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Gene expression analysis is often used to investigate the molecular and functional underpinnings of a phenotype. However,
differential expression of individual genes is limited in that it does not consider how the genes interact with each other in networks.
To address this shortcoming we propose a number of network-based analyses that give additional functional insights into the
studied process. These were applied to a dataset of sex-specific gene expression in the chicken gonad and brain at different
developmental stages. We first constructed a global chicken interaction network. Combining the network with the expression
data showed that most sex-biased genes tend to have lower network connectivity, that is, act within local network environments,
although some interesting exceptions were found. Genes of the same sex bias were generally more strongly connected with each
other than expected. We further studied the fates of duplicated sex-biased genes and found that there is a significant trend to
keep the same pattern of sex bias after duplication. We also identified sex-biased modules in the network, which reveal pathways
or complexes involved in sex-specific processes. Altogether, this work integrates evolutionary genomics with systems biology in a
novel way, offering new insights into the modular nature of sex-biased genes.

1. Introduction

Although primary sex determining genes are responsible
for the initial sex determining cues in the gonad, most of
the heritable differences in morphology, behavior, and life
history between males and females are the result of different
expression levels of genes present in both sexes [1, 2]. Sex-
biased genes, which comprise up to 50% of metazoan tran-
scriptomes [3–7], are the product of sexually antagonistic
selection for different male and female optima [8, 9]. This
antagonism is resolved with the emergence of sex-specific
transcriptional regulatory elements that decouple expression
between the sexes, thereby allowing separate female and male
phenotypes to emerge from a shared genome. Sex-biased
genes behave according to the evolutionary predictions for
sexually selected and sexually antagonistic traits [10–18], and
the study of sex-biased gene expression is emerging as a
method to connect sex-specific selection pressures, which act
on the whole organism, to the encoding loci.

This connection between sex-biased genes and sexu-
ally dimorphic traits offers a way to study the complex
interactions between the phenotype to the underlying
genome. Most studies of sex-biased gene expression treat
individual genes as independent units, ignoring correlated
expression that results from the interactive nature of genetic
pathways and networks. This simplification compresses the
multidimensional nature of the transcriptome. However,
because many sexually dimorphic phenotypes are complex
amalgams of numerous genes [5, 19, 20], we require a
way to study the interactions of the genes underlying them
if we wish to understand the constraints acting on these
traits and how they respond to selection. In addition to
this complexity, many genes contribute to more than one
phenotype, pathway, or subnetwork. This pleiotropy is likely
an important factor in the evolution of sex-biased gene
expression which may ameliorate intralocus sexual conflict
acting on a given gene [9].
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For genes with high levels of pleiotropy, the many
functions of a single locus result in strong evolutionary
constraints hindering change due to selection pressure for
any single function [21]. This is important for studies of sex-
biased genes, as sex-biased gene expression patterns resulting
from sexually antagonistic selection for any single function
may be detrimental in other functionalities [22]. This would
suggest that genes with many pathway connections, though
not necessarily less likely to experience sexually antagonistic
selection, are less likely to resolve that antagonism through
sex-biased expression, as this could result in detrimental
effects in other phenotypes encoded by the same loci [23].
More simply stated, the resolution of sexually antagonistic
selection may be more common for genes with fewer network
interactions. This prediction suggests that (1) pleiotropic
genes may contain relatively high levels of unresolved sexual
conflict and (2) sexually dimorphic phenotypes are more
often encoded by genes with few other functions. This has
important implications for evolutionary models of sexual
selection which typically assume single functionalities and
simple inheritance patterns.

Here we test the relationship between network interac-
tion and sex-biased gene expression with a newly developed
gene interaction atlas of the chicken. Previously, we have
shown that sex-biased expression is prevalent in chicken [23]
and that sex-biased genes in chicken exhibit evolutionary
patterns consistent with sexual selection and sexual conflict
[16, 18, 24]. In this analysis, we created a functional
coupling network from data integration [25] of chicken and
incorporated sex-biased expression data into it in order to
analyze the connectivity of sex-biased and unbiased genes in
both the gonad and soma. Overall, our goal was to better
understand the relationship between sexually dimorphic
phenotypes, the sexually antagonistic selection pressures
shaping them, and the genes encoding them.

