signals and estimates of cur-

rent source density and compare the results.

It is possible to use mutual information calculations in

synchronization studies. In this experimental design, the

original EEG signal is bandpass filtered into specified

frequency bands. Given the restricted spectrum of the fil-

tered signal, it is possible to estimate its phase by calcu-

lating the Hilbert transform (Boashash 1992; Pikovsky

et al. 2001). Mutual information calculations can then

determine if there is a nonrandom relationship between

phase functions measured at different electrode sites.

While recognizing the limitations of this study, the

results suggest that when implemented with an adaptive

partition of the joint probability distribution, mutual

information provides an effective noise-robust measure of

correlation. This result may extend beyond functional

connectivity studies to include analysis of CNS causal

networks and analysis of CNS small world networks, which

are briefly considered.

Investigation of CNS causal relationships, the time

dependent directional movement of information, may be

important in the study of traumatic brain injury. As pre-

viously noted, Goldstein’s pioneering work on the behav-

ioral neurology of traumatic brain injury led him to

conclude that restitution of function following injury

resulted from adaptation rather than from repair. This

suggests that post-injury alteration of causal networks may

provide a sensitive measure of altered CNS function fol-

lowing injury. While measures like correlation, coherence

and mutual information can be used to establish the pres-

ence of correlative relationships between signals they do

not provide any information about the direction of infor-

mation movement. Additional procedures must be intro-

duced. In most cases, the quantitative assessment of causal

relationships between variables is constructed on the fol-

lowing idea. If measuring variable X improves the pre-

diction of variable Y, then Y is, in this limited operational

sense, causally dependent on X. It should be stressed that

this relationship is not necessarily unidirectional. It can

also be the case that with the same data, measuring Y also

improves the prediction of X. This conceptualization of

causality appears in Wiener (1956) and may be original

with Wiener.

An early implementation of this operationalization of

causality was published by Granger (1969) in the econo-

metrics literature and popularized by Sims (1972). Granger

causality is constructed using linear regression models. If

past values of X are useful in predicting the current value

of Y in a linear regression, then X is said to be a causal

drive of time series Y. As with any statistical procedure,

causality tests based on linear regression must be imple-

mented with care. A growing literature has identified
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circumstances that lead to spurious identification of linear

causality (Breitung and Swanson 2002; He and Maekawa

2001).

An extension of mutual information may provide a noise-

robust measure of causality. Recall that the mutual informa-

tion of time series X and Y, I(X, Y) is the average number of

bits of one variable that can be predicted by measuring the

other. Mutual information can be shown to be symmetrical,

that is I(X, Y) = I(Y, X). Therefore while mutual informa-

tion can establish the presence of a nonrandom relationship

between time series, it cannot identify causal relationships.

However, a time lagged mutual information in which one of

the two variables is time shifted can be used to determine, if,

for example, measuring variable X in the past allows pre-

diction of future values of variable Y. We can shift time series

X by lag s and calculate I(Xs, Y) as a function of s. Similarly,

we can calculate I(X, Ys). If measuring Xs allows better

prediction of Y, than the other way around, then it can be

argued that information is transferred from X to Y. The

magnitude of the mutual information and the time lag which

produces the greatest value can be used to quantify both the

magnitude of the information transfer and the time delay

associated with that transfer. A number of investigators have

proposed using lagged mutual information to investigate

information transfer in distributed systems (Kaneko 1986;

Vastano and Swinney 1988; Albano et al. 1999). The proce-

dure has a long history in electroencephalography. Inouye

et al. (1983) used an ‘‘entropy analysis’’ which was what

would now be described as directed mutual information to

quantify the direction of information flow and concluded that

the dominant longitudinal direction of alpha activity was

anterior to posterior. A subsequent publication (Inouye et al.

1993) used directed mutual information to show change in

information flow during a cognitively demanding arithmetic

task. Mars and his colleagues (Mars and Lopes da Silva 1983;

Mars et al. 1985) used mutual information to quantify time

delays in the transmission of epileptic seizures. Several other

investigators have used lagged mutual information to quan-

tify between-channel information transfer in multichannel

EEGs (Xu et al. 1997; Chen et al. 2000; Lopes da Silva 1987).