2. Materials and Methods

2.1. Network. The chicken network was generated using
the FunCoup framework [25, 26]. This framework recon-
structs global large-scale networks of functional coupling
by Bayesian integration of diverse high-throughput data-
sets. More specifically raw scores of various types of
functional coupling are turned into probabilistic estimates
that are then integrated across different types of data and
model organisms. The different types of evidence com-
prised: protein-protein interactions, mRNA coexpression,
subcellular colocalization, phylogenetic profile similarity,
cotargeting by either miRNA or transcription factors, pro-
tein co-expression, and domain-domain interactions. The
integration of data from different sources enabled more
comprehensive network reconstruction with higher quality.
Furthermore, data from other eukaryotic species were trans-
ferred via orthologs. Ortholog assignments for cross-species
mapping were obtained from the InParanoid database [27].
Signaling and metabolic pathways from KEGG as well as
both pathway types combined were used as gold standard
for Bayesian training. The network has consequently three
different kinds of links: metabolic, signaling, and combined.

The network was predicted using seven chicken-specific
microarray expression datasets (see Table S1 in Supplemen-
tary Materials available online at doi:10.1100/2012/130491),
phylogenetic profile similarity across eukaryotes, and infor-
mation transferred from other species via orthologs. The
use of ortholog transfer was of special importance in this
case, as it allows us to overcome the lack of chicken-specific
interaction data.

2.2. Microarray Expression Datasets. The network was stud-
ied in the context of sex bias under different conditions. We
used three different Affymetrix chicken expression datasets
from the embryonic gonad, the adult gonad, and the adult
brain (previously described in Mank et al. [16], Mank and
Ellegren [28], and Mank et al. [24]). Each tissue/time-
point array hybridization was based on three replicate
nonoverlapping within-sex pools of 3–5 individual samples
from male and female embryonic and adult chickens. All
datasets were normalized using the MAS5 algorithm from
the Affy Bioconductor package.

2.3. Differential Gene Expression. There are several different
ways to define differential gene expression. Traditionally
genes that are meant to be over- or underrepresented in one
condition compared to a second condition have been iden-
tified by fold-change. Although this method is still widely
used, it might be biased in multiple ways. A high fold-change
can be caused by a single flawed sample or by negligible
differences in expression level just above the detection limit.
In other words it ignores if the differences in expression
change are statistically significant or not. Different methods
have been proposed to assess the significance of changes
in gene expression. The Student’s t-test and Welch test are
commonly used to estimate the significance of differential
gene expression. However, the reliability of those methods
strongly depends on the sample variance and the number
of samples for each condition. Besides numerous statistical
packages have been developed that account for differential
gene expression, for example, SAM, EBAM, and so forth.

It also has been widely recognized that using different
methods might result in rather distinct sets of differential
expressed genes. We approached the problem by using
the R MWT-package to determine significant differential
gene expression [29]. The MWT method is essentially a
moderated Welch test that aims to circumvent the problem of
a low sample number by pooling the variance over the whole
probe set. To adjust for multiple testing, all P values related to
differential expression were corrected using the Benjamini-
Hochberg method [30] that is rendered into false discovery
rate (FDR) values.

2.4. Network Randomization. To determine the significance
of the level of connectivity between a predefined set of genes
and a second set (or itself) we used the CrossTalkZ net-
work randomization package (http://sonnhammer.sbc.su.se/
download/software/CrossTalkZ/). The method compares the
number of observed connections between two gene sets to
the number of connections in a randomized version of the
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network. In the course of network randomization, links
between genes are swapped so that the original connectivity
of a gene is conserved. The randomization was repeated 100
times, and all results were averaged. For each gene set a
number of statistics were calculated including a z-score, a P
value, and a Benjamini-Hochberg corrected FDR value.

2.5. Functional Gene Modules. To identify gene modules that
are relevant to different developmental stages and sexes we
compiled for each condition networks of male or female-
biased genes separately. In addition these networks contained
other genes strongly connected to those sex-biased genes.
We used the hypergeometric test to identify such genes, and
genes with a Bonferroni corrected P value of less than 10%
were included in such networks.

A large number of network clustering techniques exist
to infer modules, but it is not obvious which ones are most
robust, that is, perform well under many different circum-
stances. From a benchmark study of 8 popular methods we
selected the two overall top performing methods, MGclus
(http://sonnhammer.sbc.su.se/download/software/MGclus/)
and MCL [31]. The latter was used with an inflation
parameter of 3.5. The significance of the derived modules
was evaluated by comparing the number of enriched GO
terms per module to the expected number of enriched
GO terms given a set of genes of that size. The expected
number of GO terms per module was estimated by 500 times
randomly picking n genes from the parental subnetwork,
where n equals the number of genes for a module. Based on
the distributions of the expected numbers of enriched GO
terms, a z-score was calculated for enrichment of GO terms
per clustering.

3. Results

3.1. The Chicken Network. With the FunCoup tool and
dataset collection, we derived a global chicken gene interac-
tion network. FunCoup can be used to determine confidence
values regarding the value of observed functional coupling
links, and the chicken network has roughly 1.8 million links
at a confidence cutoff (c) > 0.02 and about 58,000 at c >
0.75 (Table 1). The network was trained on three different
categories: metabolic, signaling, and both metabolic and
signaling combined. In the following we used a c > 0.25
as it represents a reasonable tradeoff between accuracy and
coverage.

The proteins with the highest connectivity are mainly
related to fundamental cellular processes such as protein
synthesis and degradation, translation, and transcription
(Table S2). Many of them are involved in multiple processes.
The most connected protein in our chicken network is
the RA-related nuclear protein (RAN). Due to its various
functions in nuclear transport and cell cycle regulation,
it acts as a major hub with a host of other proteins.
Interestingly, RAN is highly differentially expressed between
male and female chicken (i.e., sex biased) in the gonad (FDR
P < 10−4 in the adult), which is actually less common for
hubs as we show in the following.

3.2. Sex Bias Depends on Network Connectivity. Is there a
dependency between sex bias and network connectivity? To
answer this question, we first grouped the genes in three sex
bias categories: male biased, female biased, and unbiased.
For this we used the MWT statistic of differential expression
with an FDR P value cutoff of 0.1. This was done for
all four tissue/stage conditions: the embryonic and adult
gonad and brain. The number of sex-biased genes in the
network for each category is shown in Table 2. Remarkably,
the embryonic brain contained almost no sex-biased genes
and was therefore left out of this analysis. The adult brain had
more sex-biased genes, but these still represented only 3% of
the genes in the network. In contrast, the gonad abounded
with sex-biased genes in the network: 43% in the embryo and
82% in the adult.

Sex-biased hub genes were thus frequent in the gonad,
but not in the brain, and this may be due to the fact
that the male and female gonads have extensive sex-specific
functions, while the brain consists of many different tissues
of which only small fractions of our microarray samples
may be affected by the sex. The sex-specific expression signal
in the brain will therefore be diluted by the nonaffected
tissues until it is no longer statistically significant. Finer-
scale analysis of specific brain tissues might reveal more
dimorphism in gene expression, particularly those regions
related to vocalization differences between male and female
birds [32] or reproductive behavior [33].