Schreiber (2000), however, has presented valuable results

which produced examples where standard lagged mutual

information failed to detect information exchange. This

motivated the construction of a related measure, transfer

entropy, that successfully identified these relationships. The

Schreiber results should be considered in the light of the

previously cited Duckrow and Albano (2003) calculations

that demonstrated the sensitivity of mutual information cal-

culations on the choice of algorithm. This may have been a

factor in the Schreiber study. Madulara et al. (2012) calcu-

lated transfer entropy using the EEG records analyzed in this

paper. Mutual information was generally lower in the eyes

open than in the eyes closed condition. In contrast, transfer

entropies increased by a factor of two in the eyes open con-

dition. As would be anticipated, the largest one-way transfer

entropies were observed to and from the occipital lobe.

Consistent with our previous recommendations, we suggest

computing both measures (lagged mutual information and

transfer entropy). Clinical utility is the final arbiter.

Stated in abstract terms a network is a collection of

nodes and connections between the nodes. A small world

network is defined as a network that has dense local clus-

ters that are connected by a limited number of long range

connections. In a seminal paper, Watts and Strogatz (1998)

showed how small world networks can be characterized

quantitatively. Small world networks are highly efficient.

They can support a high degree of dynamical complexity

with a minimum investment in connections (Latora and

Marchiori 2001). This is an attractive metaphor for

describing the central nervous system. Local networks

provide areas of specialization, but these specialized

domains can communicate efficiently with the entire brain

by long range connections. When applied to multichannel

EEG data, the electrode sites are the nodes and the con-

nections are identified by correlation measures. Three types

of connections can be identified. In a binary network, a

connection is either present or absent. Operationally this is

established by assigning a threshold value (connection

present/absent) to a measure of correlation. In a weighted

network, the value of a connection’s strength is assigned on

a continuum determined by the correlation measure. In

directed networks, the direction of information transfer, not

just the strength of the connection, is incorporated into the

analysis. These methods are now being utilized in the

analysis of the central nervous system (Smith-Bassett and

Bullmore 2006; Sporns and Honey 2006; Stam and Re-

ijneveld 2007). Altered small world networks have been

observed in clinical populations including patients with

CNS tumors (Bartolomei et al. 2006), epilepsy (Ponten

et al. 2007; van Dellen et al. 2009), schizophrenia (Rubi-

nov et al. 2009), and Alzheimer’s disease (Stam et al.

2007a, b). As would be anticipated alterations in networks

are associated with traumatic brain injury (Cao and Slo-

bounov 2010; Nakamura et al. 2009; Tsirka et al. 2011;

Zouridakis et al. 2011; Catsellanos et al. 2011a, b). The

calculations presented in this paper and in Madulara et al.

(2012) suggest that when calculated using an adaptive

partition of the joint probability distribution, mutual

information, lagged mutual information and transfer

entropy can provide computationally efficient, noise-robust

metrics for the analysis of CNS small world networks.

The mathematical results showing the efficiency of net-

works composed of highly connected local regions with

limited, but essential, long range connections can inform the

discussion of CNS localization of function. The localiza-

tionist conceptualization began with Broca’s localization of
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expressive aphasia to the third left frontal convolution (Broca

1861) and Wernicke’s localization of receptive aphasia to the

posterior section of the superior temporal convolution

(Wernicke 1908). By the early twentieth century, however,

several neurologists argued against a strict localizationist

model (Tesak and Code 2008). Kurt Goldstein was a signif-

icant contributor to the debate (Goldstein 1927; Ludwig

2012). Goldstein’s views were complex and it would be an

oversimplification to describe his views as inflexibly antilo-

calizationist (Ludwig 2012). For example, in his Lokalisation

in der Großhirnrinde, Goldstein recognizes Broca’s ‘‘flawless

establishment of the dependency of the impairment of artic-

ulated speech from a lesion in the third left frontal convolu-

tion’’ (Goldstein 1927, translated Ludwig 2012). He similarly

accepts Wernicke’s identification of the role of the superior

temporal convolution in some presentations of receptive

aphasia, but based on clinical observations Goldstein con-

cluded that language functions could not be decomposed into

discrete anatomically isolated components. Goldstein’s

acceptance of localizationist results but his argument for the

incompleteness of a localizationist account caused Gesch-

wind (1997) to describe his views as a ‘‘paradoxical posi-

tion.’’ Ludwig proposes that the paradox can be resolved by

recognizing that Goldstein introduced a distinction between

weak localization (the correlation of symptoms with lesions)