We calculated Spearman’s rank correlation coefficient
between FDR values from differential expression analysis and
node degree (i.e., the number of connections a gene has in
the network), for each tissue/stage combination. As can be
seen in Table 3, all but one of the sex-biased categories in the
gonads had a significant positive correlation at FDR P < 0.1,
indicating a tendency for fewer network connections as sex-
bias increased. The exception was male biased genes in the
adult gonad, but when lowering the cutoff to 0.001 these
gave a weak but significant positive correlation (r = 0.1,P <
0.05). Unbiased genes were not significantly correlated with
connectivity, nor were the brain genes, as may be expected
given the dilution problem of brain expression mentioned
above. This trend also held true when using fold-change as
a measure for sex-bias. In other words, sex biased pathways
seemed to generally affect local components of the network,
except for the ones overexpressed in the male adult gonad,
which tends to act more often in global components.

3.3. Sex-Biased Hub Genes. From the previous section it is
clear that the level of sex was a function of both by tis-
sue/stage condition as well as connectivity. We demonstrated
that low connectivity genes tend to be more sex biased than
high connectivity genes, yet some hub genes have strong sex
bias. To focus on such sex-biased hubs, we first ranked each
gene according to sex bias or connectivity separately and
then reranked them according to the sum of both ranks. The
highest ranked genes thus represent the most sex-biased hub
genes. Table S3 shows the twenty top ranked sex-biased hubs
in each condition.

http://sonnhammer.sbc.su.se/download/software/MGclus/
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Table 1: Number of links (first number) and unique genes (second number) at different FBS (final Bayesian score) cutoffs in FunCoup,
where c is the corresponding confidence value of functional coupling.

Metabolic Signaling Combined Total

FBS> 3 (c > 0.02) 1375931/10555 601101/10569 1152763/10549 1809810/11311

FBS> 5.9 (c > 0.25) 171490/5520 33934/4861 124616/5383 199120/6748

FBS> 7 (c > 0.5) 89818/4132 13401/2990 62707/3885 100887/4902

FBS> 8 (c > 0.75) 52285/3175 6365/1869 35821/2930 57690/3673

Table 2: Number of sex-biased and unbiased genes separated by the cut-off FDR< 0.1 according to MWT.

Male Female Unbiased

Embryonic gonad 1304 1128 3244

Adult gonad 1934 2693 1049

Embryonic brain 0 2 5675

Adult brain 87 92 5497

Table 3: Sex-biased genes tend not to be hubs. This is evidenced by Spearman’s correlation coefficient between differential expression
(measured as MWT FDR) and network connectivity which was significantly positive in most cases. Sex-biased genes were separated from
unbiased genes using a cutoff of FDR= 0.1. The first number is the correlation, and in brackets is the corresponding P value. Significant
correlations (P < 0.01) are marked in bold.

Male Female Unbiased

Embryonic, gonad 0.12 (7.98e− 06) 0.16 (1.55e− 07) −0.03 (0.12)

Adult, gonad −0.04 (0.10) 0.06 (9.91e− 04) −0.003 (0.93)

Adult, brain 0.12 (0.29) −0.06 (0.60) 0.03 (0.02)

Among the highly connected hubs in Table S3, tubulin
alpha-3e (TUBA3E), ranked first and second in the embry-
onic and adult gonads, has 426 links. It is female biased in
the embryonic gonad but male biased in the adult gonad.
Other highly connected tubulins are also in the list. This
indicates that sexual differentiation and sex-specific function
are partly orchestrated via sex-specific tubulin assembly.
Some of the proteins in Table S3 are directly implicated in
sex determination, for example, the testis-specific tubulin
alpha-2 (TUBAL2, connectivity 94), the meiotic recombi-
nation SPO11 (connectivity 37), or the NASP the nuclear
autoantigenic sperm protein (connectivity 97). A major hub
in the embryonic as well as the adult gonad is CDK3,
cell division protein kinase 3 (connectivity 189). CDK3 is
further linked to the KEGG pathways oocyte meiosis as well
as progesterone-mediated oocyte maturation. Intriguingly,
CDK3 was strongly female biased in the embryonic gonad
but strongly male biased in the adult gonad. Overall this
suggests that a major difference between the sexes results
from a complex interplay between components of the cell
division and development systems.

3.4. Interconnectivity of Sex-Biased Genes. To answer the
question if sex-biased genes are stronger connected to genes
of the same bias, we compared the connection frequencies
between the different categories to what is expected by
chance alone. For topology-preserving randomization of the
network we used the CrossTalkZ program (see Section 2)
and performed 100 randomization runs. The results for the
embryonic and adult gonads are shown in Figure 1.

In the gonad we found genes of the same sex bias
(e.g., male versus male) to be more frequently connected
to each other than to genes of a different sex bias or
unbiased genes. It is striking that both in the embryonic
and adult gonads, male-biased genes have significantly fewer
connections to female-biased genes than expected by chance.
In the brain, we did not observe a significant crosstalk
between male- or female-biased genes, probably due to
the dilution problem mentioned above. Separate female-
and male-specific networks are thus common throughout
the chicken network in the gonad, and these sex-specific
networks function to encode dimorphic processes in this
tissue.

Sex-biased genes on the Z-chromosome are shown as
separate nodes in Figure 1. The Z chromosome had to
be treated separately from the autosomes due to the lack
of complete dosage compensation in birds which results
in a pervasive male bias for nondosage sensitive genes
[34]. Sex-biased genes on the Z-chromosome are shown
as separate nodes in Figure 1. Genes of the same sex bias
located on the Z-chromosome were more connected to
each other than expected by chance and were significantly
enriched in links to genes of the same sex bias on other
chromosomes. Connections between female and male genes
on the Z-chromosome were about as frequent as expected,
but there were significantly fewer connections than expected
between whole-genome male and Z-chromosome female-
biased genes and vice versa. These results show that the
reconstructed chicken network is largely made up of male-
specific and female-specific modules.
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Table 4: Results of the inparalog group analysis showing the number of groups in the various categories. In total we found 69 groups with
at least two inparalogs in chicken. However, only 59 could be processed since expression data were not available for all genes in ten of the
groups. The number in brackets in the mixed cluster field is the number of groups that contain both male- and female-biased genes. A
significant difference between the observed number of inparalogs and what is expected by chance is indicated by ∗(P < 0.05), + indicates a
number higher than expected by chance, and − a number lower than expected.

Gonad adult Gonad embryo Brain adult

All-male 15+∗ 7+∗ 0

All-female 18+∗ 8+∗ 0

All-unbiased 6+∗ 25 58+

Mixed 20 (5)−∗ 19 (1)−∗ 1 (0)−

2.1 2.28

7.83

10.11

0.05

1.44

0.13

0.36

2.121.75

1.18

1.13

5.86 2.56

5.84

Female

Male zFemale z

Unbiased

Male

(a) Embryonic gonad

5.9 4.44

7.94

6.96

0.51

1.49

1.72

1.32

6.135.06

1.23

0.25

1.91 0.15

9.29

Female

Male zFemale z

Unbiased

Male

(b) Adult gonad

Figure 1: Network of crosstalk, that is, enrichment or depletion of links, between sex-biased and unbiased genes. Positive crosstalk (i.e.,
enrichment of links) is shown in red and depletion in green. Solid lines indicate significant crosstalk with FDR < 0.05. Edge width and label
show the z-score of the crosstalk analysis.