and strong localization (the implementation of a process

exclusively in a defined locality). We suggest that a quanti-

tative examination of these questions can be constructed by

comparing CNS network geometries generated by language

dependent ERP tasks in healthy controls and in patients pre-

senting well characterized aphasias.
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Appendix: Measures of correlation

Pearson product moment correlation

Let fXg ¼ fx1; x2; . . .; xND
g and fYg ¼ fy1; y2; . . .; yND

g
be time series of paired observations. ND is the number of

elements in each set. The product moment correlation

coefficient r is given by

r ¼
PND

i¼1 ðxi � xÞðyi � yÞ
PND

i¼1 ðxi � xÞ2
n o1=2 PND

i¼1 ðyi � yÞ2
n o1=2

where x is the mean of {X} and y is the mean of {Y}.

There are several procedures for calculating the probability

of the null hypothesis of no correlation between {X} and

{Y} (Press et al. 1992). A robust procedure that was used

here is based on a t-distribution where

t ¼ r
ND � 2

1� r2

� �1=2

and m = ND - 2 is the number of degrees of freedom., The

probability of the null hypothesis is

PNULL ¼ I m
mþt2

m
2
;
1

2

� �
:

Ix(a, b) is the incomplete beta function.

The 95 % confidence limits for r, rLow and rHigh, can be

computed by converting r to Fisher’s z.

z ¼ 1

2
ln

1þ r

1� r

� �

Z is normally distributed and has a standard deviation r ¼
1=ðND � 3Þ1=2

(Press et al. 1992, p. 632). The 95 %

confidence bounds are zLow ¼ 1� 1:96r and

zHigh ¼ 1þ 1:96r. The corresponding values of r are

found from

r ¼ e2z � 1

e2z þ 1

Press et al. (1992, p. 631) suggest that this should be a

legitimate calculation for ND [ 10.

Spearman rank order correlation

As before let {X} and {Y} be time series of ND paired

observations. fRXg ¼ RX1
;RX2

; . . .;RXND

n o
gives the

ranks of the values of X. In cases of ties the average ranks

are entered. {RY} is defined analogously. The Spearman

rank order correlation, qS, is the product moment correla-

tion of ranks.

qS ¼
PND

i¼1 RXi
� RX

� �
RYi
� RY

� �
PND

i¼1 RXi
� RX

� �n o1=2 PND

i¼1 RYi
� RY

� �n o1=2

When there are no ties this becomes

qS ¼ 1� 6
PND

i¼1 RXi
� RYi

ð Þ2

N3
D � ND

10 Cogn Neurodyn (2014) 8:1–15

123



It can be shown that qS reduces to the Pearson product

moment correlation when calculations are performed on

ranks in the absence of ties. The probability of the null

hypothesis (no correlation) is calculated as before with t

taking the value tS.

tS ¼ qS

ND � 2

1� q2
S

� �1=2

The Spearman rank order correlation is less sensitive to

outliers than the product moment correlation. Impor-

tantly, the rank order correlation can detect nonlinear

correlations provided that the relation between X and Y

is approximately monotonic. A helpful example is given

in Triola (2008, p. 713). The rank order correlation is

less efficient than the product moment correlation in the

sense that the nonparametric measure requires 100

observations to achieve the same results as 91 observa-

tions analyzed with the Pearson correlation (Triola 2008,

p. 677).

Kendall rank order correlation

Consider two consecutive paired observations (Xi, Yi) and

(Xi?1, Yi?1). If both X and Y increase, then Xi?1-Xi,

Yi?1-Yi, and (Xi?1-Xi)(Yi?1-Yi) are positive. If both

variables decrease between observation i and i ? 1, then

(Xi?1-Xi)(Yi?1-Yi) is again positive. If these two vari-

ables are negatively correlated between these two obser-

vations, then (Xi?1-Xi)(Yi?1-Yi) is negative. The

Kendall rank correlation coefficient is constructed by

examining these relationships over all possible pairs of

observations. If (Xi?1-Xi)(Yj?1-Yj) is positive, then

variable j is increased by 1. If (Xi?1-Xi)(Yi?1-Yi) is

negative then variable j is decreased by 1. If it is zero, then

j is unchanged. These comparisons are made not just

across temporally adjacent pairs, that is between (Xi, Yi)

and (Xi?1, Yi?1), but rather for all possible (Xi, Yi) and (Xj,

Yj) pairs. There are ND(ND - 1)/2 distinct pairs, giving j a

maximum possible value of ND(ND - 1)/2. Kendall’s s is

the normalized value of j.

s ¼ j
NDðND � 1Þ=2

s has a value between -1 and ?1. In the null hypothesis of

no association between {X} and {Y}, s is normally

distributed and has the standard deviation (Press et al.

1992, p. 637).

r ¼ 4ND þ 10

9NDðND � 1Þ

� �1=2

The probability of the null hypothesis is computed from the

complementary error function.

PNULL ¼
2ffiffiffi
p
p

Z1

jsj=
ffiffi
2
p

r

e�t2 dt

Again letting RXi
and RYi

denote the ranks of {X} and

{Y}, it is seen that ðRXi
� RXj

ÞðRYi
� RYj

Þ has the same

sign as (Xi - Xj)(Yi - Yj) and therefore j calculated from

ranks is identical to j calculated using X and Y values. s is

therefore seen to be a nonparametric correlation that does

not make any assumptions about the distributions of {X}

and {Y}. It is generally observed that qS and s are highly

correlated. This anticipation is borne out in the calculations

presented here. s provides a means of identifying

monotonic correlations. A more general search for

correlations which would include non-monotonic

associations requires alternative measures.

Mutual information

Given {X} and {Y}, time series of paired observations.

Again, ND is the number of elements in each set. The

mutual information of variables X and Y, denoted I(X, Y),

is the average number of bits of variable Y that can be

predicted by measuring variable X. It can be shown (Cover

and Thomas 1991) that mutual information is symmetrical;

I(X, Y) = I(Y, X). For finite data sets I(X, Y) can be

approximated by estimating the probability distributions of

each variable and their joint probability distribution. Each

variable’s distribution is approximated by a histogram. Let

NX be the number of bins in the histogram of variable X.

OX(i) is the occupancy of the i-th bin and PX(i) = OX(i)/

ND is the probability of occupation in the i-th bin. (The

procedure for determining NX and the upper and lower

bound of each element of the partition is described pres-

ently.) NY is the number of elements in the histogram of

variable Y. In the general case NX and NY are not neces-

sarily equal. OY(i) and PY(i), j = 1, 2, …, NY are the

corresponding occupancies and probabilities.

PXY(i, j), the joint probability distribution, is the prob-

ability that an (x, y) pair is an element in the i-th bin of the

partition of the X axis and the j-th bin of the partition of the

Y axis. Mutual information is defined by

IðX;YÞ ¼
XNX

i¼1

XNY

j¼1

PXYði; jÞ log2

PXYði; jÞ
PXðiÞPYðjÞ

� �

where there is no contribution to the sum if PXY(i, j) = 0. If

variables X and Y are statistically independent, then PXY(i,

j) = PX(i)PY(j) and I(X, Y) = 0. Thus in a calculation of

mutual information, the null hypothesis is statistical

independence of variables X and Y, in which case I(X,

Y) is indistinguishable form zero. Let EXY-NULL(i, j) be the

expected occupancy of element (i, j) of the XY partition if
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X and Y are independent. Under the assumption of

independence EXY-NULL(i, j) becomes

EXY�NULLði; jÞ ¼ NDPXðiÞPYðj)

Let OXY(i, j) be the observed occupancy in each element

of the partition. The corresponding value of v2 is

v2 ¼
XNX

i¼1

XNY

j¼1

fEXY�NULLði; jÞ � OXYði; jÞg2

EXY�NULLði; jÞ

The number of degrees of freedom, t, is given by

t = (NX - 1)(NY - 1). The probability of the null

hypothesis of statistical independence is

PNULL ¼ Q
t
2
;
v2

2

� �

Q is the incomplete gamma function.