3.5. Duplicated Sex-Biased Genes. Gene duplication is a
mechanism for creating new functions, and such a functional
niche could be associated with a particular sex bias. Previous
work has shown that duplicates of unbiased genes often
develop sex-biased expression [35]. However, it is not
yet clear if sex-biased genes that were recently duplicated
tend to maintain the same pattern of expression bias. To
answer this question, we restricted the analysis to orthologs.
Orthologous genes are known to retain identical or closely
related biological function more often than other types of
homologs [36–39]. Two genes in one species are considered
as inparalogs with respect to another species if the gene
duplication occurred after the respective speciation event. In
order to clarify if inparalog genes in chicken would more
often have the same sex bias or are biased towards the
opposite sex, we selected all inparalogs between chicken and
human from the InParanoid database [27]. An ortholog
group was only analyzed if it had at least two alternative
inparalogs in chicken and if expression data were available.
Roughly half of the groups could thus be analyzed. The group
was then evaluated for differentially expressed genes using a
FDR cutoff of 10%.

The results of this analysis can be seen in Table 4 (and
Table S4). In the gonad, the numbers of male- and female-
biased groups were similar, while in the brain none of
the groups were biased towards one of the sexes. A big

fraction of the groups is however a mix between sex-biased
and unbiased genes. Remarkably, five ortholog groups in
the adult gonad contained both male- and female-biased
genes. An example of such a group contained female-
biased glutathione S-transferase 2 (GSTA2) and male-biased
glutathione S-transferase 3 (GSTA3). These inparalogs were
connected to each other in the FunCoup network as well as
to a set of other sex-biased genes (see Figure 2). However,
75% of GSTA2 links and 48% of GSTA3 links were not
in common. At a cutoff of 0.5 only 2 links were shared
between the two genes. It thus represents a likely example of
subfunctionalization driven by sex differentiation.

To evaluate significance of these findings we compared
the obtained numbers of inparalogs with the same bias to the
distribution expected by chance (see Table S4). To this end,
we randomly sampled genes of each ortholog group from the
complete expression dataset. This procedure was repeated
1000 times, and the obtained numbers of groups with the
same sex bias were compared to the observed values. For
both the embryonic and adult gonadsthe original number
of inparalogs with the same sex bias significantly exceeded
the number of what would be expected by chance alone
(P < 0.05). In the brain however there was no clear trend.
We conclude that inparalogs that emerged after the mammal-
bird speciation generally preserved sex bias, although a few
exceptions exist.
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GSTK1

COPB2

AHCY

GSTT1 CHICK

GSTZ1

ENSGALG00000005114

GSTA2 CHICK

GSR

ENSGALG00000021087

GSTA3 CHICK

UGT1A8

STOM

CP2H1 CHICK

NP 989634.1

PTGD2 CHICK

PLEKHC1

ENSGALG00000011894

NP 001012615.1

NP 001006205.1

NP 001006223.1

NP 001033782.1

NP 001025768.1

NP 001026323.1

NP 001026568.1
NP 990149.1

Figure 2: Example of sex-differentiation-driven subfunctionalization. The chicken genes GSTA2 and GSTA3 (glutathione S-transferases 2
and 3; shown as diamonds) originate from a duplication that happened after the divergence from human, making them inparalogs. GSTA2
is male biased, but GSTA3 is female biased in the adult gonad. Their interaction partners in the chicken network are shown with sex bias.
Male-biased genes are shown in blue, female-biased in red, unbiased in green, and unknown in grey.

3.6. Sex-Biased Network Modules. Network modules, or
clusters, can be useful to find groups of functionally related
genes. Such modules may represent parts of pathways or
complexes that can be discerned as cliques of genes that are
strongly linked to each other in the network. To identify
functional modules of sex-biased genes, we calculated for
each condition a set of male- or female-biased modules.
We derived a network of sex-biased genes as well as genes
which were strongly connected to them for each condition
(see Section 2). Different clustering methods have different
advantages and disadvantages and might as well result in
relatively different sets of modules. We used two different
methods to derive functional modules, MCL and MGclus. In
the following we contrast the results of both methods as well
as discuss the significance of the derived modules based on a
few selected examples.

MCL is a global clustering approach that simulates ran-
dom walks in the underlying interaction network. MGclus
tries to identify clusters of strongly mutually linked genes
using a scoring function that additionally accounts for shared
neighbors. Thus nodes in the same cluster are thus likely to
share a large fraction of shared neighbors, which increases
cohesiveness within the cluster.