Qða; xÞ ¼ 1

CðaÞ

Z1

x

e�tta�1dt

CðaÞ ¼
Z1

0

e�tta�1dt

When examining finite data sets the estimated value of

I(X, Y) is critically dependent on the partition of X and Y

values used to estimate PX(i), PY(i) and PXY(i, j). Several

different procedures can be used to estimate these

distributions. We apply here a specific implementation of

an algorithm using a nonuniform partition that was

introduced in Cellucci et al. (2005). This algorithm

considers the special case where the same number of

elements, NE, is used to partition the X and Y variables;

NE = NX = NY. The bins span the range xmin to xmax on

the X axis and ymin to ymax on the Y axis. In this algorithm,

the widths of the bins are varied independently on each axis

to meet the criterion of uniform occupancy; that is each

element has occupancy ND/NE = OX(i) = OY(j) giving

PX(i) = PY(j) = 1/NE. It should be understood, however,

that the values of PXY(i, j) will not be uniform. The equi-

probable partition of each axis ensures that

XNE

i¼1

PXYði; jÞ ¼
XNE

j¼1

PXYði; jÞ ¼ 1=NE

But the PXY(i, j) values will be different. The assumption of

a partition giving PX(i) = PY(j) = 1/NE gives

EXY�NULLði; jÞ ¼ NDPXðiÞPYðjÞ ¼ ND=N2
E

When estimating PXY(i, j) we must address the question,

what is the appropriate value of NE? This is the two

dimensional analog of the histogram problem, which is the

appropriate number of bins in a histogram? The

morphology of the distribution cannot be detected if the

number of bins is too small. This is seen by consider the

limiting case of a single bin. Conversely, if the number of

bins is too large, occupancies are zero or one and again the

shape of the distribution cannot be determined. The number

of bins for either a one dimensional or two dimensional

distribution should be as large as possible, but not too

large. In this algorithm, NE is determined by applying a

variant of the Cochran criterion (Cochran 1954) to EXY-

NULL(i, j). This criterion requires EXY-NULL(i, j) C5 for at

least 80 % of the elements of the partition. We impose a

more conservative criterion and require EXY-NULL(i, j) C5

in all elements. NE is the largest positive integer satisfying

this criterion. We have previously derived an expression

for EXY-NULL(i, j) for an equi-probable partition of the X

and Y axes. Our criterion on EXY-NULL(i, j) becomes

EXY�NULLði; jÞ ¼ ND=N2
E� 5

NE is the largest integer meeting the criterion

ðND=5Þ1=2�NE. If, for example, ND = 8,192, then

ðND=5Þ1=2 ¼ 40:447 and NE = 40. OX(i) and OY(j) will be

either 204 or 205. The between bin differences of 204 or

205 occur because 8,192 is not a multiple of 40. The upper

and lower bound of each element of the partition are varied

to give the best possible approximation of PX(i) = -

PY(j) = 1/NE. When the bin assignments of X and Y val-

ues in the time series are known, PXY(i, j) can be

determined. The estimate of mutual information and the

probability of the null hypothesis then follow from the

previous formulas.
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Ordóñez VE, Pascua CL, Bocaletti S, Maestú E, del-Pozo F
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(eds) Methods of analysis of brain electrical and magnetic

signals. EEG handbook (revised series vol 1). Elsevier, Amster-

dam, pp 171–193

Goldstein K (1927) Die Lokalisation in der Großhirnrinde nach den

Erfahrungen am kranken Menschen. Julius Springer, Berlin

Goldstein K (1934, 2000) Der Aufbau des Organismus. Einführung in
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