The overall outcomes of the MGclus and MCL clusterings
are shown in Table 5. In all of the cases the clusters were
significant, that is, had at least one enriched GO term, which
was assigned to more than one gene in the cluster. Further, in
all cases except for the adult brain, all clusters had on average
significantly more enriched GO terms than random modules
of the same size. The adult brain might however have too
few sex-biased genes to see this. It is also worth noting that

the MGclus clusters had on average more enriched GO terms
than the MCL clusters.

How different are MCL and MGclus clusters? The
overlap strongly depended on the size of the input network.
While the overlap was notable for smaller networks (e.g.,
the embryonic gonad or brain), it was limited for larger
networks. To illustrate the overlap between the different
clusterings we calculated UPGMA trees based on the fraction
of the intersection relative to the union (Jaccard index) of
genes in MCL and MGclus clusters. The same was done for
enriched GO terms. For the male adult gonad, a few MGclus
and MCL clusters overlap to a high degree, but most of
them do not have a counterpart with more than 30% overlap
(Figure S2). On the other hand, for the male embryonic
gonad, which had much fewer differential expressed genes,
most of them find a counterpart with more than 60% overlap
(Figure S3), indicating that these clusters are relatively
reliable. Unsurprisingly, gene and GO term overlap trees
were very similar.

One module identified from the embryonic gonad
contained eight male-biased genes and one female-biased
gene (Figure 3(a)). The female-biased gene was included
because it was significantly enriched in connections to the
male-biased genes. This module was functionally related to
cell growth and development. It contained eight enzymes
with biosynthetic functions and one extracellular matrix
protein Tenascin (TENA CHICK) which is important in
tissue development. Two of the enzymes (AL1A1 CHICK,
ADH1 CHICK) are important for retinoic acid (RA) syn-
thesis [40]. RA is known to be crucial for embryonic
development, growth, and reproduction. Four of the genes
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Table 5: Number of MGclus and MCL clusters, number of clusters with significant GO term enrichment, and the level of significant GO
term enrichment compared to random. A z-score above 2 corresponds to a significance level of P < 0.05.

Clusters Significant Avg. sig. terms Random avg. sig. terms

MGclus

Gonad embryo male 6 6 43.50 18.72

Gonad adult male 24 24 20.58 9.56

Brain adult male 3 3 16.67 13.01

Gonad embryo female 6 6 31.17 16.09

Gonad adult female 22 22 62.23 23.58

Brain adult female 3 3 25.67 20.94

MCL

Gonad embryo male 5 5 30.80 16.87

Gonad adult male 31 29 18.52 6.92

Brain adult male 6 6 9.00 6.94

Gonad embryo female 3 3 16.67 10.85

Gonad adult female 64 64 27.97 10.62

Brain adult female 3 3 24.33 16.42

GSTA3 CHICK

GSTT1 CHICK

ALDH7A1

TENA CHICK

AL1A1 CHICK CDO1

ISOC1

ADH1 CHICK

GSTA2 CHICK

(a) Embryonic gonad

GSTA3 CHICK

GSTT1 CHICK

ALDH7A1

TENA CHICK

AL1A1 CHICK CDO1

ISOC1

ADH1 CHICK

GSTA2 CHICK

(b) Adult gonad

Figure 3: Example of sex bias switching between developmental stages. Shown is an MGclus cluster colored according to sex bias in the
embryonic (a) and adult (b) gonads. Male-biased genes are shown in blue, female-biased in red, and unbiased in green.

change sex bias and become female-biased in the adult
gonad (Figure 3(b)), indicating that this module switches its
function during development depending on the sex.

4. Discussion

By analyzing sex bias within the chicken gene network,
we have been able to deduce several network properties
pertaining to sexual dimorphism that gives new biological
insights. Our analysis suggests that network hub genes
tend not to be sex biased, although with some interesting
exceptions. This suggests that most sex-biased genes tend to
act within local network environments, and relatively few
of them interact on a more global scale. This is consistent
with recent studies that show that pleiotropy, as measured
by expression breadth, tends to constrain the evolution of
sex-biased expression [41, 42]. This analysis extends the
measure of pleiotropy to network connectivity, with broadly
consistent results.

We also investigated the propensity of sex-biased genes
to form network modules in several ways. First, we noted
that genes of the same sex bias tend to be more connected to
each other than expected. Second, recently duplicated genes,
which are similar in biochemical function, tend to have the
same sex bias. Finally, a set of sex-biased modules were
extracted from the network, and these showed unexpected
functional homogeneity. These observations support a net-
work structure that embodies sex-biased network modules.
The implication of this is that the mechanisms underlying
sex-specific development can be organized according to these
modules, which simplifies the study and understanding of
this complex system.

This work provides the first integrated, multidimensional
analysis of the network structure underlying sex-biased
gene expression and, as such, offers a more realistic link
between sex-biased gene expression and sexually dimorphic
phenotypes. Our analysis suggests, that rather than operating
as distinct entities, genes of the same sex bias often group
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together in network modules, potentially due to shared
regulatory elements or hierarchical pathway structures.
This has several evolutionary genetic implications. First, it
suggests that when many genes act in concert to encode
sexually dimorphic phenotypes, they may be controlled by
a shared regulatory apparatus. This collective regulatory
control could then be exploited by emergent sexual dimor-
phisms, resulting in associated phenotypic differences [43].
It also suggests that single- or oligolocus models of sexual
selection evolution (e.g., [44, 45]) are appropriate for some
sexually dimorphic traits, even when transcriptome analysis
reveals that gene expression of those phenotypes differs
for many genes between the sexes. Although genes do not
operate as independent units but are rather tethered in
modules in a complex network of interactions, they however
often work in concerted regulatory patterns. Therefore, our
analysis somewhat paradoxically suggests that the control of
complex sexual dimorphism may be ultimately attributable
to relatively few key regulators.

Sex chromosomes often exhibit a nonrandom distri-
bution of sex-biased genes associated with masculinizing
or feminizing selection [46, 47]. Additionally, female het-
erogametic sex chromosomes, including those exhibited by
birds, are also predicted to be particularly associated with
the evolution of certain types of sexually selected traits
[45, 48, 49]. Our analysis is consistent with these predictions.
The crosstalk observed in the adult gonad between sex-
biased genes on the Z chromosome and sex-biased genes
on the autosomes suggests that the Z chromosome, which
contains a relatively modest proportion of the total avian
coding content, may play a disproportionately large role in
the regulation of sex-biased genes.

Previous work has shown a nonrandom distribution of
sex-biased genes on the avian Z chromosome [50–52], with
more male-biased and fewer female-biased genes on the
Z chromosome than would be expected by chance alone.
However this issue is complicated by the incomplete dosage
compensation observed on the avian Z chromosome. Studies
in a range of bird species have shown a persistent male
bias on the Z chromosome due to the fact that males have
two copies of every locus and females just one [34, 53, 54].
It has therefore been difficult to disentangle the effects of
masculinizing selection for gene expression from incomplete
dosage compensation [18]. Our analysis does not suffer
from this type of conflation, as the crosstalk enrichment
takes the relative abundances of different biases into account.
This should minimize any effects of incomplete dosage
compensation on our network.

In conclusion, our results suggest that network
approaches to the study of sex-biased gene expression
can offer new insights into the programming and genetic
basis of sexual differentiation. Current transcriptome
profiling produces massive datasets measuring relative gene
expression, but this approach alone results in the false
perception that each locus is independent of all others. Gene
network approaches such as the one described here make it
possible to consider a more multidimensional and integrated
view of genome regulation which is particularly insightful
for complex phenotypes.
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